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ABSTRACT OF THE DISSERTATION

Measurement of the 3He(e, e′p)pn Reaction at High

Missing Energies and Momenta

by Fatiha Benmokhtar

Dissertation Director: Professor Ronald Gilman

We investigate the structure of 3He through the measurement of quasielastic 3He(e,e′).

The measurements use the high duty factor electron beam and the high-precision two-

spectrometer system in Hall A of the Thomas Jefferson National Accelerator Facil-

ity (TJNAF). The measurements were performed in perpendicular kinematics at fixed

momentum and energy transfer by the electron, |~q| = 1.5 GeV/c and ω = 837 MeV,

respectively.

A description of the reaction in the plane wave impulse approximation is presented.

The experimental equipment is described in detail. For the measurements, the kinemat-

ics of the experiment are given. The procedures to remove backgrounds and perform

radiative corrections, are also discussed in detail. The detailed method of performing

radiative corrections in particular is novel to this work. Finally, the resulting cross sec-

tions, distorted spectral functions, and asymmetry ATL are presented, and the physics

implications are discussed.

We extracted cross sections and distorted spectral functions up to high missing mo-

mentum, pm up to 1 GeV/c, and up to high missing energies, Em up to 140 MeV, the
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pion production threshold. The experimental data are much higher in statistics and

much more extensive in kinematic coverage than any previous measurement. Theo-

retical predictions are in good agreement with the data, leading to the conclusion that

the cross section at large missing momenta is strongly enhanced by nucleon-nucleon

correlations, with additional enhancement from final-state interactions. The conven-

tional NN correlations present in a modern three-body nuclear wave function, along

with a modern reaction mechanism theory, appear sufficient to explain the data; there

is no strong indication of a need to include any additional exotic physics, such as quark

degrees of freedom.
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Chapter 1

Introduction

A central goal of nuclear physics is to understand the properties of nuclei, starting from

the interaction of free nucleons. While shell-model and collective approaches to un-

derstanding nuclear structure have existed for decades, it is only in recent years that

advances in computational techniques and computer hardware have allowed calcula-

tions starting from the nucleon-nucleon force. With these advances, nuclear physicists

are beginning a much more detailed study of topics such as three-body forces in nuclei,

and the importance of quark degrees of freedom.

The traditional approach to nuclear structure is essentially a theory of point-like

nucleons, that adds in the nucleon form factors as needed. But since the nucleons

themselves are made of quarks, one can ask if the quark substructure of the nucleon

plays any role in the structure of nuclei. The usual assumption is that the long-range

attractive force between nucleons is indeed dominated by pion exchange between the

nucleons, but the short range repulsive force is likely to be better described with quark

and gluon degrees of freedom. Then, to search for quark effects in nuclei, one has

to examine phenomena sensitive to the short-range, and thus high-momentum, part of

the nuclear wave function. Thus, one wishes to study short-range correlations between

nucleons. This study has only really become possible in recent years, as we now have

the ability, for light nuclei, to make predictions based on the nucleon-nucleon force.

Even in a standard shell-model calculation of nuclear structure, in which a nucleon

might be viewed as an independent particle moving in an average potential, one needs

additional two-body forces to account for the properties of nuclear levels. Furthermore,
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if one has two particles in a nucleus, the wave function of the two particles can be

transformed into a center-of-mass wave function times a relative wave function, which

reflects the correlations between the two nucleons. So conventional models always

have correlations between two particles, and to find quark effects, we need to identify

in data that there are effects of correlations, that these correlations are short range, and

that quark models, but not conventional nucleon-nucleon forces, can be used to explain

these correlations.

There is a long history of experimental interest in two-nucleon correlations. It has

been a motivation for the study of many interactions that necessarily involve two nu-

cleons, such as (e,e′NN) and (π+,π−) reactions. However, there is a lack of definitive

results concerning two-nucleon correlations due to additional reaction mechanism ef-

fects that obscure the correlation physics. There are always problems at some level

with nucleons rescattering with the nucleus, and with meson-exchange currents and

isobar excitation.

Attention in recent years has shifted to (e,e′p) and (e,e′NN) reactions on few body

nuclei. Modern nucleon-nucleon potentials generate excellent wave functions and ac-

curate descriptions of nuclear properties. On the experimental side, the modern gener-

ation of high-current, continuous-beam accelerators allows the studies to be carried out

to very high values of missing momentum, well above the ≈ 200 MeV/c Fermi momen-

tum of light nuclei, so that one knows nucleon-nucleon correlations must be important.

The experiment described here, 3He(e,e′p), takes advantage of these theoretical and

experimental advances to provide one of the most discriminating tests to date of the

ability to describe nuclei in terms of hadronic degrees of freedom, or alternately the

need to use quark degrees of freedom to describe nuclear properties.
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1.1 Electron Scattering

Electron scattering is one of the most powerful tools used in the exploration of nuclear

matter. The electromagnetic interaction is well described by the Quantum Electro-

Dynamics (QED), where the beam electron exchanges a virtual photon with the target

nucleus; this approach is called one photon exchange approximation. The electro-

magnetic interaction is relatively weak compared to the hadronic interaction and the

resulting virtual photon can probe the entire nuclear volume, in contrast to hadronic

probes that mostly sample the nuclear surface. In contrast to real photon probes, in

which the energy and momentum transfer are fixed, electron scattering allows one to

vary the energy and momentum transfer individually.

During the past few decades, a wealth of information has been obtained on the sin-

gle particle aspects of nuclear structure, in particular through elastic, inelastic (e, e′)

and quasielastic (e, e′p) electron scattering experiments. These results have led to

strong constraints on the self-consistent mean field description of nuclei, and it is fair

to say that the one-body properties of nuclei are now well under control.

• By increasing the momentum transfer, one can probe the spatial structure of nu-

clei over distances comparable to or smaller than the nucleon size, where short

range correlations between two or several nucleons are important. These corre-

lations are poorly known, and their determination is one of the major goals of

modern nuclear physics.

• At high momentum transfer, the internal structure of hadrons cannot be ignored.

Indeed, the study of the interplay of mesonic and nucleonic degrees of freedom

with those of their constituents, using the nucleus as a laboratory, is also a funda-

mental objective. How is a nucleon affected by the presence of close neighbors

in the nuclear medium? Is there a distance below which it loses its identity within

a large quark cluster?
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Experimental studies of electromagnetically induced two-body and three-body breakup

of the three-nucleon system have mainly been performed on 3He, because of the ex-

perimental difficulties associated with the use of tritium. The experiments included

the electron-induced two-body breakup reaction channel 3He(e, e′p)d [1,2,3,4,5], and

two-body break-up experiments of the type 3He(e, e′d)p have also been performed

[2, 6, 7, 8]. In these experiments, the proton momentum distributions in 3He were ob-

tained up to 500 MeV/c. Although the cross section is strongly influenced by contribu-

tions from meson-exchange and final state rescattering, signatures of NN correlations

were observed in these studies for momenta above 300 MeV/c. The proton-proton

density distribution was extracted for relative momenta from 200 to 550 MeV/c in a

model-dependent analysis of inclusive (e, e′) data by Beck [9].

Coincidence experiments have proven to be very useful tools to study specific as-

pects of the nucleus. In particular, the (e, e′p) reaction has been used not only to ex-

plore the single nucleon structure of nuclei, but also to study the behavior of nucleons

embedded in the nuclear medium.

The high energy, high duty cycle beam of Jefferson Lab allows one to fully develop

such studies by:

• extending the domain of momentum transfer towards higher values where short

range effects and possibly the internal structure of the nucleons are manifested,

• exploring nuclear structure in extreme conditions, by focusing on the high mo-

mentum part of the wave functions, and

• increasing the specificity of the probe by separating the response functions asso-

ciated with different polarization states of the virtual photons.

The E89044 experiment in Hall A of Jefferson Lab exploited these possibilities by

undertaking a series of (e, e′p) measurements on 3He.

The (e, e′p) reaction formalism was first developed in references [10,11,12,13,14].

A brief review of the formalism is presented below; for more details the reader is
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referred to a review of (e, e′p) by J. Kelly [15]. The kinematic variables are defined

below, and the most general cross section is given in the formalism of the plane wave

Born approximation (PWBA). The proton momentum density distribution is defined,

and the kinematical settings are presented.

1.2 3He(e, e′p) Kinematics

We describe, in the laboratory coordinate system, the kinematics of coincidence (e, e′p)

detection using the standard notation of the total energies and the three-momenta of the

participant particles in the reaction; see Fig. 1.1:

• incident electron: ki = (Ei, ~ki),

• detected electron: kf = (Ef , ~kf),

• detected proton: pp = (Ep, ~pp),

• target nucleus: pA = (EA, ~pA),

• undetected residual system: pB = (EB, ~pB),

• virtual photon: q = (ω, ~q).

In the present experiment, the momentum of the incident and scattered electrons

and of the knocked out proton are measured, so that ~ki, ~kf and ~pp are known. In

3He(e,e′p) coincidence measurements, the experimentally determined quantities are

~ki, ~kf and ~pp. The total energy of the detected proton Ep is obtained with Ep =
√

M2
p + p2

p, where Mp is the proton rest mass. The electrons are ultra-relativistic (i.e.

ki � me), so that Ei ≈| ~ki | and Ef ≈| ~kf |. Additionally, in the laboratory frame, the

initial momentum of the target 3He nucleus is neglected so that pA = (MA,~0), where

MA is the rest mass of the 3He nucleus.
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The four-momentum of the virtual photon is calculated from momentum and en-

ergy conservation

q = ki − kf = (ω, ~q). (1.1)

with ω = Ei − Ef and the three momentum transfer ~q = ~ki − ~kf .

We adopt the notation Q2 = −q2 ≥ 0, for our space-like electron scattering reac-

tion.

The scattering plane is defined by ~ki and ~kf . The reaction plane is defined by ~q and

~pp. The angle between the reaction plane and the scattering plane is defined to be the

out-of-plane angle, φ. Since detection of the proton at φ = 0 or φ = 180o corresponds

to a measurement in the scattering plane, these measurements are called “(nearly) in-

plane kinematics”. All the measurements presented in this thesis correspond to in-plane

kinematics. The angle of the detected proton with respect to ~q is θpq. Detection of the

proton along ~q, θpq = 0, corresponds to “parallel kinematics”. If ~p is not parallel to ~q,

the setting is called perpendicular kinematics.

The three momentum of the recoil system, ~pB , can be calculated by applying mo-

mentum conservation at the reaction vertex:

~pB = ~q − ~pp (1.2)

We define the missing momentum of the reaction to be the momentum we did not

measure during the reaction. It is equal to ~pB ,

~Pm = ~pB = ~q − ~pp (1.3)

The excitation energy of the system is given by the missing energy Em; it is the

difference between the transferred energy and the sum of the energies of the knocked

out proton and the recoil system. It is given by:

Em = ω − Tp − TB, (1.4)
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Figure 1.2: One photon exchange approximation.

and also given by:

Em = ω − (
√

p2
p +M2

p −Mp) − (
√

p2
B +M2

B −MB). (1.5)

where MB is the mass of the recoil system.

1.3 Plane Wave Born Approximation (PWBA)

In the plane wave Born approximation (PWBA), the incident and scattered electrons

are described by Dirac plane waves and the interaction with the nucleus is mediated by

one single virtual photon 1as illustrated in Fig. 1.2.

In this approximation, the six-fold differential cross section for the (e, e′p) reaction

is given by:

d6σ

dωdΩedEpdΩp
= KσM (RT + εRL +

√

ε(1 + ε)RTL cosφ+ εRTT cos 2φ) (1.6)

where

1The largest term in calculating the (e, e′p) cross section is the one corresponding to the exchange
of a single virtual photon. Higher order terms contain more than one photon, and are suppressed due to
the weakness of the electromagnetic coupling constant.
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• K is a kinematic factor, pp2/2||,

• σM = α2

4E0
2

cos2 (θ/2)

sin4 (θ/2)
is the Mott cross section, which describes the scattering of a

relativistic electron on a point-like target particle.

• ε =

[

1 + 2
|q̃2|
Q2 tan2 θ

2

]−1

is the polarization of the virtual photon. 2

The four independent response functions RL, RT, RLT and RTT contain all the

information that can be extracted from the hadronic system using the (e, e′p) reaction.

They are related to the components of the hadronic current J = (ρ, ~J ) by the relations:

• RL =< ρρ+ >

• RT = < J||J
+
|| + J⊥J+

⊥ >

• RLT cos φ = − < ρJ+
|| + J||ρ

+ >

• RTT cos2φ =< J||J
+
|| − J⊥J+

⊥ >

where J|| and J⊥ are perpendicular to the momentum transfer ~q in the scattering plane

and perpendicular to the scattering plane respectively.

1.4 Plane Wave Impulse Approximation (PWIA)

In the plane wave impulse approximation (PWIA) the total energy and momentum of

a single virtual photon is absorbed by a single nucleon while the other nucleons stay

spectators, as shown in Fig.1.3.

In this approach, the outgoing nucleon leaves the nucleus without interacting with

the rest of the nucleons and may be represented by a plane wave. This nucleon is the

one detected in a coincidence experiment.

Applying momentum conservation at the photon-proton vertex, the initial proton

momentum, ~pi, is given by:

2The polarization ε is defined only for virtual photons; real photons are characterized by Q2 = 0.
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e

e’
 p

|f >

         |i >

Figure 1.3: One photon exchange approximation.

~pi = ~pp − ~q. (1.7)

Comparing the equations 1.7 and 1.3 , one can see that the initial proton momentum

is related to the missing momentum, ~Pm, of the reaction by:

~pi = −~Pm (1.8)

By measuring the missing momentum in an (e, e′p) experiment, one can therefore

determine the initial momentum that the struck proton had inside the nucleus before

the scattering occurred. Note that this interpretation is only valid in the framework of

the PWIA.

The (e, e′p) cross section in the PWIA is given by:

d6σ

dωdΩedEpdΩp
= p2

p × σep × S(Pm, Em) (1.9)

where σep is the off-shell electron-proton cross section. S(Pm, Em) is the spectral func-

tion, and represents the probability of finding a proton of momentum Pm and energy

Em inside the nucleus.
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Figure 1.4: Distorted Wave Impulse Approximation.

1.5 Distorted Wave Impulse Approximation (DWIA)

In this approximation, the ejected nucleon interacts with the residual nucleus via the

strong interaction. The distorted wave impulse approximation (DWIA) takes final

states interactions (FSI) into account, while at the same time maintaining the other

assumptions of the PWIA. Figure1.4 represents the diagram for the DWIA.

In the DWIA, the FSI are usually addressed using an optical potential to derive

the distorted wave for the ejected nucleon. The optical potentials are obtained from

fits to elastic nucleon-nucleus scattering data. A description of the optical potential

formalism may be found in Ref. [16]

1.6 3He(e, e′p)pn Reaction and Nucleon-Nucleon correlations

Exclusive (e, e′p) measurements can provide information on the spatial structure of

nuclei at a resolution less than the size of the nucleons, where correlations between

two or more nucleons are expected to be significant. By choosing appropriate kine-

matics one can separate the effect of nucleon-nucleon correlations from the effects

of final-state interactions (FSI) and other reaction-mechanism effects. Understanding

correlations, particularly short-range correlations, might require consideration of the
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underlying quark substructure of the nucleon.

In this section we present two signatures of NN correlations in 3He that one might

expect to observe in the (e, e′) reaction. Consider an electron which scatters on a

proton belonging to a pair of correlated nucleons inside a nucleus, 3He in our case

[17, 18], transferring energy ω and momentum ~q. In the center of mass system of the

two nucleons, these nucleons will have equal and opposite momenta, ± ~Pm, which will

be large if they are close together. In the plane-wave impulse approximation (PWIA)

- see Fig. 1.6a - the interaction between the outgoing nucleon and the residual nuclear

fragments is neglected. If we further neglect the momentum of the pair relative to the

residual nucleus (here a single nucleon), the struck proton is ejected with momentum

~q − ~Pm, while the other nucleon of the pair moves off with the recoil momentum of

the reaction, ~Pm. The spectator nucleon is at rest, so this is the three-body breakup

(3bbu) reaction channel, as opposed to the two-body breakup (2bbu) channel with a pd

final state, see Fig. 1.5. The spectator nucleon and the undetected nucleon of the pair

constitute a recoil system of mass:

M2
r =

[

MA−2 +
√

M2
N + P 2

m

]2

− P 2
m . (1.10)

Here MN is the mass of the undetected nucleon and MA−2 is the mass of the A − 2

nuclear system.

Thus, in PWIA, a signature of the disintegration of correlated nucleons is the ap-

pearance of a peak in the cross section as a function of missing energy, Em, in the

continuum region, with the position depending on Pm: Em = Mr + Mp −MA. The

correlation peak was observed for the first time in [3]. The peak width reflects the

motion of the center of mass with respect to the spectator nucleon and its magnitude

is directly related to the wave function of the two correlated nucleons. The peak thus

signifies the absorption of virtual photons on nucleons correlated in pairs, as in the

electro-disintegration of deuterons. This picture remains valid even if the two nucleons

of the correlated pair reinteract - see Fig. 1.6b.
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In PWIA, the integral over the continuum gives the momentum distribution of the

proton in the pair. The integral is obtained experimentally by dividing the experimental

cross section by the elementary off-shell electron-proton cross section σep [19] multi-

plied by a kinematic factor K, and integrating over missing energy:

η(Pm) =

∫

( d6σ

dEfdEpdΩedΩp
/Kσep

)

dEm (1.11)

The momentum distribution will yield a second signature of NN correlations. One

might expect that NN correlations lead preferentially to 3bbu rather than 2bbu, due

to the reduced probability for the two undetected nucleons to form a bound deuteron.

Thus, the signature is that as NN correlations become important at missing momenta

greater than the Fermi momentum, the momentum distribution from 3bbu will be en-

hanced relative to that for 2bbu.

This simple picture is complicated by several factors, so that data must be compared

to detailed calculations before drawing conclusions about NN correlations in nuclei.

First, the peak in the missing energy has a purely kinematic origin, in that it will appear

as long as the 3He electrodisintegration involves two active nucleons plus a spectator

nucleon. Second, the effective momentum density distribution is an actual density

only in the PWIA limit. This picture is modified by final-state interactions and meson-

exchange currents (MEC). When the two nucleons in the active pair rescatter, the

position and width of the peak do not change. But one measures the transition between

a correlated pair in the ground state and a correlated pair in the continuum. When

one of the nucleons of the active pair reinteracts with the spectator third nucleon - see

Fig. 1.6c - the position, shape, and amplitude of the peak might all be affected.

In Thomas Jefferson National Accelerator Facility (JLab) Hall A experiment E89-

044 [20], we studied the 3He(e, e′p)pn reaction in the quasielastic region at transferred

3-momentum |~q| = 1501 MeV/c and energy ω = 840 MeV, so Q2 = 1.55 GeV2. This

thesis reports the results of measurements in perpendicular kinematics with Bjorken x

= Q2/(2Mp ω) = 0.96, near the top of the quasifree peak (Bjorken x = 1). Protons were
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detected at several angles relative to ~q, corresponding to missing momenta Pm of 0 - 1

GeV/c.

Figure 1.5: Missing energy spectrum for the 3He(e, e′p) reaction at Pm = 550 MeV/c.

Figure 1.6: Feynman diagrams for a) PWIA, b) rescattering, and c) rescattering with
the spectator nucleon.
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1.7 Experimental spectral function

An experimental spectral function can be determined by dividing the measured (e, e′p)

cross section by the appropriate factor,

Sexp(Pm, Em) =
1

p2
pσep

× d6σ

dωdΩedEpdΩp
. (1.12)

This requires a model of the off-shell electron-proton cross section, σep. We use the

CC1 prescription of de Forest [19], which is commonly used by others (see [21] and [5]

for example). The model of σcc1 used in this thesis uses the parametrization of Simon

et al. [22] of the free-nucleon form factors. The cross section σep is given by 3

σep = σM

[

Q4

|~q|4 WC + τ 2WT +
Q2

|~q|2 τ WI cosφ+ τ 2WS

]

. (1.13)

where τ =
√

Q2

|~q|2
+ tan2 θ

2
and the W ’s are given by

Wc =
1

4ĒEf

[

(Ē + Ef )
2

(

F 2
1 +

Q2

4m2
κ2F 2

2

)

− |~q|2(F1 + κF2)
2

]

, (1.14)

WT =
Q2

2ĒEf
(F1 + κF2)

2 (1.15)

WS =
p′2

sin 2γ
ĒEf

[

(Ē + Ef )
2

(

F 2
1 +

Q2

4m2
κ2F 2

2

)]

, (1.16)

WI = − p′2

sin γ
ĒEf (Ē + Ef )

[

(Ē + Ef )
2

(

F 2
1 +

Q2

4m2
κ2F 2

2

)]

. (1.17)

where Ē =
√

p2 +m2, with p the initial momentum of the struck proton and m the

mass of the proton. The anomalous magnetic moment of the proton is κ; it is related

3Note that if the proton were free and point-like particle, σep in Eq. 1.13 would be equal to the Mott
cross section
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to the magnetic moment of the proton by κ = µp − 1 = 1.793. F1 and F2 are the Dirac

and Pauli form factors of the proton, respectively. They are given in terms of the electric

and magnetic Sachs form factors, GE and GM

F1(Q
2) =

GE(Q2) + τGM (Q2)

1 + τ
(1.18)

F2(Q
2) =

GE(Q2) − τGM (Q2)

1 + τ
(1.19)

If PWIA is valid, then the experimental spectral function determined from the

measured (e, e′p) cross section should be equal to the theoretical spectral function,

Sexp(Pm, Em) = S(Pm, Em). Furthermore, in PWIA the spectral function is only a

function of Pm and Em, so that measurements of Sexp at different kinematics should

yield the same result if Pm and Em are fixed.

1.8 Overview of kinematic settings

The 3He(e, e′p)pn kinematical settings of the experiment analysed in this thesis are

presented in Table 1.1. The data were collected at two values of the beam energy,

4.8068 GeV and 1.2553 GeV. At each beam energy, scattered electrons were detected

by the Hall A electron spectrometer, set at a fixed scattering angle and momentum

corresponding to the quasi-elastic knockout of protons with transferred momentum

|~q| = 1.5 GeV/c and energy ω = 837 MeV.

In coincidence with the scattered electron, the knocked out proton was detected by

the Hall A hadron spectrometer, in perpendicular coplanar (e,e′p) kinematics. With ~q

and ω fixed and coplanar detection of the knocked out proton, the requirement of ob-

serving the 3He(e,e′p)d reaction provides a relationship between the angle and momen-

tum of the detected proton. The central angle and momentum of the hadron spectrom-

eter were varied while in fact keeping the 3He(e,e′p)d reaction within the spectrometer

acceptance, thus providing 3He(e,e′p)d measurements over a range of momentum of

the undetected recoil.
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Table 1.1: Perpendicular kinematic settings analyzed in this thesis. Given are nominal
values of spectrometer settings, beam energies and other kinematic parameters.

Run Kin q̃ Ebeam ω ε Pm Ee θe Pp θp t
# (GeV/c) (GeV) (GeV) (GeV/c) (GeV) (deg) (GeV/c) (deg) (hr)

4 Σ1 1.50 4.8068 0.837 0.943 0.150 3.966 16.40 1.493 54.04 0.9
5 Σ2 1.50 4.8068 0.837 0.943 0.150 3.966 16.40 1.493 42.56 0.7
6 Σ3 1.50 1.254 0.837 0.108 0.150 0.417 118.72 1.493 19.87 3.4
7 Σ1 1.50 4.8068 0.837 0.943 0.300 3.966 16.40 1.472 59.83 10.1
8 Σ2 1.50 4.8068 0.837 0.943 0.300 3.966 16.40 1.472 36.76 6.6
9 Σ3 1.50 1.254 0.837 0.108 0.300 0.417 118.72 1.472 25.67 33.3
10 Σ1 1.50 4.8068 0.837 0.943 0.425 3.966 16.40 1.444 64.76 19.9
11 Σ2 1.50 4.8068 0.837 0.943 0.425 3.966 16.40 1.444 31.84 15.5
12 Σ3 1.50 1.254 0.837 0.108 0.425 0.417 118.72 1.444 30.59 64.6
13 Σ1 1.50 4.8068 0.837 0.943 0.550 3.966 16.40 1.406 69.80 35.2
14 Σ2 1.50 4.8068 0.837 0.943 0.550 3.966 16.40 1.406 26.79 42.8
15 Σ3 1.50 1.254 0.837 0.108 0.550 0.417 118.72 1.406 35.63 122.
28 Σ1 1.50 4.8068 0.837 0.943 0.750 3.966 16.40 1.327 78.28 23.0
29 Σ1 1.50 4.8068 0.837 0.943 1.000 3.966 16.40 1.171 89.95 23.0
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Figure 1.7: Graphical view of kinematic settings analyzed in this thesis. Given are
actual beam energies and central angles and momenta of the electron spectrometer.
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Table 1.2: Missing momentum ranges of measured 3He(e, e′p)d and 3He(e, e′p)pn
cross sections.

Kinematics Beam energy Forward/backward Pm range
(GeV) of ~q (MeV)

Σ1 4.8 backward 0 – 1000
Σ2 4.8 forward 0 – 550
Σ3 1.2 backward 0 – 550

This thesis uses both a digit and a letter notation to designate 3He(e,e′p) kinematic

settings. The digit notation, kinematics i, refers to an angle and momentum setting of

both electron and hadron spectrometers, and is defined in the first column of Table 1.1.

The letter notation (Σ1, Σ2, and Σ3) is used to designate a beam energy, and whether

the proton was detected forward (closer to the beam dump) or backward with respect to

the momentum transfer ~q. The letter notation is defined in the second column of Table

1.1.

The 3He(e,e′p)pn data are extracted up to Em = 140 MeV in this thesis. Covered

ranges of Pm at each beam energy are given in Table 1.2.

Data collected at Σ1 and Σ2 settings were used for the extraction of the transverse-

longitudinal asymmetry ATL. The 3He(e,e′p)d analysis was the thesis subject of Marat

Rvachev [23]. The 3He(e,e′p)d parallel kinematics data collected by the E89044 ex-

periment are the subject of a thesis by Emilie Penel-Notaris [24].
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Chapter 2

Experimental Setup

The E89044 experiment was performed in Hall A at the Thomas Jefferson National

Accelerator Facility (TJNAF), known also as CEBAF (Continuous Electron Beam

Accelerator Facility). The data taking phase took place from December 1999 to May

2000. This was a coincidence experiment, with the scattered electrons detected in

the electron arm High Resolution Spectrometer (HRSe) and the knocked out proton

detected in the Hadron High Resolution Spectrometer (HRSh).

2.1 Jefferson Lab

The world’s premier medium energy scattering laboratory, Jefferson Lab, consists of

a state-of-the-art continuous wave electron accelerator, with three complementary ex-

perimental halls, A, B and C, that use the beam to explore different aspects of nuclear

physics, a free electron laser facility, and an applied research center.

The CEBAF accelerator at Jefferson Lab is capable of delivering high quality con-

tinuous electron beams up to 5.7 GeV as of the date of writing this thesis. Future plans

include upgrades to 12 GeV; the machine is eventually upgradable to 25 GeV. The ac-

celerator site layout is shown in Fig. 2-1. The electron beam is produced at the injector

by illuminating a photocathode, then accelerated to 45 MeV (for standard 4.045 GeV

conditions). The beam is further accelerated in each of two superconducting linacs,

through which it can be recirculated up to four times, each producing an energy gain

of 800 MeV per pass. The beam can be extracted "simultaneously" to each of the
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three experimental halls, A, B and C. The current to each hall can be controlled inde-

pendently. A linac contains 20 cryo-modules, each containing eight superconducting

niobium cavities cooled by liquid helium at 2 K, with a design accelerating gradient

of 5 MeV/m. The design maximum current is 200 µA, which can be split arbitrarily

between three interleaved 499MHz bunch trains. One such bunch train can be peeled

off after each linac pass to any one of the Halls using Radio-Frequency (RF) separa-

tors and septa. All Halls can simultaneously receive the maximum energy beam. Hall

B with its CEBAF Large Acceptance Spectrometer (CLAS) requires currents as low

as 1 nA, while up to 120 µA currents are being delivered to one or even both of the

other Halls. Hall C has been operational since November 1995. Hall A started taking

data during May 1997; it was designed for programs requiring high precision measure-

ments. Hall B has operated since December 1997; its almost 4π acceptance makes it

an ideal device to study multi-particle final states.

A
B

C

Helium
refrigerator

Extraction
elements

North Linac
(400 MeV, 20 cryomodules)

Injector
(45 MeV, 2 1/4 cryomodules)

Injector

Halls

Figure 2.1: Layout of the Jefferson Lab accelerator site.
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2.2 Hall A

Figure 2.2 shows a schematic layout of experimental Hall A. The hall is circular in

shape and has a diameter of 53 m. The bulk of the volume of the hall is underground,

well shielded to contain radiation with concrete and a thick layer of earth. The central

elements are two High Resolution Spectrometers (HRS). Both of these devices provide

a momentum resolution of better than 2 × 10−4 and a horizontal angular resolution

of better than 2 mr at a design maximum central momentum of 4 GeV/c. The present

base instrumentation in Hall A [28] has been used with great success for experiments

which require high luminosity and high resolution in momentum and/or angle for at

least one of the reaction products.

Figure 2.2: Schematic layout of Hall A.

2.3 Beamline
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2.3.1 Beam Position Monitors (BPMs)

Two beam position monitors (BPMs) located 7.524 m and 1.286 m upstream of the

nominal target center are used to determine the position and direction of the beam at

the target location. During E89044, the beam position in the last two BPMs was read

out 6 times per trigger, at intervals of 4 µs. This allowed precise tracking of the motion

of the beam due to rastering for each event.
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125 kHz
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−Yp CODA

+Ym HAPPEX

+Ym CODA

XY to EPICS

62.5 kHz
Multiplexer

X0

µ

Figure 2.3: Beam position monitor readout electronics.

A wire (harp) scanner is used for precise measurements of the beam profile and

position. It operates by moving differently-oriented wires across a low current beam

and reading out the induced wire signals [25]. Harp scanners are positioned adjacent

to each of the two last BPMs before the target, and are surveyed relative to the hall

coordinates. They are used for calibration of the BPMs in a procedure called “bull’s

eye”.
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2.3.2 Beam Current Monitors (BCMs)

The beam current delivered to the hall is measured by two cylindrically shaped RF

beam cavity monitors (BCM) 15.48 cm in diameter and 15.24 cm in length, placed

24.5 m upstream of the target. When the cavities are tuned to the frequency of the

beam, their output voltage levels is proportional to the beam current. The output signal

is amplified and split into two parts.
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Data

Stream
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Crate
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DMM

DMM Downconverter

Downconverter

UNSER
Downstream

BCM

Upstream

BCM
Beam

1MHz

Accelerator
MCC

ESPACE

Figure 2.4: Block-diagram of BCM readout. Figure courtesy of Brian Diederich.

One part is sent to a high-precision digital AC voltmeter, which provides a mea-

surement of the beam current averaged over 1 s periods. The other part of the signal is

converted by an RMS-to-DC converter into an analog DC voltage level, which is then
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converted to a frequency signal by a V-to-F converter. This frequency signal is sent to

scalers gated by the start and the end of each run, providing a measurement of the beam

charge accumulated during the runs. Figure 2.4 shows a block-diagram of the Hall A

implementation of the BCM readout.

2.3.3 Beam Energy Measurement

The absolute beam energy for Hall A is measured by two independent methods: the

Arc method based in the beam deflection in a known magnetic field in the arc section

of the beam line, and the eP method, based on elastic electron-proton scattering [26]

Both methods can provide a precision of ∆Ebeam/Ebeam ≈ 2 × 10−4.

Table 2.1 summarizes the beam energy measured during the E89044 experiment

with both methods.

Table 2.1: Absolute beam energy during the e89044 experiment.

Date Pass Arc Energy (MeV) eP Energy (MeV) ( eP
ARC

) − 1)10−3

12/11/1999 1 842.57(16) 843.45(21) 1.0 ± 0.4
12/15/1999 5 4032.3(8)

2/3/2000 3 2906.3(6) 2902.76(46) -1.2 ± 0.4
2/6/2000 2 1954.8(4) 1956.15(43) 0.7 ± 0.4

2/10/2000 2 1954.2(4) 1955.96(43) 0.9 ± 0.4
2/14/2000 5 4806.8(9) 4809.0(2.7) 0.5 ± 0.7
2/20/2000 5 4805.15(3)

3/4&3/2000 1 644.54(13) 645.03(25) 0.8 ± 0.6
3/5&9/2000 2 1255.0(2) 1255.89(30) 0.7 ± 0.4

3/28&29/2000 2 1255.3(2) 1255.6( ) 0.2 ± 0.4
4/2/2000 5 3085.8(6) 3083.5(3) -0.7 ± 0.4

5/5&6/2000 4 4237.5(20) 4240.4(9) 0.7 ± 0.7
5/23/2000 4 4530.6(9) 4530.56(50) 0 ± 0.4
6/20/2000 4 4531.0(10) 4531.1(10) 0 ± 0.4
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Arc Measurement

The arc measurement is based on the principle that an electron in a constant magnetic

field has a circular trajectory; its radius depends on the magnitude of the magnetic field

and the electron’s momentum. The Arc method was developed by a group of Saclay; it

measures the deflection of the beam in the section of the beam line between the beam

switch-yard and the hall entrance.

θ

9

1

2

3

4

 5
6

7
8

To Hall A

superHarps

Figure 2.5: The arc section of the beamline

Figure 2.5 presents the setup used for the arc measurement. Two measurements

of the magnetic field integral,
∫

B̃ · d̃l are made in a ninth reference dipole, relative

to which the eight arc dipoles are calibrated with field maps. Measurements are also

made of the bend angle, θ, of the beam of the arc based on a set of wire scanners called

superHarps. The superHarps are moved across the beam path. When the beam strikes a

wire, the particles scattering off the wire are collected by a simple ion chamber, hence

a current is generated and the beam position is recorded.

The electron momentum can be calculated by:

p = c.

∫ l

0
~B · d~l
θ

(2.1)
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where c = 0.299792 is the speed of light in units of GeV rad/Tm, and θ is the deflec-

tion angle (see Fig. 2.5)

eP Measurement

This method was developed by the Université Blaise Pascal group. The eP method

utilizes a stand-alone device along the beam-line located 17 m upstream of the target.

The device measures the resulting angles of the ejected electron, θe, and the recoil

proton, θp, during the elastic scattering of the beam on protons in a CH2 target. A

schematic diagram of the eP energy measurement system is shown in Fig. 2.6.

The beam energy is given by

E = Mp

cos θe + sin θe

tan θp
− 1

1 − cos θe
+O(m2

e/k
′2) (2.2)

with E the beam energy, Mp the proton mass, and me and k′ the electron mass and

momentum, respectively.

Terms of order m2
e/k

′2 are neglected. The error due to this approximation is one

part in 108. The proton angle is always fixed at 60o, while the electron angle will be in

the range from 9o to 41o depending on the beam energy, which can range from 0.5 to 6

GeV.

The particles are detected in the reaction plane using silicon micro-strip detectors.

Seven electron detectors with dimensions 12.8 × 12.8 mm2 are placed in each arm.

Each detector is equipped with an associated scintillator as well as with a Cerenkov

counter. In addition there is a proton detector with dimensions of 51.2 × 25.6 mm2

placed at exactly 60o in the reaction plane of each arm. Each proton detector has

two scintillators for triggering and time-of-flight measurement purposes. Furthermore,

each Si detector is equipped with an additional detector oriented perpendicularly to it.

This detector is used to make measurements in the transverse plane, which is needed

for final accuracy as well as to distinguish between background and elastic events.
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Figure 2.6: Schematic layout of the eP energy measurement system.

2.4 Targets

A 3He Cryogenic target was used for the experiment. The 3He cell was designed,

fabricated and tested by the CalState L. A. group (D. Margaziotis, K. Aniol, M. Epstein

and others). Mechanical drawings of the cell were done at JLab (P. Brindza and J.

Miller), with the gas handling system designed and built at JLab.

The cell is cylindrical in shape, with a diameter of 10.32 cm and a wall thickness of

0.33 mm. It can be used with either 3He or 4He. During the commissioning period of
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the experiment, several test runs were made with the target filled with 4He. During the

rest of the experiment the target contained 3He at a temperature of 6.3 K and pressures

from 60 to 120 psi.

Gas is propelled along the axis of the cylinder at a velocity of ∼ 30 m/s; the electron

beam is directed perpendicularly to the axis of the cylinder, and is positioned to pass

through the target close to its center. To minimize damage from local heating by the

electron beam, during the experiment the beam was rastered to a square 4 × 4 mm

profile.

Figure 2.7 shows a schematic diagram of the 3He target loop. 3He gas is cooled

in the heat exchanger, by 4He supplied by the end station refrigerator (ESR) at a tem-

perature of ∼ 4.5 K. Low power and high power heaters, shown in Fig. 2.7 in zigzag

lines, are controlled by a Proportion, Integral and Derivative (PID) feedback system,

keeping the 3He gas in the target at the temperature of 6.3 K. During the experiment,

two heat exchangers were connected in parallel, dramatically increasing the amount of

available cooling power. The idea was proposed by P. Brindza, JLab, and allowed a

substantial increase in the beam currents on the target. During the whole experiment,

the 3He target operated very stably, with maximum sustained currents of 140 µA at full

∼ 0.072 g/cm3 density.

The measurements of temperature and pressure are made by sensors located at

several positions along the cryogenic loop (see Fig. 2.7). These sensors are 70% and

99% accurate for pressure and temperature measurements respectively. Some of these

sensors were damaged by the electron beam and others presented an instability in time:

the only sensors used were CT93, CT96 and CT97 for the temperature measurements

and PT267 for the pressure. Unfortunately, the equation of state of the 3He in these

temperature and pressure conditions is poorly known and does not allow an accurate

determination of the target density.

Other targets employed in the experiment were: a carbon foil target, three alu-

minum ’dummy’ targets, and a BeO target. See Table 2.2. The carbon foil target is
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Table 2.2: Targets other than 3He used during the experiment.

Perpendicular |vecq| Ebeam ω ε Pm Carbon 4cm 10cm
Kinematics [GeV/c] [GeV] [GeV] [GeV/c] Pointing Dummy Dummy

Kin01 1.50 4.80 0.837 0.943 0.00 YES YES YES
Kin02 1.50 4.80 0.837 0.934 0.00 YES YES YES
Kin03 1.50 1.25 0.837 0.108 0.00 YES YES YES
Kin04 1.50 4.80 0.837 0.943 0.150 YES NO NO
Kin05 1.50 4.80 0.837 0.943 0.150 YES NO NO
Kin06 1.50 1.25 0.837 0.108 0.150 YES YES YES
Kin07 1.50 4.80 0.837 0.943 0.300 NO NO NO
Kin08 1.50 4.80 0.837 0.943 0.300 NO NO NO
Kin09 1.50 1.25 0.837 0.108 0.300 YES YES YES
Kin10 1.50 4.80 0.837 0.943 0.425 YES NO NO
Kin11 1.50 4.80 0.837 0.943 0.425 YES NO NO
Kin12 1.50 1.25 0.837 0.108 0.425 YES YES YES
Kin13 1.50 4.80 0.837 0.943 0.550 YES YES YES
Kin14 1.50 4.80 0.837 0.943 0.550 YES YES YES
Kin15 1.50 1.25 0.837 0.108 0.550 YES YES YES
Kin28 1.50 4.80 0.837 0.943 0.750 YES YES YES
Kin29 1.94 4.80 0.837 0.943 1.00 YES YES YES

a thin carbon foil positioned perpendicularly to the nominal beam direction. It was

used for a measurement of misspointing of spectrometers (Sec. 3.5.1). The ‘dummy’

targets are pairs of thin aluminum plates, positioned vertically at a distance of 4, 10

or 15 cm. The dummy targets are normally used for the measurement of contributions

from aluminum walls of other targets. In this experiment the dummy targets were used

for checks of quality of reconstruction of the reaction point along the beam. The BeO

target was used to visually (through cameras) check the beam position, by observing

the fluorescent light emitted from the target when hit by the beam. Hall A targets are

arranged in a vertical assembly, which can be remotely moved in the vertical direction

within the scattering chamber in order to expose the desired target to the beam.
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Figure 2.7: Diagram of 3He target loop. During E89044, 3He gas in the target was
cooled by two heat exchangers connected in parallel.

2.5 Spectrometers

The Hall A spectrometers have been designed for detailed investigations of the struc-

ture of nuclei, often using the (e, e′p) reaction. The measurements extend the range of

momentum transfer and internal nucleon momenta over those of earlier measurements

at other facilities.

The core of the Hall A equipment is a pair of identical 4 GeV/c spectrometers. Their

basic layout is shown in Fig. 2.9 and Fig. 2.10. The vertical bending design includes a

pair of superconducting cos(2θ) quadrupoles followed by a 6.6 m long dipole magnet



32

High Resolution Spectrometers
 

Detectors

Q2Q1
Dipole

Q3

53 m

Figure 2.8: Side view of one of the Hall A HRS spectrometers.

with focussing entrance and exit pole faces, including additional focussing from a field

gradient, n, in the dipole. Following the dipole is a third superconducting cos(2θ)

quadrupole. The second and third quadrupoles of each spectrometer are identical in

design and construction because they have similar field and size requirements. The

main design characteristics of the spectrometers are shown in Table 2.3.
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Figure 2.9: Electron arm package.

Figure 2.10: Hadron arm package.
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Table 2.3: Hall A spectrometers characteristics.

Deflection angle 45◦

Optical length 23.4 m
Momentum coverage 0.3 - 4.0 GeV/c
Momentum acceptance ± 4.5%
Momentum resolution 2.5×10−4

HRSe Angular coverage 12.5 - 150◦

HRSh Angular coverage 12.5 - 130◦

Horizontal angular acceptance ± 30 mr
Horizontal angular resolution (FWHM) 0.6 mr
Vertical angular acceptance ± 60 mr
Vertical angular resolution (FWHM) 2.0 mr

2.5.1 Vertical Drift Chambers

Tracking information is provided by a pair of Vertical Drift Chambers (VDCs) in each

HRS, described in detail in [16].

The concept of a VDC fits well into the scheme of a spectrometer with a small

acceptance, allowing a simple analysis algorithm and high efficiency, because multiple

tracks are rare. The VDCs are bolted to an aluminum frame, which slides on Thomson

rails attached to the box beam. Each VDC can be removed for repair using these

Thomson rails. The position of each VDC relative to the box beam can be reproduced

to within 100 µm. Each VDC chamber is composed of two wire planes, in a standard

UV configuration. The wires of each successive plane are at 90o to one another, and

lie in the laboratory horizontal plane. They are inclined at an angle of 45o with respect

to the dispersive and non-dispersive directions.

The nominal particle trajectory crosses the wire planes at an angle of 45o with

respect to the dispersive and non-dispersive directions. The nominal particle trajectory

crosses the wire planes at an angle of 45o (see Fig. 3.2). There are a total of 368 sense

wires in each plane, spaced 4.24 mm form each other. The signals from the sense wires
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Figure 2.11: A pair of vertical drift chambers, as mounted at the focal plane. Figure
courtesy Kivin Fissum.

are shaped by a LeCroy 2735DC amplifier-discriminator card mounted 30 cm away

from the chamber. The ECL logic signals are then routed via 5 m long twisted-pair

cable to a FastBus LeCroy TDC module 1877. The feedback of the ECL signals from

these cables on the sense wires and amplifier inputs is suppressed by careful shielding

of the output cables and VDCs.

The electric field of the VDCs is shaped by gold-plated Mylar planes, nominally

at −4.0 KV when the standard gas mixture of argon (62%) and ethane (38%) is used.

The gas is bubbled through cooled alcohol to reduce aging effects on sense wires and

flows at about 5 l/h.
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2.5.2 Scintillators

There are two primary trigger scintillator planes (S1 and S2) separated by a distance

of about 2 m. The scintillators were built by the University of Regina, Canada. They

were assembled at TRIUMF in 1994. Each plane is composed of six identical over-

lapping paddles made of thin plastic scintillator (5 mm BC408) to minimize hadron

absorption. Each scintillator paddle is viewed by two photomultipliers (PMTs). The

time resolution per plane is approximately 0.30 ns. The active area of S1 is about

175 cm × 35 cm and that of S2 is 220 cm × 54 cm. During the experiment, we needed

a high hadron trigger efficiency, so an additional scintillator trigger counter (S0) was

introduced immediately behind the S1 scintillator plane. S0 is 10 mm thick and has an

active area of 190 cm × 40 cm. The S0 paddle is viewed by 2 PMTs, labeled top (T)

and bottom (B).

2.5.3 Gas Cerenkov Detector

To discriminate between electrons and pions, a threshold gas Cerenkov detector was

employed. A Cerenkov detector operates on the principle that when a charged particle

travels through the detector medium, it emits Cerenkov light if it travels faster than

light would in that same medium (i.e; v ≥ c/n, where n is the index of refraction of

the detector medium). The Cerenkov light is emitted about the particle’s trajectory in

a forward pointing cone with an angle, θc defined by:

cos(θc) = 1/nβ. (2.3)

The Cerenkov detector employed in the HRSE used 2780 liters of CO2 gas as

a medium. The carbon dioxide was at atmospheric pressure, leading to an index of

n=1.00041. With this index of refraction, the minimum particle momentum for the

production of Cerenkov light is 0.017 GeV/c for electrons and 4.8 GeV/c for pions.

Note that the threshold momentum of pions is above the maximum momentum for the
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spectrometer so pions could only give a Cerenkov signal through the production of

knock-on electrons (known as δ-ray electrons).

Figure 2.12: Gas Cerenkov detector in electron arm.

The Cerenkov is a rectangular tank, with 10 Photo-Multiplicator tubes (PMT) and

10 mirrors. The PMTs have a spherical entrance window of 129 mm diameter of which

only a spherical part of 110mm of diameter is efficient to collect the light obtained

after reflection on the mirrors. The photocathode is made of bialkali with a quantum

efficiency of 22.5 % at 385 nm and an extended response in the UV until 220 nm. Each

mirror has a rectangular profile built in an empty sphere of interior radius (reflective

face) of 900 mm and thickness of 10 mm.

The 10 mirrors are placed just before the output window and are grouped in two

columns of 5 mirrors. Each mirror reflects light onto a PMT placed at the side of the

box, see Fig. 2.12. The mirrors of each column are identical and the two columns are

almost symmetrical. Positions and angles of the PMTs are not placed regularly like for
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the mirrors but were adjusted by an optical study in order to maximize the collection of

light coming from the particular envelope of particles which have to be detected with

the spectrometer. The PMTs are fixed but the mirrors can be adjusted.

We expect to have 15 photoelectrons per meter of gas. With our apparatus the

length of gas crossed is 1.5 meters so we expect to have 23 photoelectrons from each

electron. This theoretical value was verified experimentally with a beam and leads to

an efficiency greater then 99.99 %.

2.5.4 Shower and Preshower detectors

Lead-glass counters provide additional Particle Identification (PID). They are elec-

tromagnetic calorimeters that detect the energy deposited when a particle enters the

detector. A high energy electron will radiate photons through Bremsstrahlung in the

calorimeter, which will, in turn, generate positron-electron pairs. These pairs will also

radiate photons, and a shower of electrons, positrons and photons will be generated.

Electrons and positrons produce Cerenkov light which will be detected by the PMTs at

the end of each block.

Hadrons, mainly pions, usually deposit a small amount of energy due to ionization

and direct cerenkov light giving an energy ratio, deposited to incident, much smaller

than one.

The Hall A electron HRS is equipped with two layers of segmented total absorption

lead-glass detectors, called preshower and shower detectors. The preshower consists of

24 identical modules in front of the shower detector. Each module consists of two lead

glass blocks of size 10 cm × 10 cm × 35 cm, made of TF-1 lead-glas. Each module is

viewed by a single PMT optically coupled to the side of the block. The second layer,

the shower detector, is made of 96 (16 × 6) blocks of SF-5 lead-glass each one is

15 cm × 15 cm × 35 cm. The shower detector serves as a total absorption calorimeter;

it is 14.83 radiation lengths thick, while the preshower is just 3.65 radiation lengths

thick.
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There is a big difference between the mean free paths of electrons and hadrons, so

the electron has a high probability of starting a shower in the preshower while the pions

mostly pass thru without starting a shower. By looking at the energy deposited in the

preshower detector versus the energy deposited in the shower detector, electrons and

pions can be distinguished.

2.5.5 Collimators

Each spectrometer is equipped with a set of collimators, positioned 1.25 m from the

target on the electron and hadron spectrometers, respectively. There are three collima-

tors for each spectometer and each collimator can be selected remotely via a vertical

actuator:

• Large collimator, made of 80 mm thick tungsten with a vertical window opening

varying from 121.8mm to 129.7 mm and a horizontal opening varying from 62.9

mm to 66.8 mm.

• Small collimator, made also from tungsten. It is 53.2 mm × 21.3 mm at the

entrance face and 53.2 mm × 22.6 mm at the exit face.

• Sieve slit, used to study optical proprieties of the spectrometers. The sieve slit is

a 5 mm thick tungsten plate with dimensions of approximately 200 mm × 300

mm. A regular pattern of 49 (7 × 7) circular holes is drilled through the sieve slit

surface. Most of the holes are 2 mm in diameter, except for two, one in the center

and one displaced two rows vertically and one row horizontally, which are 4 mm

in diameter. During the study, the sieve slit is moved in across the spectrometer

entrance window and allows to cut out the events which do not pass through

the holes; in fact particles reaching the spectrometer after crossing the tungsten

thickness are subject to energy loss and it is easy to separate them from the ones

passing through the holes. The sieve slit is positioned 75 mm further from the

target.
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2.6 Coordinate systems

An overview of the coordinate systems used in this document is presented. All coor-

dinate systems presented are Cartesian. In this section, angular coordinates should be

taken to refer to the tangent of the angle in question.

2.6.1 Hall A Coordinate System (HCS):

The origin of the HCS is at the center of the hall, defined by the intersection of the

electron unrastered beam, centered in the last three BPMs, and the vertical symmetry

axis of rotation of the target assembly. A top view of the Hall A coordinate system is

presented in Fig.2.13. The ẑ axis is along the beam line and points in the direction of

the beam dump, ŷ is vertically upward, and x̂ = ŷ×ẑ.

Figure 2.13: Top view of the Hall A coordinate system.

2.6.2 Target Coordinate System (TCS):

Each Spectrometer has its own TCS. A line perpendicular to a sieve slit surface of the

spectrometer and going through the mid-point of the central sieve slit hole defines the z

axis of the TCS for a given spectrometer. See Fig. 2.14. The x axis is the line crossing

the center of the sieve slit and pointing downward. Under optimal circumstances this
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origin should coincide with the origin for the Hall A laboratory coordinate system and

the center of rotation of the spectrometer. The x − z plane contains the y axis of the

hall coordinate system. The triplet x̂, ŷ and ẑ is right handed. Variables referring to the

coordinates at the target are designed by the subscript "tg". Variables xtg and ytg are

defined as the x and y coordinates of the point of intersection of a particle trajectory

with the ztg = 0 plane. The variables θtg and φtg are defined as:

Figure 2.14: Target coordinate system.

tan θtg =
dx

dz
, and (2.4)

tanφtg =
dy

dz
. (2.5)

The relative momentum δtg is defined by δtg = (p− p0)/p0, where p is the particle

momentum and p0 is the spectrometer central momentum. Additional subscripts ‘e’ or

‘h’ on xtg, ytg, θtg, φtg and δtg denote whether the coordinate system of the electron or

hadron arm.
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2.6.3 Focal Plane Coordinate System (FPCS):

The origin of the focal plane coordinate system is defined as the point of intersection

of wire 184 of the U1 VDC wire plane with the projection of wire 184 of the V1 wire

plane on the U1 wire plane. The ŷ axis lies in the U1 wire plane and is parallel to the

short symmetry axis of the VDC1; the ẑ axis points in the direction of the projection of

the local central ray (xtg = ytg = θtg = φtg = 0) on a plane perpendicular to the ŷ

axis (Fig. 2.15). Variables referring to the focal plane coordinate system are designated

by the subscript "fp".

  det

fp

fp

Z

 Y

Z

 X fp

ρ

Figure 2.15: Definition of the Focal Plane Coordinate system.

Coordinates yfp and φfp are corrected for misalignments in the VDC package by

a set of polynomial coefficients yi000 and pi000 acting on powers of xfp [27]. The

dependence of the angle between the local central ray (xtg = ytg = θtg = φtg = 0)

and the central ray (xtg = ytg = θtg = φtg = δtg = 0) on the particle momentum

is contained in another set of polynomial coefficients, ti000, also acting on powers of

xfp [16]. Coefficients yi000, pi000 and ti000 are determined during calibration of the

spectrometer optics database; see Sec. 3.4.

2.7 Data acquisition and electronics
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2.7.1 Data acquisition system
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Figure 2.16: Block-diagram of the Hall A DAQ system.

The E89044 experiment used the CEBAF online data acquisition (CODA) system

[29]. CODA is specially designed for nuclear physics experiments at Jefferson Lab. It

consists of a set of software and hardware packages from which the data acquisition

system can be constructed. The recorded data file starts with a header which gives the

run size and the run number. The data file also contains:

• CODA events from the detectors and the beam helicity signal.

• EPICS [30] data from the slow control software used at JLAB. The sampled

beam current and beam position information as well as the magnet information

and target temperature and pressure are fed to EPICS and recorded.

• CODA scaler events: the DAQ reads the scaler values every few seconds and
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feeds them to the main data stream. The scalers are read from the trigger super-

visor (TS) so they are not affected by the DAQ dead time. Therefore, one can

use scaler readings to correct the DAQ dead time.

The data were first written to a local disk and then transferred to the Mass Storage

System (MSS). The total volume of data recorded during the 5 months of the E89044

experiment was about 1.4 TBytes. The data were analyzed using a standard event

processing, FORTRAN-based program, ESPACE (Event Scanning Program for Hall

A Collaboration Experiments) [27]. ESPACE was originally developed at Mainz and

improved at MIT before being introduced to Hall A in 1995. Common operations

such as histogramming, graphics and macro processing are implemented using various

CERNLIB packages [31]. ESPACE’s capabilities include:

• Reading, decoding and scaling raw event data.

• Reconstruction of wire chamber tracks, computation of spectrometer focal-plane

coordinates and target quantities.

• Computation of basic physics quantities like the angles, four vectors and kine-

matics.

• Dynamic definition of histograms and ntuples, and output of these in HBOOK

format [32].

• Fitting of analysis parameters to experimental data, including: position offsets

and spectrometer reconstruction matrix elements.

• Display of single events in terms of detector hits in a graphics window.

• Program control and analysis steering via the Kit for a User Interface Package

(KUIP).
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2.7.2 Trigger setup

In the E89044 experiment setup, the main physics trigger types were: an electron spec-

trometer singles trigger, T1, a hadron spectrometer singles trigger, T3, and a coinci-

dence trigger, T5. Auxiliary physics triggers, used for measurements of efficiencies of

the main triggers, were an electron spectrometer trigger (denoted "T2", or "type 2"),

and a hadron spectrometer trigger ("T4", or "type 4").

Fig. 2.17 shows a simplified schematic view of the setup of the main physics

triggers. The main physics triggers were generated using scintillator signals. The

scintillators were arranged in two planes in each of the two detector packages, with six

scintillator paddles in each plane, and two photomultiplier tubes (PMTs) viewing each

paddle. Therefore, the PMTs of the two scintillator planes provided 2 × 2 × 6 = 24

signals for each spectrometer. In Fig. 2-14 "S1" and "S2" denote signals from the lower

and the upper scintillator planes, respectively. "S1-L" ("S1-R") denotes scintillator

signals from the left (the right) PMTs of the lower scintillator plane. "S2-L" ("S2-R")

denotes scintillator signals from the left (the right) PMTs of the upper scintillator plane.

Analog signals from the scintillator PMTs were first sent to a discriminator (LeCroy

Model 4413/200) providing both analog and digitized outputs. The analog signals were

sent to ADCs. The digitized signals were split in three parts: one part was sent to

TDCs, another part was sent to scalers gated by the start and the end of each run, and

the third part was sent to a logical AND unit making a coincidence between pairs of

PMTs viewing the same paddle. For each spectrometer, 12 outputs of the logical AND

unit were fed into the Memory Lookup Unit (MLU, LeCroy Model 2372). The MLU

is a programmable device that, given a combination of logical signals at its inputs,

provides a corresponding (programmed) combination of logical signals at its outputs.

In the experiment, the electron and the hadron spectrometer MLUs were programmed

to issue a logical signal ‘S-ray’ when:

1. Coincident hits were present in both PMTs of a scintillator paddle in the S1
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scintillator plane.

2. Coincident hits were present in both PMTs of a scintillator paddle in the S2

scintillator plane.

3. These two paddles were either adjacent or coincided in their relative position in

the planes.

The coincidence between the S-rays from the two spectrometers within a ∼ 100 ns

time window formed the coincidence trigger T5. The absence of a coincidence, but the

presence of an S-ray, formed either the electron singles trigger T1, from the electron

spectrometer S-ray, or the hadron spectrometer singles trigger T3, from the hadron

spectrometer S-ray.

The auxiliary trigger type 2 for the electron spectrometer was generated when the

electron S-ray was not present and any two of the three following "events" were coin-

cident:

1. A coincidence between both PMTs of a scintillator paddle in the S1 scintillator

plane of the electron spectrometer.

2. A coincidence between both PMTs of a scintillator paddle in the S2 scintillator

plane of the electron spectrometer.

3. The analog sum of the 10 Gas Cherenkov PMTs (electron spectrometer) above a

threshold.

Similarly, the auxiliary trigger type 4 for the hadron spectrometer was generated

when the hadron S-ray was not present and any two of the three following "events"

were coincident:

1. A coincidence between both PMTs of a scintillator paddle in the S1 scintillator

plane of the hadron spectrometer.
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2. A coincidence between both PMTs of a scintillator paddle in the S2 scintillator

plane of the hadron spectrometer.

3. A coincidence between both PMTs of the S0 scintillator paddle (hadron spec-

trometer).

From the description above it can be seen that the five trigger types are exclusive,

i.e. any given trigger can have only a single type, T1, T2, T3, T4, or T51. Scalers

counting the number of issued T1 and T3 triggers in fact counted the number of S-rays

that occurred in the electron and hadron spectrometers, and therefore their number had

to be corrected by the number of coincidence triggers (the correction is described in

Sec. 3.4).

The electron and hadron spectrometer MLUs that issued the S-rays were operated

in a "strobed" mode. In this mode, the MLUs were issuing an S-ray only 45 ns after

arrival of an "enable" signal. The enable signal was formed by the logical OR of

the signals from the right PMTs of the S1 and S2 scintillator planes, with the signals

from the S1 plane delayed in time relative to the signals from the S2 plane. This

setup guaranteed that the timing of generation of the main physics triggers was always

defined by the right PMTs of the S2 scintillator plane. This definitiveness of the timing

simplifies reconstruction of events (Sec. 3.2.1).

Generated trigger signals were fed into a custom-built Trigger Supervisor (TS)

module, which prescaled the triggers and, based on the current state of the data acqui-

sition system (DAQ), decided whether to prompt the DAQ to start the event readout.

Trigger prescale factors were downloaded into the TS at the start of runs. In the Hall A

TS setup, the prescale factor n for the trigger type i means that the TS attempts to read

out every nth event of type i.

1Another physics trigger type, T14, occurred (very infrequently) when there was an overlap of 10 ns
or less between any two or more of the five main trigger types (T1 – T5) at the Trigger Supervisor.
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Figure 2.17: Simplified block-diagram of setup of the main physics triggers.
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Chapter 3

Detector Calibration

This chapter we describes the calculation of trigger efficiency, tracking efficiency, gas

Cherenkov efficiency, proton absorption, the calibration of the optics and detector

databases, the measurement of the misspointing of the spectrometers, and the calcu-

lation of computer and electronic deadtimes.

3.1 Time parameters

The reconstruction of the trajectories in the wire chambers depends on the determina-

tion of the distance of the detected ionizing particle to the wire: it is important to know

the both the drift time and drift velocity of the particles resulting from the ionization

of the gas. The drift velocity was obtained after calibration and it is equal to 4.9 × 104

m/s [23].

The drift time is extracted form a TDC (Time to Digital Converter) for which the

start signal is issued from the wire chamber and the stop signal is given by one of the

right photomultipliers of the S2 scintillator. By taking as a reference the ionization

time of the gas in the wire chamber plane,

• the starting time tstart is equivalent to the drift time tdrift plus the electronic and

propagation delays of the signal tVDCdelay;

• the stopping time tstop is equivalent to to the time of flight from the wire chamber

plan to the scintillator S2 tflight, plus the propagation time of the light in the scin-

tillator to the photomultiplier tprop and to the electronic and propagation delay of
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the signal.

Thus, we define that

tstop − tstart = tflight + tprop − tscint.delay − tdrift − tV DCdelay (3.1)

so

tdrift = tflight − (TDC) + tscint.delay −−tV DCdelay (3.2)

where TDC = tstop − tstart.

Calibration of the drift time requires the knowledge of the TDC’s "pedestals", the

essentially constant delay times, obtained from specific runs during the experiment.

The wire chamber parameters were very well calibrated during previous experiments

and during the data taking of present experiment. The parameters related to the scintil-

lators were calibrated by N. Lyanage [16] via the variable β.

The time of flight tflight from a wire chamber plane to the S2 scintillator is obtained

from the distance between the two detectors and the velocity β. This velocity is ob-

tained from the time of flight between the two scintillators S1 and S2 which includes

the propagation delays, the electronic delays and the gains of the TDCs of the photo-

multipliers. The calibration of β, hence, allows the optimization of the time parameters

involved in the determination of the drift time. If the calibration is well done, the veloc-

ity β should be equal to momentum of the particle divided by its total energy: β=p/E.

See Fig. 3.1.

3.2 Calibration of the ADCs

The principle of calibration of gains and pedestals of the S1 and S2 scintillators and

the Cerenkov detector is the same. It is not a matter of an absolute calibration, but

a matter of adjusting the gains of the ADCs of these detectors so that the gains of

each channel of a detector are equal. This procedure corrects for variations in light
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Figure 3.1: Velocity β for electron and hadron arms after calibration. The vertical line
shows the position of β calculated from the ratio p/E.
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output and collection, photomultiplier gain, cable attenuation, and ADC response. This

adjustment is made using the programm ESPACE.

Pedestals of the ADCs are determined from specific runs called pedestal runs, by

reading the ADC’s values when the electron beam is off. For each channel, the gain

is then calculated that the mean value of the ADC, corrected by the pedestal, for all

the events coincides with the channel number 1000. Inside each scintillator paddle, the

energy deposited is then corrected from the light attenuation in the scintillator material

by an exponential law: the attenuation length λ is given by 1/λ = 0.7 m−1 for S1 and

1/λ = 0.6 m−1 for S2 and S0.

3.3 Efficiencies

3.3.1 Trigger efficiency

Triggers are generated based on scintillator signals and trigger inefficiency is directly

caused by scintillator inefficiency which arises due to:

• statistical fluctuations due to a small amount of energy deposited by the charged

particles in the scintillator paddles,

• imperfect transmission of light emitted by the particles in the paddles to the

photomultiplier tubes (PMTs),

• inefficiencies of the PMTs, and

• other inefficiencies.

Most events missed by the main physics trigger types 1, 3 and 5 (T1, T3 and T5) due

to the trigger inefficiency still cause a trigger type 2 (T2) in the electron spectrometer

or type 4 (T4) in the hadron spectrometer. Trigger type T2 and T4 allow the calculation

of the trigger efficiencies. These triggers were prescaled and recorded to disk at a rate

of 50 Hz.
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Triggers of types 2 and 4 can be caused by:

1. Background events with trajectories outside the focal plane envelope, hitting a

"large-angle" combination of the scintillator paddles in the two scintillator planes

S1 and S2.

2. Background events with trajectories outside the focal plane envelope, hitting a

scintillator paddle in one of the two scintillator planes, and producing a signal in

the Gas Cerenkov (HRSE) or in the S0 detector (HRSH).

3. "Good" events falling within the focal plane envelope and generally having a

track in the VDCs, but failing to generate a singles or a coincidence trigger due

to the trigger inefficiency, and producing a signal in the Gas Cerenkov (HRSE)

or in the S0 detector (HRSH).

As a first step in finding the trigger efficiency, one has to filter out the background

events (falling outside the focal plane envelope) from a run containing a large number

of recorded T2 and T4 events. Then, one has to separate electrons from π− in the elec-

tron spectrometer (for the T2 events), and protons from π+ and other positive particles

(such as 2H and 3H) in the hadron spectrometer (for the T4 events). These steps are

described next.

Background events with trajectories outside the focal plane envelope were filtered

out by a software cut requiring a good VDC track reconstructing to the target (both

for T2 and T4 events). For T2 events, electrons were separated from the π− by a cut

requiring the sum of the 10 Gas Cerenkov ADC signals to be above a cutoff value.

The ADC signals in the sum were corrected for pedestals and gains, as described in

Sec. 3.2. For T4 events, the protons were separated from other positive particles by a

cut requiring the sum of the two S0 ADC signals to be in the range corresponding to

protons (Fig. 4.7). The two S0 ADC signals were corrected for pedestals, gains and

light attenuation in the S0 scintillator paddle (Sec. 3.2).
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The trigger efficiencies εe and εp for detection of electrons and protons, respec-

tively, averaged over the focal plane, were then calculated from the number of (cor-

rected for prescaling, computer and electronic deadtimes) events Ni of trigger types

i = 1, ..., 5 in the remaining sample, as

εe =
N1 +N5

N1 +N5 +N2
(3.3)

and

εp =
N3 +N5

N3 +N5 +N4
(3.4)

The trigger efficiency determined at different kinematic settings and at different

times during the experiment gave consistent results, with 99.9% efficiency of detection

of electrons in the electron spectrometer, and 99.8% efficiency of detection of pro-

tons in the hadron spectrometer. Statistical errors of the measurements were less than

0.05%.

3.3.2 Wire chamber and tracking efficiency

The efficiency of a single sense wire in the wire chambers is the probability that the

wire fires when a charged particle passes sufficiently close to it. It can be estimated

with the formula:

εwire =
N1

N0 +N1
, (3.5)

where N1 (N0) is the number of times the wire fired (did not fire) when 2 wires adja-

cent to it fired. The efficiency determined with this formula was monitored during the

experiment with the online code "dplot", and is shown in Fig.s 3.2. for the electron

spectrometer V2 wire plane and the hadron spectrometer U2 wire plane (3He(e,e′p)

data, kinematics 1). The efficiency was determined to be greater than 0.98 for all wires

within the acceptance region of the spectrometers used in cross section analysis.

Equation 3.5 does not take into account the case where different particles produce

clusters of hit wires with a gap of one wire in between, therefore, this estimated wire
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Figure 3.2: Efficiency of VDC wires calculated with the formula 3.5: (a) HRSE V2
wire plane; (b) HRSH U2 wire plane at Kinematics 1. Figure was taken from [23].

efficiency should be considered as a lower bound.

To exclude poorly reconstructed events from the analysis, the following "tracking"

cuts were imposed:

• The number of clusters in each wire chamber plane equal to 1.

• The multiplicity i.e, the number of hit wires in the cluster, of each cluster greater

than or equal to 3 and less than or equal to 7.

For the singles events these cuts were imposed only on the spectrometer that issued the

trigger; for the coincidence events these cuts were applied to both spectrometers. In

addition to eliminating events with high cluster multiplicity (created mostly by delta-

rays) and events with multiple tracks, these cuts also excluded events with low multi-

plicity or a missing cluster of hit wires in any of the wire planes. Such events formed

a tiny (< 0.1%) fraction of all recorded events and were mostly background particles

that happened to have a trajectory satisfying a "good" trigger logic. In general, these

background events reconstructed outside the target boundary.
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The tracking efficiency εtr,i for events of type i was then calculated as

εtr,i =
N ′
i

Ni
, i = 1, 3, 5, (3.6)

where N ′
i is the number of events of type i passing the tracking cuts, and Ni is the total

number of recorded events of type i.

By dividing the detected yield by the tracking efficiencies εtr,i, the detected yield

was corrected for events eliminated by the tracking cuts during the cross section analy-

sis. It was assumed that all events eliminated by the tracking cuts were "good" events.

Another assumption was that the tracking efficiency is uniform over the active area of

the drift chambers. This assumption was found to be correct by a calculation of the

tracking efficiency in different regions of the drift chambers.

The magnitude of tracking efficiencies εtr,i varied between kinematic settings and

depended mostly on the rate of particles at the focal planes, through changes in the rate

of events with multiple tracks. Overall, the tracking efficiency was rather low, ∼ 0.8

for the singles and ∼ 0.6 for the coincidence events. For the coincidence events, the

tracking cuts required a single good track in both spectrometers, while for the singles

events the tracking cuts required a single good track in one of the two spectrometers.

This is the reason why the tracking efficiency for the coincidence events is lower.

Despite the low tracking efficiencies, the absolute systematic error due to correcting

for the efficiencies was found to be ∼ 0.5% for the singles events and ∼ 1% for the

coincidence events.

3.3.3 Gas Cerenkov efficiency

The electron spectrometer Gas Cerenkov detector is described in Sec. 2.5.3. Figure

2.5.3 shows the distribution of the sum of the 10 gas Cerenkov ADCs corrected for

pedestals and gains. The electrons detected in the electron spectrometer were separated

from the π− by a software cut requiring that the sum (ADCsum) is greater than 50.

The gas Cerenkov inefficiency is defined as the fraction of electrons eliminated by
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Figure 3.3: Distribution of sum of the 10 Gas Cerenkov ADCs corrected for pedestals
and gains, obtained Kinematics 4.

the cut ADCsum > 50. The inefficiency can be found by considering a sample of

data containing purely electrons (and no π−), and calculating the fraction of events

eliminated by the cut.

A simple calculation [16] shows that π− truly coincident with a positively charged

particle in the hadron spectrometer are kinematically not allowed in the 3He(e,e′p)d

two-body breakup (2bbu) peak. Therefore, to obtain the required pure sample of elec-

trons, one has to apply the Emiss cut selecting the 2bbu peak on a sample contain-

ing very few accidental coincidence events. Such a sample was obtained from the

3He(e,e′p) data collected at Pmiss = 150 MeV/c kinematics (where the rate of the acci-

dental coincidences is extremely low), by applying a tight cut on the real coincidence

peak; see Fig. 4.3.

Then, the gas Cerenkov efficiency was found with

εGC =
Ncut

Ntot
, (3.7)

whereNcut is the number of events in the sample after application of the cut ADCsum >
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50, and Ntot is the total number of events in the sample. The Gas Cerenkov efficiency

determined with the technique described was found to be ∼ 0.9996 for kinematics 4

and 5.

3.3.4 Proton absorption

The fraction of the protons knocked-out from 3He that were lost before reaching the

hadron spectrometer scintillators was calculated with a GEANT [33] simulation by

George Chang, Univ. of Maryland. The protons are lost due to the energy losses,

absorption and p-N rescattering in the target and spectrometer material, and in the air.

The number of events within the acceptance with and without simulation of energy

losses yielded the estimate of proton absorption, ∼ 2.3%. This estimate was obtained

for the kinematic setting 1 (nominal Pmiss = 0, Ebeam = 4.8 GeV), but is applicable to

all kinematic settings analyzed in this thesis, since the hadron spectrometer central mo-

menta were close to 1.5 GeV/c at all kinematic settings. The largest proton absorption,

as expected, was due to the proton absorption in the 3He gas in the target.

3.4 Optics calibration

The target coordinate system, denoted by the subscript "tg", and the focal plane coordi-

nate system, denoted by the subscript "fp", are defined in Sec. 2.6. The transformation

from the focal plane to the target coordinate system is done through matrix elements

Yijkl, Tijkl, Pijkl, Dijkl, as:

ytg =
∑

i,j,k,l

Yijkl x
i
fp tanj(θfp) y

k
fp tanl(φfp), (3.8)

tan(θtg) =
∑

i,j,k,l

Tijkl x
i
fp tanj(θfp) y

k
fp tanl(φfp), (3.9)

tan(φtg) =
∑

i,j,k,l

Pijkl x
i
fp tanj(θfp) y

k
fp tanl(φfp), and (3.10)
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δtg =
∑

i,j,k,l

Dijkl x
i
fp tanj(θfp) y

k
fp tanl(φfp). (3.11)

The symmetry of the spectrometers with respect to their vertical mid-planes implies

that

Tijkl = Dijkl = 0 for odd k + l, (3.12)

Yijkl = Pijkl = 0 for even k + l. (3.13)

The trajectory and the momentum of the particle at the target is fully characterized

by 5 target coordinates: ytg, θtg, φtg, δtg and xtg. The fifth coordinate xtg is obtained by

combining the first-order trajectory given by the equations 3.9 to 3.11 with the beam

position information. Then θtg and δtg are corrected for non-zero xtg (described below).

It is important to realize that even with the beam position centered exactly at (0,0)

in the hall coordinate system (HCS), for extended targets the xtg coordinate of the

trajectories can be quite large1 [27], leading to relatively large corrections to θtg and

δtg. The xtg corrections are linear in the first order: ∆θtg = αxtg, ∆δtg = βxtg, and

therefore asymmetric with respect to xtg.

3.5 Spectrometer mispointings

The E89-044 Experiment required an accurate knowledge of the spectrometer angles

and the mispointing of the dipole axis. During this experiment, six important surveys

of the spectrometer positions and target position were performed.

A complete report on the spectrometer setting can be found in [34]. We will present

the survey measurements compared to EPICS results and pointing analysis.

Each of the two high resolution spectrometers ideally would have just one spatial

1 This is because the ztg = 0 plane does not coincide with the vertical HCS yz plane that contains the
unrastered beam, except for 90◦ lab scattering angle.
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degree of freedom – rotational around the center of the hall, with the spectrometer cen-

tral rays going through the hall center. In reality, although ‘pitch’ (the angle between

a horizontal plane and the Q1 optical axis) and ‘roll’ (the rotational angle around the

Q1 optical axis) displacements were negligible, a translational movement of the spec-

trometers caused the central rays to miss the hall center in the horizontal direction up

to 3 mm and in the vertical direction up to 0.5 mm. These movements were not repro-

ducible, i.e. at the same angular location at a different time each spectrometer could

have a different ‘horizontal pointing’ (the horizontal distance between the spectrometer

central ray and the hall center; the horizontal pointing is also known as the ‘spectrom-

eter misspointing’) and vertical offset. Two reliable methods of measurement of these

displacements were available:

1. A survey of the spectrometers, giving both the horizontal pointing and the verti-

cal offset.

2. The calculation of the horizontal pointing from the position of the carbon foil

along the beam reconstructed by a spectrometer (and a knowledge of the location

of the carbon foil target; "pointing" runs with an unrastered beam and the carbon

foil as the target were made at many kinematic settings).

The most precise information came from the surveys, which were performed sev-

eral times during the experiment. In particular, the electron spectrometer location

(which was fixed most of the time) at the 4.8 GeV and 1.2 GeV kinematics, as well

as the location of the hadron spectrometer at several kinematic settings, was deter-

mined from the surveys. For the spectrometer settings for which the surveys were not

available, the horizontal pointing was calculated using the carbon "pointing" runs, as

outlined below.
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3.5.1 Surveys, MEDM and Pointing results

The first survey of the two spectrometers was performed in December 12, 1999. Two

other surveys were performed on February 2 and 24, 2000 and two on March 13 and

15th, 2000.

In these surveys (See Fig. 3.4), the spectrometer angles and offsets were measured;

the results are reported in table 3.2. Also reported in the table are the angles and offsets

given by MEDM reading (EPICS) and those obtained by the pointing analysis.

R

Xlab

Zlab
zoff

xoff
Floor marksSpec off

Spectrometer

θs
θ0

Figure 3.4: Definition of variables.

For MEDM (motif editor and display manager, a motif graphical user interface for

designing and implementing control screens), the spectrometer offsets are the results of

the LVDT (linear variable differential transformer) measurements. The LVDT princi-

ple of measurement is based on magnetic transfer which also means that the resolution

of LVDT transducers can be made arbirarily precise. The smallest amount of move-

ment can be detected by suitable signal conditioning electronics. Spectrometer angles

are reproduced, with this method, using these offsets and the ideal central angles, from

the formula:

θs = θ0 ±
SpoffMEDM

R

180

π
(3.14)
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where:

• θs is the spectrometer angle reported in the MEDM screen,

• θ0 the central angle, and

• R is the distance from the center to the front jack of the dipole, R = 8.458 m.

The central angles are calculated using floor mark information:

θ0 = θfloor +
V er

V erC
+ θ0off (3.15)

where:

• V er is the Vernier,

• V erC is the Vernier Caliber, equal to 173.5 mm/deg, and

• θ0off is the angle offset, equal to -0.179o for electron arm and 0.197o for hadron

arm.

During the month of December, spectrometer offsets given by EPICS are very dif-

ferent from those measured during the surveys. This is because, during this period,

LVDTs did not measure the correct distances since they had been bumped by accident

when the hall was open.

We have also calculated the spectrometer offsets and reproduced the angles using

the carbon pointing method. For this method, we have used the target position offsets

measured during some surveys, and summarized in Table 3.1.

The carbon pointing method is illustrated in Fig.s3.5 and 3.6. Spectrometer offsets

are given by the formula:

Specoff = ytg − tgoff · sin θs (3.16)

Here, ytg is the non-dispersive position, perpendicular to the spectrometer optic

axis and calculated by ESPACE for each setting.
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Table 3.1: Position of the carbon target.

period target offset
.. - 10 Dec. -1.2 mm

11 Dec. - 13 Dec. +0.66 mm
13 Dec. - 23 Dec. -0.8 mm

.. - 18 Feb. -0.86 mm
25 Feb. - .. -0.23 mm

During the month of March, we can note the spectrometer offsets calculated by

pointing for runs 2718 and 2719 have different values from those of the 2778, 2779

and 2780. In fact, between these two settings, the end station refrigerator (ESR) tripped

and all spectrometer magnet currents were set to zero; see halog entry 36194.

A survey was performed before run 2778, the ytge variable for this run is plotted in

Fig. 3.7, and we can see, from the table, that there is a good agreement between the

offsets measured by this method and those calculated by pointing method.

The spectrometer angles, θs, were then calculated using these spectrometer offsets:

θs = θ0 ±
Spoff (Pointing)

R
.
180

π
(3.17)

where θ0 is the central angle calculated using the floor marks information; see equation

3.15.

Uncertainty studies of these three methods are summarized below:

• In surveys, spectrometer offsets are measured with about 0.5 mm of accuracy

and the precision for the angles is 0.003◦ [35].

• The angles given by MEDM are good to within 0.012◦. Concerning spectrometer

offsets, a final estimation is difficult to do, because it depends on how much

attention is accorded to the LVDT measurement [36].



64

θs

Spec off

Y tg

<y tg>

target off

Zlab

Xlab

Spectrometer

Figure 3.5: Definition of pointing variables for electron arm.
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Figure 3.6: Definition of pointing variables for hadron arm.
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Figure 3.7: The y variable at the target for run number 2778.

• Spectrometer offsets measured by pointing method have ± 0.5 mm of uncer-

tainty. Thus, from equation 3.15, the precision of the spectrometer angles calcu-

lated by this method is 0.015◦.

In summary, we have presented the results of the spectrometer settings during the

E89044 experiment. We checked that pointing results are in a good agreement with

survey measurements. For the kinematics for which we do not have surveys, we can

use the carbon pointing method to get the correct spectrometer offsets and angles to

use in analyzing the data.
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Table 3.2: Comparison of offsets and angles from MEDM, survey and pointing tech-
niques.

Survey MEDM Pointing Survey MEDM Pointing

θe/h(
◦) 16.523 16.524 16.54 16.553 16.557 16.557

Specoff (mm) 2.56 2.6 2.29 -2.92 -3 -3.021
Date 12/04/99 12/12/99 12/04/99
θe/h(

◦) 15.487 15.489 25.207 25.209
Specoff (mm) 2. 1.56 -1.1 -1.29
Date 12/17/99
θe/h(

◦) 31.033 31.038 25.207 25.199
Specoff (mm) 4. 3.17 -1 -1.289
Date 12/17/99
θe/h(

◦) 16.383 16.363 16.384 69.793 69.795 69.800
Specoff (mm) 2.74 5.34 2.267 -0.15 -0.81 -0.844
Date 02/22/00 02/26/00
θe/h(

◦) 118.704 118.393 118.703 30.580 30.586 30.588
Specoff (mm) 2.34 4.31 2.86 0.51 0.7 0.297
Date 3/13/00 3/09/00
θe/h(

◦) 118.704 118.693 118.703 30.580 30.586 30.588
Specoff (mm) 2.34 4.31 2.793 0.51 0.7 0.255
Date 3/13/00 3/09/00 3/15/00
θe/h(

◦) 118.704 118.694 118.707 25.484 25.483 25.483
Specoff (mm) 2.34 4.25 2.411 -3.3 -2.910 -2.935
Date 3/13/00 3/17/00 3/15/00
θe/h(

◦) 118.704 118.694 118.706 25.484 25.483 25.483
Specoff (mm) 2.34 4.25 2.552 -3.3 -2.910 -2.831
Date 3/13/00 3/17/00 3/15/00
θe/h(

◦) 118.704 118.694 118.706 25.484 25.483 25.483
Specoff (mm) 2.34 4.25 2.553 -3.3 -2.910 -2.88
Date 3/13/00 3/17/00 3/15/00
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3.6 Computer and electronic dead time

Two kinds of dead time are taken into account in the analysis; electronic dead time

(edt) and computer dead time (cdt). These dead times occur when the electronics or

the acquisition systems are not able to read the incoming events.

3.6.1 Computer dead time

The computer deadtime arises due to the inability of the DAQ system to record events

occurring during a DAQ ‘dead time’, when it is already recording another event. The

computer deadtime is calculated, for each type of event i (i = 1,...,5), from the total

number of events of each type which are counted by scalers. This allows one to correct

for the number of non-recorded events. For trigger type i, prescaled with an integer

prescale factor psi (i.e. when the DAQ is set to record every psith event of type i), the

computer deadtime εcdt,i for the E89044 trigger setup can be computed as [37]

εcdt,i = 1 − Tipsi

S′

i
, i = 1, ..., 5, (3.18)

S ′
i = Si, i = 2, 4, 5, (3.19)

S ′
i = Si − S5 −N14, i = 1, 3 (3.20)

where Si is the end-of-run scaler count for trigger type i, and Ti is the number of

recorded events of type i. The subtraction of S5 and N14 from S1 and S3 in formula

(3.15) is necessary, since, in the trigger setup used, the S1 and S3 scalers over counted

the number of the singles triggers by the number of the coincidence triggers (S5) and

the number of triggers type 14 (N14). The trigger type 14 occurred (very rarely) when

there was an overlap of 10 ns or less between different triggers at the trigger supervisor.

The prescale factor for the coincidence trigger (P5) was set to 1 in all measurements. In
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cross section measurements, the computer deadtime was kept below 20% by prescaling

the singles triggers or an adjustment of the beam current.

3.6.2 Electronic dead time

The electronic dead time is a result of a superposition of two or several signals, given

the non-zero time widths of digital signals. It is only significant if the rates are very

high; only one signal is taken into account, and the number of events counted by the

scalers decreases. The electronic dead time for the E89044 trigger setup was thor-

oughly studied by M. Jones and R. Michaels [37], during the E91011 (‘N-delta’) ex-

periment in the summer of 2000. They introduced into the E91011 datastream artificial

triggers, caused by a pulser sending scintillator-type signals to a linear OR with the

paddle signals in both scintillator planes of both spectrometers, thus imitating the reg-

ular physics triggers occurring during the data acquisition. The ratio of the number of

the recorded events of this type (discriminated from the rest of the data by a tag in a

TDC channel), corrected for the computer deadtime and prescaling, to the number of

issued pulser-type triggers, yielded the electronic dead time. The electronic deadtime

found with this procedure for the coincidence trigger, for a wide range of the sum of

the strobe rates in the electron and hadron spectrometers, is plotted in Fig.3.8. A lin-

ear parametrization of the electronic deadtime for trigger types 1, 3 and 5 was then

obtained [37]:

edti = 1.9 · 10−4 ·RS
i , i = 1, 3, 5, (3.21)

were edti is the electronic deadtime of trigger type i, RS
1 and RS

3 are the strobe rate in

electron and hadron spectrometers, respectively, and RS
5 = RS

1 +RS
3 is the total strobe

rate. The strobe rates are in KHz.

The strobe rates in the electron and hadron spectrometers can be found from the
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Figure 3.8: Electronic deadtime measured at different values of the sum of the strobe
rates in the spectrometers. Figure courtesy of M. Jones [37].

rates of signals in the scintillator paddles, as

RS
1 = (0.613 ± 0.001) ·

∑

j,k

Rj,k,1, j = 1, ..., 6, k = 1, 2, (3.22)

RS
3 = (0.620 ± 0.0007) ·

∑

j,k

Rj,k,3 − (5.1 ± 0.04)10−5 · (
∑

j,k

Rj,k,3)
2, (3.23)

j = 1, ..., 6, k = 1, 2,

whereRj,k,1 (Rj,k,3) is the rate of pulses in the right phototube of paddle j in scintillator

plane k of the electron (hadron) spectrometer.
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3.6.3 Total deadtime

The electronic and computer deadtimes are combined as:

DT = 1 − (1 − cdt)(1 − edt) (3.24)

to yield to the total deadtime DT for each trigger type. The total deadtime correction

applied to the data is expressed in term of 1
1−DT

.

For the highest strobe rates in the 3He(e,e′p) measurements, at kinematics 14, the

electronic deadtime was ∼ 16%, with the sum of the strobe rates ∼ 830 kHz, and

the absolute systematic uncertainty was ∼ 1.6% due to correcting for the electronic

deadtime. At a majority of the spectrometer settings, however, the electronic deadtime

and the systematic uncertainty associated with correcting for the deadtime were much

smaller. The systematic uncertainty of the calculated computer deadtime is ∼ 10%

(relative) error [38].
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Chapter 4

Data Analysis

4.1 Overview

In this chapter the major elements of the (e, e′p) analysis are presented and discussed.

Scattered electrons from the 3He(e, e′p) reaction were detected in the HRSe in coinci-

dence with recoil protons in the HRSh. This chapter will discuss the detection of these

particles and how their information at the target is reconstructed, the identification of

each particle, the extraction of the cross section and the effective density distributions

along with the transverse-longitudinal asymmetries ATL.

The data analysis code ESPACE [27] was used to analyze the raw data, producing

histograms of the measured counts after various cuts for background suppression and

subtraction. A raw missing energy spectrum is presented in Fig. 4.1. Note the im-

portance of the background before any software cut is applied. Figure 4.2 represent

the same data after selection of the real coincidence events, rejection of target wall

contributions, and acceptance studies.

The Monte Carlo code MCEEP [39] was used to calculate the corresponding de-

tection phase-space volume. External and internal radiative corrections were applied

by radiatively unfolding the cross section; the radiative correction program is intro-

duced in the simulation. The main steps of this analysis are discussed in detail in the

following sections.
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Figure 4.1: Raw missing energy spectrum for kinematics 13, as defined in Table 1.1 .
.

Figure 4.2: Missing energy spectrum for kinematics 13 after accidental and target
walls subtraction, and acceptance cut.
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4.2 Coincidence time of flight

Figure 4.3: Corrected coincidence time-of-flight spectrum. Note the 2 ns structure due
to the 499 MHz micro structure of the electron beam.

For coincidence events, the time between the two spectrometer triggers corresponds

to the difference in the flight times through the spectrometers of the detected electron

and the proton. Since the particles detected in this experiment are relativistic and the

range of the proton momenta was narrow, the time-of-flight for a true coincidence event

should lie in a narrow range; see Fig. 4.3.

For each kinematic bin, the number of true coincidence events Nt was determined

with the formula

Nt = N0 −
∆t0(N1 +N2)

∆t1 + ∆t2
(4.1)

where N0 is the number of events within the bin reconstructing in the real coincidence

window ∆t0, and N1 and N2 are the number of events within the bin reconstructing in
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the accidental coincidence windows ∆t1 and ∆t2 , respectively. Statistical uncertainties

were propagated as

δNt =
√

Nr + (N1 +N2)

(

∆t0
∆t1

+ ∆t2

)2

. (4.2)

Widths of the windows varied between kinematic settings, with wider accidental

and more narrow real coincidence windows at settings with a higher relative rate of

accidental coincidence events.

Care was taken to exclude real coincident (e,e′π+), (e,e′ 2H) and (e,e′ 3H) events

from the windows.

4.3 Cut on target length

The reconstruction of the reaction point along the beam by the two spectrometers in

the laboratory system shows two peaks corresponding to the particles scattered from

the aluminium walls. The real diameter of the tuna can is 10.32 cm, while the distance

between the two peaks in Fig. 4.4 and 4.5 is very close to 10.30 cm for both spectrom-

eters, signifying a good reconstruction of the reaction point by the two spectrometers.

Contributions from the aluminum target walls were removed by imposing the cut

|zlab| < 3.5 cm on the reaction point along the beam reconstructed by the spectrometer

positioned at larger scattering angle.
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Figure 4.4: Reaction point along the beam reconstructed by the electron spectrometer
at kinematics 13 for coincidence events.

Figure 4.5: Reaction point along the beam reconstructed by the hadron spectrometer at
kinematics 13 for coincidence events.
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Figure 4.6: Reaction point along the beam reconstructed by the two spectrometers at
kinematics 13 for coincidence events. True 3He(e, e′p) coincidences are contained in
the diagonal band of events.

Figure 4.6 shows the distribution of the reaction point along the beam reconstructed

by the hadron spectrometer, zlabh, versus the distribution of the reaction point along

the beam reconstructed by the electron spectrometer, zlabe, for coincidence events de-

tected at kinematics 13. The real coincidence events are located along the diagonal

zlabe = zlabh. The cut on the difference between the reconstructed reaction points,

|zlabe − zlabh|< 2 cm for Σ1 and Σ2 kinematic settings, and the cut |zlabe − zlabh|< 2.5

cm for Σ3 kinematic settings, were used for the rejection of most of the accidental

coincidences.

4.4 Particle identification

To ensure that the particles we detected were indeed (e, e′p) events, the particle identi-

fication was checked in each of the two spectrometers.
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In the HRSe, pions were rejected by the Cerenkov detector, which uses carbon

dioxide as a radiator gas.

For the proton spectrometer, HRSh, the energy deposited in the scintillator S0 al-

lowed the rejection of pions and deuterons detected in coincidence with the electrons.

These particles can be separated from the protons by the scintillator ADC spectra: an

ADC on each phototube provided a measure of the energy deposited in the scintillator.

A plot of ADC values versus the particle time of flight is presented in Fig. 4.7. In

addition to a central proton peak, a number of other distinct regions are visible in the

scatter plot. Heavier particles deposit more energy in the scintillators, and have smaller

velocities. Fig. 4.7 shows the total energy deposited by a particle in the scintillator S0

versus its time of flight.

• A triton region, appearing at high dE and very low time of flight β values. Kine-

matically, these tritons can only come from the interaction with the Aluminum

target walls.

• A deuteron region, appearing at high dE and low time of flight (TOF) values.

A few of the deuterons are true coincidences, and appear as a small peak in the

coincidence time of flight spectrum.

• A proton region that we need to select for the cross section measurements.

• A pion region, appearing around β = v/c = 1.

4.5 Phase-space volume calculation

Not all the events being detected contribute to the cross section measurements. Each

High Resolution Spectrometer (HRS) does not have a simple acceptance. In fact, and

as an example, the dipole magnet has a trapezoidal cross section and the higher mo-

mentum particles tend to pass closer to its shorter base side, where the magnetic field
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Figure 4.7: Energy deposited by a particle in the S0 scintillator versus its time of flight.

is stronger. This causes a decrease of the accepted range of φtg when δtg increases.

Increasing ytg requires decreasing φtg, and vice versa, in order for the particles to enter

the spectrometer through the entrance window. See Fig. 4.8.

To define the boundaries of the HRS acceptance and make an efficient selection

of the good events, an acceptance boundary function has been developed for such a

purpose using the "R-function" method [40]. The R-function reduces all the cuts to

one single cut.
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4.5.1 R-function

An R-function is a real-valued function whose sign is completely determined by its

arguments. An R-function can be used to define a geometric object by the boundary

equation of the shape of this object. The resulting function is equal to zero on the

boundary of the geometrical object, greater than zero inside the object and less than

zero outside the object. For example, the function f(x, y) = 1 − (x2 + y2) can be

considered as an R-function defining a circle with a radius of one, since f is equal to

zero on the circle, larger than zero inside the circle and less than zero outside the circle.

With a given xtg, the spectrometer acceptance is a 4-dimensional region of variables

θtg, φtg, δtg and ytg. Its main features can be seen in the (φtg, θtg), (φtg, δtg), (φtg, ytg)

and (θtg,φtg) distribution of each arm that cover a maximum acceptance possible; see

Fig. 4.8. The boundaries of the acceptance are defined as RF > 0. For the E89044

experiment we chose to use the cut RF > 0.002 to define the flat region of the acceptance

and to select good events in both simulation and data; see Fig. 4.9 and 4.10.
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Figure 4.8: Contour plots of the proton singles distributions covering the hadron spec-
trometer acceptance. Upper left: θtg vs δtg, Upper right: φtg vs δtg. Lower left φtg
vs ytg, lower right: θtg vs φtg. The solid red lines indicate the edges of the initial cut
placed on the acceptance.



81

4.6 Recorded data

The 3He(e, e′p) kinematics analyzed in this thesis are summarized in Table 1.1. The

data were collected at two values of beam energy, 4.806 GeV and 1.2553 GeV. At

each beam energy, electron were detected in the HRSe at a fixed scattering angle and

momentum. Kinematics are centered at the quasielastic knockout of protons with trans-

ferred momentum q = 1.5 GeV/c and transferred energy ω = 837 MeV.

The knocked out proton was detected in coincidence with the ejected electron in

the HRSh, in perpendicular coplanar (e, e′p) kinematics.

Two dimensional plots of missing momentum versus missing energy for the recorded

data are represented in Figs. 4.11, 4.12 and 4.13.
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Figure 4.9: Distribution of the cut function for data (full histogram) and simulation
(dotted histogram) at kinematics 10.

Figure 4.10: Ratio of the previous two cut function histograms (data over simulation).
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Figure 4.11: The range of missing energy and missing momentum spanned by the
3He(e, e′p) measurements in each of the Σ1 perpendicular kinematics. The beam en-
ergy is 4.8068 GeV and ε = 0.943. The order of the kinematics is as follows: upper left
kin4, upper right kin7, center left kin10, center right kin13, lower left kin28, and lower
right kin29.
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Figure 4.12: The range of missing energy and missing momentum spanned by the
3He(e, e′p) measurements in each of the Σ2 perpendicular kinematics. The beam en-
ergy is 4.8068 GeV and ε = 0.943. The order of the kinematics is as follows: upper left
kin5, upper right kin8, lower left kin11, and lower right kin14.
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Figure 4.13: The range of missing energy and missing momentum spanned by the
3He(e, e′p) measurements in each of the Σ3 perpendicular kinematics. The beam en-
ergy is 1.254 GeV and ε = 0.108. The order of the kinematics is as follows: upper left
kin6 upper right kin9, lower left kin12, and lower right kin15.
.
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4.7 Normalization of the data

The extraction of the 3He(e, e′p) cross section requires a precise knowledge of inte-

grated luminosities during the runs. The total cross section, σ, of the scattering into a

kinematical bin, not corrected from radiative effects, is directly related to the integrated

luminosity by the relation

σ =
N

εeff

1
∫

Ldt
, (4.3)

where N is the number of events detected in the kinematic bin during the run, and εeff

is a factor accounting for prescaling and the efficiency of particle detection.

The integrated luminosity for electrons of a total charge Q passing through a 3He

gas target of length l and density ρ, is given by:

∫

Ldt =
Q

e

NAρ

A3He

l, (4.4)

where: e = 1.602 · 10−19 Coulomb is the electron charge, A3He = 3.016 g/mole is the

atomic mass of 3He, and NA = 6.022 · 1023 mole−1 is Avogadro’s number.

For a given target nucleus and charge of incident particles, the integrated luminosity

can also be expressed in units of [Coulomb·g/cm2].

The charge Q passing through the 3He target during a run is measured with a high

precision from the two beam current monitors (BCMs) for which the upstream u and

downstream d signals are integrated. For small currents, < 80µA, the amplified signals

u3 and d3 are used:

Q =
1

2
.(
u3

4139
+

d3

4141
).10−6 (4.5)

4.8 Density measurement

The target length l of the 3He "tuna can" target is 10.32 cm, but it can effectively be

set to a smaller value by a software cut on the reconstructed interaction point along the

beam.
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The density ρ of 3He gas in the target can in principle be found by application of

the 3He equation of state to pressure and temperature readings from sensors located in

the target. At a temperature of 6.3 K and pressures from 122 psi to 160 psi, as used in

the experiment, however, the 3He equation of state is not known with a high precision.

A more precise approach to determination of the 3He density in the target is based

on normalization of the measured elastic 3He(e,e) cross sections to the world data [41].

The density of 3He in the simulation is adjusted to reproduce the measured yield in

the elastic peak, after which both the 3He density and the integrated luminosity for the

analyzed elastic runs is known.

If the integrated luminosity is known for a run, it can be found for other runs taken

at the same beam energy with a procedure known as "luminosity monitoring". This

technique is based on the fact that for a given beam energy and a spectrometer setting,

the number of particles passing through a spectrometer acceptance region in a given

run is to a good approximation proportional to the integrated luminosity for that run.

Hence, the integrated luminosity
∫

Ldt for an "investigated" run can be determined

from the known integrated luminosity (
∫

Ldt)′ during a "reference" run, with

∫

Ldt =
N

εeff

ε′eff
N ′

(

∫

Ldt)′, (4.6)

whereN andN ′ are the number of events satisfying a fixed acceptance cut and detected

in the investigated run and in the reference run, respectively. εeff and ε′eff are correction

factors for efficiency of particle detection and prescaling in the investigated run and in

the reference run, respectively.

Originally it was planned to determine the 3He density (and the integrated lumi-

nosity) at each beam energy with elastic 3He(e,e) scattering runs, with the electron

spectrometer located closest to the beam dump angular position, ≈ 12.5◦ (and hence

the lowest Q2 for a beam energy, where the 3He elastic form factors are known better),

and then to monitor the luminosity in all other runs of the same beam energy with a

spectrometer fixed during kinematics change. For beam energies of 2 – 4.8 GeV and
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the scattering angle of 12.5◦ (5 fm−2 < Q2 < 27 fm−2), the 3He form factors are known

with only 2 – 10% precision. It was therefore intended to improve the knowledge of the

3He elastic form factors at Q2 values corresponding to the elastic normalization runs,

in a set of 3He(e,e) measurements at a lower beam energy of 0.644 GeV.

This original plan of normalization of the 3He(e,e′p) data was subsequently mod-

ified to include a single measurement of the 3He density at the beam energy of 0.644

GeV, as the following circumstances became apparent:

• At the beam energy of 4.8 GeV the measurement of the elastic 3He(e,e) cross

section with a high statistical precision at low scattering angles was not feasible,

since the central momentum of the electron spectrometer could not be set above

4 GeV/c.

• The 3He density obtained from the 3He(e,e) elastic measurements at the beam

energy of 1.2 GeV and an electron scattering angle of 12.5◦ had a substantially

higher systematic uncertainty than the density deduced from the 3He(e,e) mea-

surements at a beam energy of 0.644 GeV and an electron scattering angle of

30.8◦, due to a higher sensitivity of the elastic cross sections to the scattering

angle at lower scattering angles, and higher than expected uncertainty in deter-

mination of scattering angles.

• The density of 3He in the target was observed to be stable to ∼ 0.5% over pe-

riods of weeks; the stability of the 3He target density could be further reliably

monitored by temperature and pressure sensors.

4.9 3He(e, e′) cross section

The 3He(e, e′) cross section is normalized to the world data [41] in order to extract the

density of the 3He target.
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A first extraction of the density from the E89044 set of 3He(e, e′) elastic mea-

surements made at the beam energy of 644 MeV was performed by K. Aniol and his

collaborators at Cal. State L. A. They used radiative, computer deadtime and beam

heating corrections; and a PWBA calculation of the elastic cross sections, using the

3He form factors from [42]. From the elastic scattering measurements at four angular

settings of the electron spectrometer with 1.59 fm−2 < Q2 < 2.91 fm−2, with the

hadron spectrometer used as a luminosity monitor, they obtained the density of 0.0712

g/cm3 ± 1.3% statistical uncertainty. Later, however, an error was found in this anal-

ysis; after reanalysis, which is currently pending, their estimate of the 3He density is

expected to increase by ∼ 4%.

The 3He density was also extracted by an independent method from a MCEEP

simulation using the 3He(e,e) elastic form factors from the Amroun et al. [41] fit to

world 3He elastic data, and a simple approximation to DWIA through the calculation

of effective momentum transfer [43]. Acceptance cuts were: |φtge| < 20 mr, |θtge| < 40

mr, and −0.035 < δtge < 0.03. Contributions from aluminum walls were removed by

the reconstructed interaction point along the beam, |reactez| < 3.5 cm. The average

3He gas density extracted was 0.07197 g/cm3± 1% statistical uncertainty.

4.10 Luminosity monitoring

The integrated luminosity for each run selected for the 3He(e,e′p) cross section analysis

was determined with the formula 4.6, which in an expanded form can be written as

∫

Ldt =

(

N1P1

εcdt1εedt1εtr1
+

N5P5

εcdt5εedt5εtr5

)

(
∫

Ldt)′

N ′

1
P ′

1

ε′
cdt1

ε′
edt1

ε′tr1

+
N ′

5
P ′

5

ε′
cdt5

ε′
edt5

ε′tr5

. (4.7)

In this formula primed (′) quantities refer to the "reference" run for which the integrated

luminosity is known, and unprimed quantities refer to the run for which the integrated

luminosity is being measured. The notation is as follows:

•
∫

Ldt is the integrated luminosity,
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• Ni is the number of events of trigger type i passing the cut on the reconstructed

reaction point along the beam, |zlabe| < 3.5 cm, and

• Pi, εcdti, εedti, εtri are the prescale factor, computer livetime, electronic livetime

and tracking efficiency, respectively, for trigger type i.

In the formula 4.7 HRSE singles events (trigger type 1) and coincidence events

(trigger type 5) are summed, and events of both types are corrected for the prescaling

and efficiencies. This addition is necessary since the HRSE singles trigger and the

coincidence trigger are exclusive. The HRSE trigger efficiency was stable the whole

experiment and equal to 99.9%, it is therefore the the same for the reference and the

investigated runs. Hence, it is canceled out in the formula 4.7.

The integrated luminosities (
∫

Ldt)i determined with the formula 4.7 for individual

runs i taken at a 3He(e,e′p) kinematic setting can be summed to give the total integrated

luminosity (
∫

Ldt)tot for the kinematic setting, as

(

∫

Ldt)tot =
∑

i

(

∫

Ldt)i. (4.8)

The total integrated luminosity determined by 4.8 can be used in a "100% efficient"

simulation of the 3He(e,e′p) yield. Then, the simulated yield in a kinematic bin B can

be directly compared to the number of detected events in the same binB, if the detected

events are corrected for prescaling and efficiencies. The correction for prescaling and

efficiencies is made with the formula:

Ntot,eff =
∑

i

Ni

εi
, (4.9)

where Ni is the number of detected events in run i in the kinematic bin B, and εi is

given by εi = εcdt5εedt5εtr5/P5.

Alternatively, one can simulate the experiment with an "effective" (corrected for

prescaling and efficiencies) integrated luminosity, defined as

(

∫

Ldt)tot,eff =
∑

i

(

∫

Ldt)iεi, (4.10)
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and then compare the yield simulated in a kinematic bin B to the number of experi-

mentally detected in the same binB events, uncorrected for prescaling and efficiencies:

Ntot =
∑

i

Ni. (4.11)

In fact, it can be shown that the two methods are identical (up to an insignificant

multiplicative coefficient), if prescaling and efficiencies are the same for all runs at a

kinematic setting. This was demonstrated in [23].

In this experiment the coincidence trigger was not prescaled, P5 = 1, and the ef-

ficiencies of particle detection were very similar for runs taken at the same kinematic

setting. Hence, both methods of calculation for the integrated luminosities and com-

parison of data to simulation should give identical cross section results.

In the analysis of this experiment, the second normalization approach was adopted

and the calculated luminosities for the kinematics studied in this thesis are summarized

in Table 4.1 1.

4.11 Simulation of experiment

4.11.1 MCEEP

The experiment was simulated with a modified version of MCEEP [39], written by

P. Ulmer with contributions from others. D. Higinbotham updated 3He form factor

calculation using the global fit of Amroun et al. [41], and coded in an approximation

to DWIA through calculation of effective momentum transfer [43]. MCEEP simulates

3He(e,e′p)d and 3He(e,e′p)pn (three-body breakup, or 3bbu) processes separately, by

5-dimensional and 6-dimensional sampling of the phase space respectively. Ntuples

simulated for the two processes are merged.

MCEEP calculates the average energy losses of electrons and protons with the

1A complete list of the runs recorded during experiment E89044 can be found in [44].
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Table 4.1: Total effective luminosity used in the cross section analysis at each
3He(e, e′p) kinematic setting.

Kinematics Σ Nominal Pm, Number of Total effective
number MeV/c good runs

∫

Ldt, Coul g/cm2

4 Σ1 150 4 0.4855
7 Σ1 300 15 2.2497

10 Σ1 425 16 3.004
13 Σ1 550 28 5.195
28 Σ1 750 11 2.126
29 Σ1 1000 13 2.003
5 Σ2 150 4 0.3441
8 Σ2 300 12 1.175

11 Σ2 425 20 1.207
14 Σ2 550 52 2.164
3 Σ3 0 5 0.4245
6 Σ3 150 11 1.767
9 Σ3 300 31 6.031

12 Σ3 425 31 11.57
15 Σ3 550 53 14.15

Bethe-Bloch formula [45], with additional corrections for density and shell effects [45,

46]. Energy loss straggling is approximated by either a Landau, Vavilov, or Gaussian

distribution, underway on the ratio between mean energy loss and maximum energy

loss in a single collision [39]. In a final stage of event simulation, the mean energy

losses of either the incident or scattered electron and protons are subtracted to allow

comparison with data corrected for the mean energy losses.

Average energy losses, internal radiation and external radiations are taken into ac-

count in the simulation and are presented in detail in the next chapter, see section 5.3.

MCEEP simulates spectrometer resolutions by:

1. Transport of particles generated at the target to the focal plane, by application of

spectrometer forward transfer functions [47].

2. Simulation of multiple scattering in the spectrometer exit window and air, by

addition of Gaussian functions to particle transport coordinates.
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3. Simulation of position resolution of VDCs.

4. Transport of particles back to the target with reverse transfer functions.

MCEEP simulates spectrometer acceptance by transport of particles to 5 internal

spectrometer apertures, elimination of particles hitting the apertures, and reverse trans-

port of particles to target. In the analysis of elastic scattering from 3He (Sec. 4.9), it

was found, however, that MCEEP’s model of the spectrometer acceptance substantially

differs from the experimentally reconstructed acceptance. Therefore, MCEEP’s model

of the spectrometer acceptance was not employed. Instead, in the 3He(e,e′p) cross

section analysis the acceptance was defined by software R-function cuts; see Sec. 4.5

4.11.2 Spectrometer resolution

Momentum, angular and position resolution of both spectrometers was simulated by

addition of Gaussian functions to reconstructed δtg, θtg, φtg and ytg coordinates of the

particles, with FWHM [23]:

• 2 mm for ytg,

• 2 mr for φtg,

• 6 mr for θtg, and

• δtg: (0.042+0.001 · δ2
tg)% for target density 0.060 g/cm3, but (0.045+0.001 ·

δ2
tg)% for target density 0.072 g/cm3,

where δtg is expressed in % deviation from the central momentum setting of the spec-

trometer.
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Chapter 5

Cross Section

Five-fold differential 3He(e, e′p)d and six-fold differential 3He(e, e′p)pn coincidence

cross sections were extracted by adjustments of the simple plane wave 3He(e,e′p) cross

section model in the simulation to reproduce the experimentally detected yield (or num-

ber of counts). In the following section, the steps of the extraction of the cross section

are presented.

1. Normalization of a spectrometer setting is calculated with the luminosity moni-

toring procedure, and is corrected for efficiencies; see Sec. 4.10.

2. Real coincidence events are reconstructed with ESPACE [27], and the following

cuts are applied:

• VDC tracking cuts, to eliminate badly reconstructed events.

• R-function acceptance cut, to select the events falling into flat acceptance

regions of the spectrometers.

• Cuts on the reconstructed reaction point along the beam, |zlab| < 3.5 cm,

to remove contributions from the aluminum target walls.

• A cut on the difference between reaction points along the beam recon-

structed by the two spectrometers, |zlabe − zlabh| < 2 cm, to remove part

of accidental coincidences was applied.

• A cut on the sum of Gas Cerenkov ADC channels, to remove the contribu-

tion from the real coincident π−. Cuts on shower and preshower detectors
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were used when needed; parallel kinematics are tended to be the more af-

fected with pions, see [24].

• Cuts on corrected coincidence time between the spectrometers selecting the

real (e,e′p) coincidence data.

3. Full MCEEP simulation of the spectrometer setting is made. The study included

energy losses, internal and external radiation, multiple scattering in the target,

and spectrometer resolutions. Cuts identical to those imposed on data are applied

to simulated events (except for cuts on Gas Cerenkov, coincidence time of flight,

particle time of flight in hadron arm and VDC tracking cuts).

4. For Σ1 and Σ2 kinematic settings, the position of the 3He(e,e′p)d two-body

breakup (2bbu) peaks reconstructed in data and in simulation are adjusted to

coincide with the theoretical value of Emiss = 5.49 MeV; the continuum contri-

bution was then moved by the same amount in the 3He(e, e′p)pn simulation.

5. Coincident events both in data and in simulation are binned in missing momen-

tum Pmiss for the 3He(e, e′p)d reaction channel and in missing momentum and

missing energy (Pmiss, Emiss) for the 3He(e, e′p)pn channel.

After these preliminary steps, a fitting procedure iteratively adjusted the radiated

3He(e,e′p) cross sections in simulation bins until the number of counts in each bin in

the simulation and the data agreed. After adjustment, the unradiated 3He(e,e′p) cross

sections are extracted at the vertex. These vertex cross sections are then compared to

the available theoretical models.

The 3He(e,e′p) cross section model used in the analysis of the continuum data was

based on the factorization of the cc1 prescription for electron-nucleon cross section

[19] with spectral functions fitted to data.

Full simulation of the experiment with MCEEP [39] provides two sets of kinematic

variables (Emiss, Pmiss, Q2, ω and others) for each simulated 3He(e,e′p) event. One set
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is the "asymptotic", or "radiated" kinematic variables. These variables are analogous

to the experimentally reconstructed kinematic variables and are calculated based on:

• 4-momentum of the incident electron after subtraction of the mean energy losses

before the interaction point.

• 4-momenta of the scattered electron and the proton after simulation of the energy

losses, radiation, multiple scattering and spectrometer resolution.

Another set of MCEEP kinematic variables is named "vertex", or "unradiated" vari-

ables. The "vertex" variables are calculated on the 3He(e,e′p) reaction vertex in the

simulation. That is, these variables are calculated based on

• 4-momentum of the incident electron after simulation of the energy losses, radi-

ation and multiple scattering and

• 4-momenta of the scattered electron and the proton before simulation of the en-

ergy losses, radiation, mulitple scattering and spectrometer resolution.

5.1 Extraction of the 3He(e, e′p)pn cross section

The 3He(e, e′p)d cross sections were extracted by M. Rvachev [23]. His method is

based on normalizing the vertex 3He(e, e′p)d cross section bin by bin on Pmiss until

the radiated yield in the simulation reproduces the yield in the data. His most impor-

tant results are summarized in Section 6.1 and in [48]. In this thesis, the extracted

3He(e, e′p)d experimental spectral function is used in the simulation of this channel,

so the extraction of the two-body radiative tail underneath the continuum was possible.

The six fold differential 3He(e, e′p)pn cross section, subject of this thesis, is ex-

tracted by fitting the radiated simulation to the data, bin by bin on Pmiss and Emiss then

correcting for the radiative effects.

From the real data, we measure the number of events N(E i
m, P

j
m) falling into a

missing energy and momentum bin Bij(E
i
m, P

j
m). The bin spans a range of missing
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energy and missing momentum given by:

Emiss = Ei
m ± ∆Em

2
, Pmiss = P j

m ± ∆Pm
2

. (5.1)

The experimental cross section is obtained from normalizing the PWIA cross sec-

tion in the simulation by:

d6σExp

dEfdEpdΩedΩp
(Pm, Em) = KS(i, j)

k=n
∏

k=1

wk(i, j), (5.2)

where wk is the adjusted weight during the iteration k:

wk =
N(Ei

m, P
j
m)

Nk(Ei
m, P

j
m)

(5.3)

where Nk(Ei
m, P

j
m) is the number of events falling into the same missing energy and

momentum bin (Ei
m, P

j
m) in the radiated simulation, corresponding to the iteration k.

In fact, one pass is not enough for the normalization, because of the radiation effects

which tend to mislead the reading of missing energies and missing missing momenta;

see section 5.3.

The normalization is stopped when all the weighting factors are close enough to

one, (1±0.001). During the analysis, three or four iterations were enough to reproduce

the correct number of counts, depending on the statistics and on the kinematics.

With the new spectral function, we run the simulation at the vertex and extract

the vertex cross section. This vertex cross section is then compared to the available

theoretical models.

5.2 Details of the normalization

The steps of the normalization are summarized below:

1. Construct an ESPACE missing energy spectrum, within the spectrometer accep-

tance cut (R-function> 0.002) and clean it from all possible contamination using

the software cut described in Sec. 4.5.
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2. A PWIA momentum distribution, using Salme’s model [49] for the two-body

break up and for the continuum spectral functions along with σcc1 electron-proton

off-shell cross section, is used to generate the number of events passing through

the cuts as a function of missing momentum and missing energy for a consid-

ered bin Bij(ω, q, E
i
m, P

j
m) for all the kinematics. Salme’s spectral function does

not go further than Em = 127 MeV, so a linear extrapolation was adopted to

consider the missing region up to 200 MeV; see section 5.2.1.

The generated number of counts passing through the spectrometer acceptance

is normalized to the measured cross-sections within the measured regions; the

same binning is used for both data and simulation. The simulation is run with

radiations on, in order to compare the resulting number of counts to the real

counts from the data. All the cuts applied in the data analysis are applied in the

simulation, except for the coincidence time of flight cut and particle identification

cuts, and VDC tracking cuts.

3. Add the resulting 3He(e, e′p)d and 3He(e, e′p)pn missing energy spectra to re-

produce the total missing energy spectrum which has to be normalized to the

experimental spectra given by ESPACE. Figures 5.1 and 5.2 represent three di-

mensional plots of the number of counts versus missing momentum and missing

energy for the simulation after the normalization and the data respectively. The

contributions of the two-body and the three body were simulated separately and

the normalized yields are represented in Figs. 5.3 and 5.4.

5.2.1 Extrapolation and interpolation of Salme’s PWIA spectral

function

Salme’s PWIA is incorporated in the simulation code MCEEP. It is a function of miss-

ing momentum Pmiss for the two-body reaction channel and of Pmiss and missing en-

ergy Emiss for the continuum channel.
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Salme’s spectral function is a one dimensional vector with 81 values on Pmiss for

the two-body case, and it is two dimensional 81 × 139 on Pmiss and Emiss, respectively.

The spectral function spans missing momenta up to 1500 MeV/c but does not go further

than 127 MeV on missing energies. The E89044 continuum data goes up to 1200

MeV/c on Pmiss and up to 180 to 200 MeV on Emiss, depending on the kinematics.

Also, the binning on missing momentum in the original Salme’s spectral function in the

simulation was 20 MeV/c, when the binning on the data for kinematics of rich statistics

was 10 MeV/c (but we opened this window for kinematics of low statistics). Therefore,

not only the original Salme’s 3He(e, e′p)pn spectral function was extrapolated up to

190 MeV on missing energies, but it was also interpolated with a binning of 10 MeV/c

on missing momenta. The resulting spectral function is a 162 × 200 two dimensional

vector on Pmiss and Emiss, respectively. The fit of the simulation to the data was then

possible by normalizing the number of counts in each bin in the simulation to same bin

in the data.

The extrapolation beyond Emiss = 127 MeV was a linear extrapolation. For Σ1 and

Σ3 kinematics, a constant value of the spectral function was taken for missing energies

Emiss > 127 MeV so that S(Pmiss, Emiss) = S(Pmiss, 127 MeV). The missing energy

spectrum obtained by this new starting "PWIA" spectral function for kinematics 10,

for example, is shown in Fig. 5.5.

In the Σ2 perpendicular kinematics, the pion production region appears for missing

energies beyond Emiss = 140 MeV. Therefore, and in order to accelerate the proce-

dure of the normalization, a study of the shape of the extrapolation function was done.

The final choice was a linear extrapolation with a positive slope. The missing energy

spectrum obtained by this new starting "PWIA" spectral function for kinematics 8, for

example, is represented in Fig. 5.6.

A Fortran based program for the interpolation and the extrapolation of the two

dimensional spectral function S(Pmiss, Emiss) in the continuum region is given in Ap-

pendix B.
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Figure 5.1: A three dimensional plot representing number of counts versus missing
momentum and missing energy for kin13. This plot is obtained from the real data.

Figure 5.2: A three dimensional plot representing number of count versus missing
momentum and missing energy for kin13. This plot is obtained from the simulation by
adding the 2bbu and the 3bbu contributions.
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Figure 5.3: A three dimensional plot representing number of counts versus missing
momentum and missing energy for kin13. This plot is the normalized number of counts
of the simulation to the number of count of the data for the 2bbu channel.

Figure 5.4: A three dimensional plot representing number of count versus missing
momentum and missing energy for kin13. This plot is the normalized number of counts
of the simulation to the number of count of the data for the continuum channel.
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Figure 5.5: PWIA missing energy spectrum for kinematics 10. A constant extrapola-
tion of the spectral function was adapted for Emiss > 127 MeV, leading to the pre-
dicted shape shown for the counts.

.

Figure 5.6: PWIA missing energy spectrum for kinematics 8. A linear extrapolation of
the spectral function with a positive slope was adapted for Emiss > 127 MeV, leading
to the predicted shape shown for the counts.

.
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5.3 Radiative corrections

Unfortunately, the (e, e′p) reaction does not only proceed through a simple one photon

exchange diagram shown in Fig. 1.3. In reality, the incoming and the outgoing charged

particles radiate real and virtual photons. This changes not only the cross section for

the reaction, but also the apparent energy and momentum transfer [70]. Further, while

these radiative corrections are an integral part of (e,e’p) reaction, theoretical work sim-

ply does not include these effects. Therefore, it is the responsibility of the experimen-

talist to correct the measured cross sections for radiative losses in order to perform a

meaningful comparison between the experiment and the theory.

The radiative corrections for the present experiment were included in the simulation

program MCEEP. Radiative processes may be grouped into two categories:

• Internal radiation: The electron radiates real and virtual photons in the presence

of the Coulomb field of the target nucleus involved in the (e, e′p) reaction. See

Figs. 5.7 and 5.8.

• External radiation: The electron radiates real and virtual photons in the presence

of the Coulomb fields of nuclei other than the target nucleus.

Figure 5.9 represents 3He(e, e′p)pn missing energy spectra obtained in MCEEP

at kinematics 10. In the full line histogram all the radiation effect cited above are

taken into account. The dash-dotted histogram is corrected for radiative effects. The

radiation factor can vary from one kinematics to an other, and it can vary within the

same kinematics for different bins on Emiss; see lower Figure 5.10.
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Figure 5.7: Real photon radiation.

Figure 5.8: Virtual photon radiation.
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Figure 5.9: Missing energy spectrum for the PWIA. The continuous histogram is af-
fected by radiations. The dash-dotted histogram is corrected for radiative effects.

Figure 5.10: Ratio of the radiated to the unradiated missing energy spectra obtained at
kinematics 10.
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5.3.1 Internal radiations

The processes involving the radiation of a single bremsstrahlung photon are repre-

sented in the four Feynman diagrams in Fig. 5.7.

The radiation of soft photons (real photons with energies below the photon cutoff

energy) and virtual photons contribute in the "Schwinger" correction to the cross sec-

tion. The emission of hard photons (real photons with energy above the cutoff energy)

leads to the radiative tail.

Schwinger correction

The Schwinger correction [50, 51] is given in terms of soft photon and virtual photon

corrections, δr and δv respectively, as:

CSchwin = e−δr(1 − δv) (5.4)

Radiative tail

The radiation of a hard photon can affect the kinematics by changing the yield distribu-

tion in the missing energies. The peaking approximation is used; in this approximation

the photon is assumed to be radiated either along the incident or the scattered electron

directions. The radiative tail of the 3He(e, e′p)d reaction is simulated with MCEEP

using the Borie and Drechsel [53] prescription in peaking approximation.

Multi-photon correction

The full multi-photon contribution to the radiative tail in MCEEP is given by:

fmp = (1 − δv)
(1 − e−δr)

δr
(5.5)

This factor is applied to the tail cross section for each event. Vertex kinematics are

used in the calculation of δr and δv.
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5.3.2 External radiation

MCEEP calculates the average energy losses by collisions in the target for electrons

and protons with the Bethe-Bloch formula, [45], with additional corrections for density

and shell effects [45,46,52]. Energy loss straggling is approximated by either Landau,

Vavilov, or Gaussian distributions, depending on the ratio between mean energy loss

and maximum energy loss in a single collision [39]. In a final stage of event simulation,

the mean energy losses of electrons and protons are subtracted to allow comparison

with data.

5.3.3 Procedure of the radiative corrections.

Comparison of the number of events coming from the experimental data (experimental

data are obviously affected by the radiations and the goal here is to correct for them),

for a bin Bij(ω, Q2, Ei
m, P j

m) and the number of events coming from the simulation

with no radiation gives a factor R(i, j) correcting for the classical internal and external

bremsstrahlung radiation to this bin.

N0(E
i
m, P

j
m) = Nexp(E

i
m, P

j
m) R(i, j) (5.6)

This is not enough to deal with the radiative corrections, the second step is to sub-

tract the tails from this bin, ie, the contribution of the radiative tails of the higher energy

neighboring bins to this bin. This is because missing energy and missing momenta are

modified with the contribution of the energy and the momentum of the radiated photon

respectively.

The amount that should be subtracted from the ith bin due to the radiative tail

coming from the closest previous bin ; ie (i− 1)th bin, is:

∆N i,j
i−1 = N0(E

i
m, P

j
m)

(

1

R(i, j)
− 1

R(i− 1, j)

)

(5.7)

and the amount which should be subtracted from the (i − 1)th bin due to the radiative



108

tail coming from its closest bin the (i− 2)th; which is the second closest bin to the ith:

∆N i−1,j
i−2 = N0(E

i−1
m , P j

m)

(

1

R(i− 1, j)
− 1

R(i− 2, j)

)

(5.8)

This process is then repeated for the subsequent (E i−k
m , P j

m) bins for a fixed j.

Hence, the contribution of the kth bin to the ith bin will be:

∆N i,j
k = N0(E

i
m, P

j
m)

(

1

R(i− k, j)
− 1

R(i− k − 1, j)

)

(5.9)

The contribution of all the bins to the ith bin is therefore given by the sum over k

from the first bin to the (i− 1)th bin.

∆N i,j =
k=i−1
∑

k=1

N0(E
i
m, P

j
m)

(

1

R(i− k, j)
− 1

R(i− k − 1, j)

)

(5.10)

The contribution of the tails becomes smaller if they are coming from bins located

far from the ith bin. Hence few terms in the series will be enough for the convergence.

The next step is to increment the missing momentum to P j+1
m and repeat the previ-

ous procedure, then go to higher missing energy channels and repeat the same work.

5.3.4 Importance of iterating the normalization method

The method of the radiative tail subtraction, described in the previous section, is im-

plemented in the simulation program MCEEP. In practice, comparing the data to the

simulation allows the determination of the normalization factors R(i, j). One pass is

not enough for the simulation to reproduce the data, a few iterations are necessary.

Figure 5.11 shows the steps followed in the normalization of kin10. First the height

and width of the two-body were normalized bin by bin on Pmiss. Then using the nor-

malized 2bbu spectral function, along with the extrapolated PWIA spectral function

for the continuum channel, the continuum simulation was normalized to the data bin

by bin on Pmiss and Emiss. The normalization was repeated many times until we got the

complete agreement between the simulation and the data. In each pass normalization
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weights are extracted for each bin on Pmiss and Emiss. The normalization is complete

when the normalization factors stabilize at the value of 1. For a given bin on Pmiss,

suppose the model spectral function (unradiated) is a function of only two non-zero

values: Su(1) = 20, Su(2) = 10. This example was proposed by P. Ulmer [54], to

investigate the validity of the proposed method 1. Take a simple formula for the ra-

diation effect: Sr(i) = 0.8 Su(i) + 0.2 Su(i − 1). where Sr(i) is the radiated spectral

function for bin i and Su(i) is the unradiated one. Then the radiated model spectral

function becomes: Sr(1) = 16, Sr(2) = 12, Sr(3) = 2. Now suppose the data gives:

Sd(1) = 32, Sd(2) = 36, Sd(3) = 8.

1 It is the first time ever that this method of normalization of the continuum data is used. This method
is very efficient and can be with a big help for future analysis of other experiments.
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Figure 5.11: Steps of the normalization at kinematics 10. Pmiss = 450 MeV/c the
beam energy is 4.8068 GeV. The dashed dotted red histogram is the missing energy
spectrum in the PWIA with Salme’s spectral function. The solid black line is the data.



111

Then the scaling factors for the three bins are: 2, 3, 4. This gives a new model spec-

tral function: Su1(1) = 40, Su1(2) = 30 and all others are zero. If this is the correct

spectral function, then radiating it should yield the data values. By applying the same

radiation prescription as before: Sr1(1) = 32, Sr1(2) = 32, Sr1(3) = 6. These are

"NOT" the values given by the data. So, one pass is not enough for the normalization.

Second iteration:

The new scaling factors are: 1, 9
8

and 4
3
.

The new model spectral function is: Su2(1) = Su1(1) = 40,

Su2(2) = 9
8

Su1(2) = 135
4

and

Su2(3) = 0.

The radiated spectral function is:

Sr2(1) = 0.8 Su2(1) = 32,

Sr2(2) = 0.8 Su2(2) + 0.2 Su2(1) = 35 and

Sr2(3) = 0.2 Su2(2) = 27
4

= 6.75.

Third iteration

The new scaling factors are: 1, 36
35

and 32
27

.

Giving the new model spectral function:

Su3(1) = Su2(1)× 1 = 40,

Su3(2) = Su2(2)× 36
35

= 1215
35

= 34.71 and

Su3(2) = 0.

The radiated spectral function is:

Sr3(1) = 0.8 Su3(1) = 32,

Sr3(2) = 0.8 Su3(2) + 0.2 Su3(1) = 35.77 and

Sr3(3) = 0.2 Su3(2) = 6.942.

We can see that the scaling factors become closer and closer to one in each new

iteration, this means that the new radiated spectral function converges to the data.
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5.4 Missing energy spectra

This section presents spectra of missing energy obtained at some of the kinematic set-

tings analyzed in this thesis.

Each of the figures, from Fig. 5.12 to Fig. 5.4, presents Emiss spectra for one spec-

trometer setting and contains:

1. Emiss spectrum reconstructed from the data (solid line).

2. Emiss separated spectra obtained in MCEEP simulation of the 3He(e,e′p)d and

3He(e, e′p)pn reactions (both dash-dotted lines).

3. Sum of the two simulation Emiss spectra (dashed line).

The 3He(e,e′p) cross section model used in MCEEP was the factorization of spec-

tral functions fitted to the data with the cc1 prescription for the off-shell electron-

nucleon cross section. The following cuts were applied both to data and simulation

spectra: R-function acceptance cuts, target length cuts, and the cut on the difference

between reaction points reconstructed by the two spectrometers. VDC tracking cuts

and the cut on gas Cerenkov ADCs were applied to data spectra. Accidental coinci-

dences were subtracted from data.
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Figure 5.12: 3He(e,e′p) missing energy distribution in kinematics 4. Ebeam = 4.8 GeV,
the detected proton is backward of ~q. Black solid histogram represents the data, the red
dash-dotted line is the simulation of the two-body and the continum seperately and the
green dashed line is the sum of the two previous contributions.
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Figure 5.13: 3He(e,e′p) missing energy distribution in kinematics 7. Ebeam = 4.8 GeV.
The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.14: 3He(e,e′p) missing energy distribution in kinematics 10. Ebeam =
4.8 GeV. The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.15: 3He(e,e′p) missing energy distribution in kinematics 13. Ebeam =
4.8 GeV. The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.16: 3He(e,e′p) missing energy distribution in kinematics 28. Ebeam =
4.8 GeV. The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.17: 3He(e,e′p) missing energy distribution in kinematics 29. Ebeam =
4.8 GeV, the detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.18: 3He(e,e′p) missing energy distribution in kinematics 5. Ebeam = 4.8 GeV,
the detected proton is forward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.19: 3He(e,e′p) missing energy distribution in kinematics 8. Ebeam = 4.8 GeV.
The detected proton is forward of ~q. Note the appearence of the pion region around
140 MeV. Curves are the same as in Fig. 5.12.
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Figure 5.20: 3He(e,e′p) missing energy distribution in kinematics 11. Ebeam =
4.8 GeV. The detected proton is forward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.21: 3He(e,e′p) missing energy distribution in kinematics 6. Ebeam = 1.2 GeV.
The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.22: 3He(e,e′p) missing energy distribution in kinematics 9. Ebeam = 1.2 GeV.
The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.
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Figure 5.23: 3He(e,e′p) missing energy distribution in kinematics 12. Ebeam =
1.2 GeV. The detected proton is backward of ~q. Curves are the same as in Fig. 5.12.



125

Figure 5.24: Three dimensional diagrams of the the yield (upper left), the phase space
(upper right) in arbitrary units and the cross section (center) extracted with MCEEP
simulation for kinematics. 7.
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Figure 5.25: Three dimensional diagrams of the the yield (upper left), the phase space
(upper right) in arbitrary units and the cross section (center) extracted with MCEEP
simulation for kinematics 13.
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5.5 Effective momentum density distribution

Another way to compare the results of the experiment to the theoretical predictions is

the study of the effective momentum density distribution of the 3He(e, e′p)pn reaction.

The momentum density distribution is defined as the integral of the experimental dis-

torted spectral function over missing energy. It can be, therefore, calculated from the

cross section as follows:

η(pmiss) =

∫ Emax

Emin

d6σ
dEfdEpdΩedΩp

σep
dEmiss (5.11)

where
d6σ

dEfdEpdΩedΩp
= Kσcc1S(Emiss, Pmiss), (5.12)

The lower limit of the integral Emin was taken slightly below the 3He(e, e′p)pn

threshold; Emin = 7 MeV, and Ethr = 7.72 MeV, to include the data that, because

of resolution effects, appear just below the 3-body breakup threshold. The upper limit

of the integral, Emax was taken equal to the pion production threshold, Emax = 140

MeV.

The off-shell electron-proton cross section was extracted from the simulation at

exactly the same conditions as the experimental cross section. In fact, one has just to

run the simulation under the same conditions and the only difference is that for σep the

input spectral function is taken equal to unity, S(Pmiss,Emiss) = I. σep is given by:

σep =
d6σep

dEfdEpdΩedΩp
= Kσcc1I (5.13)

Figure 5.26 represents the cross section (in arbitrary units) for Pmiss = 470± 5 MeV/c

versus missing energy. This bin was taken from a data set in kinematics 10. The cor-

responding σep cross section is represented in Figure 5.27. By diving these two his-

tograms, Figure 5.28 results. The effective momentum density distribution is obtained

by integrating this histogram.
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Figure 5.26: Extracted 3He(e, e′p)pn cross section, in arbitrary units, for missing mo-
mentum bin Pmiss = 470± 5 MeV/c. Bin taken from kinematics 10.

Figure 5.27: The σep cross section obtained by the simulation for the same bin on Pmiss

at kinematics 10.

Figure 5.28: Ratio of the two previous histograms. The integral of this new histogram
leads to the effective momentum density distribution corresponding to this missing
momentum bin.



129

The momentum density distribution was extracted for Σ1 and Σ2 kinematics is are

presented in Fig. 5.29 and Fig. 5.30. These results will be discussed and compared to

the available theoretical calculations in the next chapter.
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Figure 5.29: Extracted (e, e′p) effective momentum density distribution for Σ1 kine-
matics.
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Figure 5.30: Extracted (e, e′p) effective momentum density distribution for Σ2 kine-
matics.
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5.6 Transverse-longitudinal asymmetry ATL

At the beam energy of 4.8 GeV, 3He(e,e′p) data was collected on both sides of ~q up to

Pmiss ∼ 650 MeV/c. This data was used for the extraction of ATL, defined as

ATL =
σ2 − σ1

σ2 + σ1
, (5.14)

where σ1 and σ2 are coplanar 3He(e,e′p)d or 3He(e,e′p)pn cross sections measured

backward and forward of ~q respectively.

In this section, the extraction of ATL at Ebeam = 4.8 GeV kinematic settings is

described.

For each (Pmiss,Emiss) bin selected both at Σ1 and Σ2 kinematic settings, a contour

cut imposed in (ω, |~q|) space restricted events to a common Q2 and ω region for both

forward and backward of ~q bin.

The statistical uncertainties on calculating ATL are propagated as

δATL =
2 ·

√

(σ2δσ1)2 + (σ1δσ2)2

(σ2 + σ1)2
, (5.15)

where δσ1 and δσ2 are standard deviations of σ1 and σ2.

In Fig. 5.31, three dimensional histograms of the Σ1 kinematics 7 and the Σ2

kinematics 8 cross sections are displayed. From these two histograms, the transverse-

longitudinal asymmetry ATL is extracted. The present the results, one can chose to

fix Pm and vary Em or fix Em and vary Pm. The first presentation was adopted, and

the results are compared to the available theoretical calculations. Some results are

presented in Sec. 6.4.
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Figure 5.31: Three dimensional histograms of the measured 3He(e, e′p)pn cross sec-
tion at kinematics 7 and 8, upper left and upper right, respectively. Three dimensional
histogram of the 3He(e, e′p)pn transverse-longitudinal asymmetry.
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5.7 Systematic uncertainties

A study of systematic uncertainties in the E89044 experiment was performed by M.

Rvachev [23] during his analysis of the reaction channel for perpendicular kinematics.

The most important part in the systematic uncertainties comes from the “normaliza-

tion” uncertainties, which propagate as a multiplicative correction to the extracted cross

sections and momentum density distribution. The transverse-longitudinal asymmetry,

ATL, is not subject to the overall normalization uncertainty, since this uncertainty can-

cels in the ratio. Other uncertainties exist as well.

5.7.1 Normalization uncertainties

The normalization uncertainties of the 3He(e,e′p) data (i.e. the procedure for determi-

nation of the integrated luminosities during the 3He(e,e′p)) are from different origins:

1. The uncertainty in the measured density of the 3He gas in the target.

2. The uncertainty in assuming the stability of the 3He density during changes in

the beam energy.

3. The uncertainty associated with the luminosity monitoring procedure.

The kinematic uncertainties were determined with the code "systerr" [55], written

by K. Fissum and P. Ulmer. This code works in conjunction with MCEEP. Table 5.7.1

summarizes the "kinematic uncertainties" for the elastic 3He(e,e) scattering setting with

Ebeam = 644 MeV and Q2 = 2.9 fm−2. The kinematic uncertainties are those due

to the sensitivity of the elastic 3He(e,e) cross section to Ei, φi, θi, φe and θe, and

uncertainties in these quantities.

Table 5.3 and 5.4 summarizes non-kinematic uncertainties associated with the 3He

density measurements. These uncertainties are added in quadrature with the kinematic

systematic uncertainty to yield the estimate of 2.9% for the total uncertainty in the

measured 3He density.
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Table 5.1: Kinematic systematic uncertainty averaged over acceptance in the 3He(e,e)
elastic measurements.

Quantity Sensitivity Uncertainty Uncertainty
Ei 1.1%/(10−3 rel.) 2 · 10−4 0.22%
φi 1.7 %/mr 0.1 mr 0.17%
θi 0.006%/mr 0.1 mr 0%
φe 1.7 %/mr 0.3 mr 0.51%
θe 0.005 %/mr 2 mr 0.01%

Sum in quadr. 0.6%

Table 5.2: Non-kinematic uncertainties associated with the 3He(e,e) elastic measure-
ments, and the total uncertainty of the measurements.

Quantity Uncertainty
Deadtime 1%

Solid angle 1%
Cut on target length 1.4%
Cut on elastic peak 0.2%

Stat. uncertainty 0.5%
3He form factor uncertainty 1.5%

Tracking efficiencies 0.5%
Radiative corrections 1%
Accum. beam charge 0.5%

Sum in quadr. %

Kinematic uncertainty 0.6%

Total kin+non-kin in quadr. 2.9%
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Table 5.3: Top part of the table: sensitivities of extracted 3He(e, e′p)pn cross sections
to uncertainties in kinematic parameters, averaged over acceptance. The fifth from
the last row gives kinematic uncertainties added in quadrature, assuming uncertainties
in the right column. The last row gives total systematic errors of the 3He(e, e′p)pn
measurements, for Σ1 kinematics.

Kinematic Kinematic setting Nominal
quantity 4 7 10 13 28 29 uncert.

Ei, %/(10−3 rel.) 11.7 6.1 2.4 7.5 1.9 1.7 2 · 10−4

φi, %/mr 4.1 1 1.4 0.01 2.4 2.7 0.1 mr
θi, %/mr 0.1 0.1 0.1 0.2 0.1 0.2 0.1 mr

Ee, %/(10−3 rel.) 9.9 5.2 1.6 5.9 1 0.8 5 · 10−4

φe, %/mr 0.1 1.1 2.1 2.1 2.8 3 0.3 mr
θe, %/mr 0.04 0.1 0.1 0.2 0.1 0.05 2 mr

Pp, %/(10−3 rel.) 0.4 0.02 0.005 0.04 0.1 0.2 1 · 10−3

φp, %/mr 3.8 2 0.6 2.1 0.4 0.3 0.3 mr
θp, %/mr 0.008 0.04 0.02 0.1 0.01 0.005 2 mr

Sum in quadr., % 5.6 3 1.2 3.5 1.1 1.1

Non-kin. error, % 3.4 3.4 3.4 3.4 3.4 3.4

Sum in quadr., % 6.6 4.5 3.6 4.9 3.6 3.6

Normal. error, % 2.9 2.9 2.9 2.9 2.9 2.9

Total error, % 7.2 5.4 4.6 5.7 4.6 4.6

5.7.2 Uncertainties in the 3He(e, e′p)pn analysis

Tables 5.3 and 5.4 summarizes the kinematic uncertainties for this thesis. The non

kinematic uncertainties are reported in Table 5.5.
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Table 5.4: Same as Table 5.3 for Σ2 and Σ3 kinematics.

Kinematic Kinematic setting Nominal
quantity 5 8 11 14 3 6 9 12 15 uncert.

Ei, %/(10−3 rel.) 13.6 3.6 3.3 1.7 1.2 1 1 0.6 1.4 2 · 10−4

φi, %/mr 11.2 5.7 6.7 5 0.7 3.2 1.3 0.2 1.3 0.1 mr
θi, %/mr 0.2 0.04 0.05 0.03 0.02 0.1 0.030.006 0.02 0.1 mr

Ee, %/(10−3 rel.) 13.5 3.8 4 2.2 0.01 0.7 0.2 0.1 0.1 5 · 10−4

φe, %/mr 6.3 3.9 4.9 3.6 0.2 1.1 0.7 0.4 0.9 0.3 mr
θe, %/mr 0.2 0.03 0.04 0.02 0.0080.020.010.0030.006 2 mr

Pp, %/(10−3 rel.) 1.2 0.3 0.1 0.1 1.9 0.7 0.2 0.03 0.01 1 · 10−3

φp, %/mr 4.9 1.6 1.9 1.2 1 4.3 2.1 0.6 2.1 0.3 mr
θp, %/mr 0.1 0.010.0070.005 0.02 0.1 0.040.009 0.02 2 mr

Sum in quadr., % 7.8 2.5 2.7 1.7 1.9 1.6 0.7 0.3 0.8

Non-kin. error, % 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

Sum in quadr., % 8.5 4.2 4.3 3.8 3.9 3.8 3.5 3.4 3.5

Normal. error, % 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

Total error, % 9.0 5.1 5.2 4.8 4.9 4.8 4.5 4.5 4.5

Table 5.5: Non-kinematic errors associated with the 3He(e, e′p)pn cross section mea-
surements.

Quantity Error
Deadtime 1%

Solid angle 2%
Cut on target length 1.4%

Subtraction of 2bbu Radiative tail. 2%
Transfer of 3He density 0.5%

Tracking efficiency 1%
Luminosity monit. stat. < 0.1%
Radiative corrections 2%

Sum in quadrature 4.02%
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Chapter 6

Results and Discussion

6.1 3He(e, e′p)d results

The 3He(e, e′p)d data analysis was part of the PhD. thesis of M. Rvachev [23, 48]. A

brief summary of the most important obtained results is given in this section.

The 3He(e, e′p)d cross section was extracted using the simulation program MCEEP

[39], taking into account the effects of internal and external radiation, particles’ en-

ergy loss, deviations from monochromaticity of the beam, and spectrometer resolu-

tions. Simulated event yields were adjusted separately varying the 3He(e, e′p)d and

3He(e, e′p)pn cross sections in the simulation, until the simulated yield was equal to

the detected yield in each (Em, Pm) kinematic bin [23]. Cross sections were extracted

from the re-weighted 3He(e, e′p)d yield, corrected for radiation, and for contributions

from 3He(e, e′p)pn to each 3He(e, e′p)d kinematic bin (on average, these contributions

were about 3%). Within each kinematic bin, the simulated 3He(e, e′p) cross section

was assumed to vary as the cc1 prescription of de Forest [19] for the off-shell electron-

proton cross section. This technique allows one to separate the Pm dependence of the

reaction from the rapid dependence on the electron kinematics [23]. In addition to the

over-all normalization uncertainty (3%, see above) the over-all systematic uncertainty

was 3.4%, dominated by uncertainties in the solid angle (2.0%), the selection (Em

cut) of the two-body break-up reaction channel (1.5%) and the knowledge of the target

length (1.4%).
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The extracted 3He(e, e′p)d cross section is plotted in Fig. 6.1 as a function of Pm.

We note that the range of Pm measured (resulting in measured cross-section magni-

tudes varying over six orders of magnitude), is significantly larger than in any other

previous measurement. Moreover, contrary to previous experiments [20], our mea-

surements over this entire range were performed at a fixed electron kinematics.

Also displayed in Fig. 6.1 are four theoretical curves by Laget. The Hannover cal-

culations by Laget use the Hannover bound-nucleon wave function [56] corresponding

to the solution to the three-body Faddeev equation with the Paris NN potential and

no three-body forces. The AV18+UIX curves are the same PWIA and full calcula-

tions respectively, but with a bound-state nuclear wave function derived by a varia-

tional technique using the Argonne V18 NN potential and the Urbana IX three-body

force [19]. All calculations use a diagrammatic approach. The kinematics as well as

the nucleon and meson propagators are relativistic, and no restricted angular (Glauber

type) approximation has been made in the various loop integrals. Details of the model

can be found in [57]. The PWIA curves include only one-body interactions, while the

full calculations include FSI, meson (π and ρ) exchange and intermediate ∆ formation

currents as well as three-body (three nucleon π double scattering) amplitudes. The

FSI in these calculations uses a global parameterization of the NN scattering ampli-

tude, obtained from experiments in LANL, SATURNE and COSY [58]. On this scale,

the differences between the calculations using the two ground-state wave functions are

very small. By far, FSI constitute the major difference between the full and PWIA

calculations. Meson exchange and intermediate ∆ current contributions are generally

small (up to 20-25%), and the three-body FSI contributions are negligible [58].

Three regions of Pm are observed in Fig. 6.1. For | ~Pm| below ∼150 MeV/c, where

the recoiling deuteron can be viewed as only marginally involved in the interaction,

the data are expected to be dominated by the single-proton characteristics of the 3He

wave function. As can be observed, both PWIA and full curves describe the data quite

well, and the difference between them is rather small. For | ~Pm| between 150 and 750
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MeV/c, the cross section is expected to be dominated by the dynamics of the reaction.

Indeed, very large contributions from dynamical effects are observed. While Laget’s

full calculations describe the data very well, the PWIA curve over- (under-) predicts

the data by up to an order of magnitude for | ~Pm| below (above) 300 MeV/c. This dif-

ference between the two curves is very much dominated by FSI. At xB=1, the on-shell

rescattering of the fast nucleon on a nucleon at rest is preferred and the contribution of

FSI is maximal. Because the NN scattering amplitude is almost purely absorptive in

the JLab energy range, the corresponding FSI amplitude interferes destructively with

the PWIA amplitude below, and constructively above Pm ∼300 MeV/c [57]. For Pm

larger than 750 MeV/c, Laget’s calculations grossly under-predict the measured cross

section by more than an order of magnitude. Whether it is a consequence of the trun-

cation of the diagrammatic expansion or a signature of other degrees of freedom is an

open question. The sensitivity of the data to the details of the wave function at low | ~Pm|

is shown in Fig. 6.2. In order to enhance the details, Fig. 6.2 displays the low | ~Pm| sub-

set of the data from Fig. 6.1 as a ratio to Laget’s full calculations using the Hannover

ground-state wave function. Also displayed are the ratios to the same calculation of

Laget’s full AV18+UIX and the two corresponding PWIA curves. As already noted, in

the low |~Pm| region, reaction effects such as FSI and two-body currents are relatively

small, and the curves are mainly sensitive to the details of the bound-nucleon wave

function. For Pm below 50 MeV/c, the calculations are purely co-planar perpendicu-

lar kinematics whereas experimentally, because of the large |~q|, it is difficult to avoid

contamination with parallel and out-of-plane components. For | ~Pm| > 50 MeV/c, we

observe that the best agreement with the data is of the full AV18+UIX curve. We sug-

gest that this better agreement with the data is related to the fact that the wave function

generated from the AV18+UIX potentials reproduces the correct 3He binding energy,

while the Hannover wave function that does not include three-body forces underbinds

the 3He by ∼ 0.7 MeV.

Thus the AV18+UIX wave function provides a generally better description of the
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3He nuclear structure.

The ATL asymmetry was extracted for 0 ≤ | ~Pm| ≤ 660 MeV/c according to

ATL =
σright − σleft
σright + σleft

, (6.1)

where σright and σleft are coplanar 3He(e, e′p)d cross sections measured right and left

of the transferred-momentum ~q direction. In the extraction of ATL, the phase-space

acceptances of kinematic bins on both sides of ~q were matched in Pm, ω, and |~q |.

The ATL observable downplays the significance of the ground-state wave function, by

virtue of the ratio involved in its definition [15] and there exist indications that it is sen-

sitive to relativistic effects [59] and to mechanisms that break the simple factorization

scheme of PWIA cross sections [60].

Figure 6.3 displays the extracted ATL data with the PWIA and full calculations by

Laget using the two ground-state wave functions described above. The difference in

the two ground-state wave functions has a very small effect in the full calculations. In

contrast to the PWIA calculations, the measured ATL displays a structure character-

istic of broken factorization [60]. Both of Laget’s full calculations describe the data

reasonably well by displaying similar structures. Such structure in ATL was previously

observed in the quasielastic removal of p-shell protons in the 16O(e, e′p) reaction [61],

and was well reproduced by relativistic distorted-wave impulse approximation calcula-

tions by Udias et al. [62]. In that case, broken factorization was attributed to dynamical

relativistic effects. However, these effects are marginal in our case because of the low

nuclear density of 3He [63]. Rather, in our case, the factorization is broken because of

the strong interference between the PWIA and re-scattering amplitudes [57].
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Figure 6.1: Measured 3He(e, e′p)d cross section as a function of the missing momen-
tum, Pm. Negative (positive) Pm correspond to protons detected left (right) of ~q. Also
displayed are two pairs of PWIA and full calculations by Laget. The two pairs differ
in the ground-state wave function. See text for details.
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Figure 6.2: Same data as in Fig. 6.1 for low Pm only, but shown as a ratio to Laget’s full
calculations using the Hannover ground-state wave function (gswf). Also shown are
the ratios to the full calculations that use the Hannover gswf of Laget’s full calculations
using the gswf generated from the AV18 NN potential and the Urbana IX three-nucleon
force, as well as the two corresponding PWIA curves. See text for details.
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Figure 6.3: The measured ATL asymmetry. The curves are the same four calculations
by Laget used in Figs. 6.1 and 6.2; by definition, the two PWIA curves are indistin-
guishable.
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6.2 3He(e, e′p)pn results and discussion

Results of the JLab Hall A quasielastic 3He(e, e′p)pn measurements are presented.

These measurements were performed at fixed transferred momentum and energy, q =

1.5 GeV/c and ω = 840 MeV, respectively, for missing momenta Pm up to 1 GeV/c

and missing energies 7.72 MeV≤Em≤ 140 MeV in the continuum region, up to pion

threshold [64, 65]; this kinematic coverage is much more extensive than that of any

previous experiment.

The cross section data are presented along with the effective momentum density

distribution and compared to existing theoretical models. The simplest calculation is

a PWIA calculation using Salme’s spectral function [49] and the σcc1 electron-proton

off-shell cross section [19]. Also results of microscopic calculations of the continuum

cross section by J. M. Laget [66], including a plane-wave impulse approximation, and

successive implementation of various interaction effects are provided.

6.2.1 Cross section results

Some of the continuum 3He(e, e′p)pn cross section results [64,65] extracted in this

work are presented in Figs. 6.4 to 6.7. The corresponding tabulated values are given in

the end of this chapter. The results are compared to the available theoretical models.

The energy scale in the horizontal axis has been shifted in these plots so that the 3bbu

channel starts at 0.
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Figure 6.4: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momenta Pm = 270±10 MeV/c (upper plot) and Pm = 335±5 MeV/c
(lower plot). The siginficance of the arrow will be given in Sec. 6.2.2.
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Figure 6.5: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momenta Pm = 440±5 MeV/c (upper plot) and Pm = 550±5 MeV/c
(lower plot). Curves are the same as in Fig. 6.4.
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Figure 6.6: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momenta Pm = 620±5 MeV/c (upper plot) and Pm = 750±5 MeV/c
(lower plot). Curves are the same as in Fig. 6.4.
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Figure 6.7: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momenta Pm = 820±10 MeV/c (upper plot) and Pm = 720±10 MeV/c
(lower plot). Curves are the same as in Fig. 6.4.

.
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Figure 6.8: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momentum Pm = 1025±25 MeV/c. Curves are the same as in Fig. 6.4.

.
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Figure 6.9: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momentum Pm = 330±10 MeV/c from the Σ2 kinematics 8.Curves are
the same as in Fig. 6.4.

Figure 6.10: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em for missing momentum Pm = 330±25 MeV/c from the Σ3 kinematics 9. The black
curve presents a PWIA calculation using Salme’s spectral function and σcc1 electron-
proton off-shell cross section.
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6.2.2 Theoretical interpretation

Figure 6.11 represents a unified picture of the cross-section results for the 3He(e, e′p)pn

reaction versus missing energyEm when going from lower to higher values in Pm. Fig-

ures from Fig. 6.4 to 6.7 are reproduced in the same picture.

As Pm increases, we can see that the broad peak in the cross section moves to

higher missing energies. The arrow in the figure indicates where one would expect the

peak in the cross section due to the photon coupling to a nucleon in a correlated pair

at rest inside the 3He nucleus; the expected peak position for Pm = 820 MeV/c is just

off scale, at Em ≈ 145 MeV. The close correspondence of the peak in the data with

the arrow indicates the importance of two-nucleon processes such as correlations. The

peak width reflects the motion of the center of mass of the correlated pair.

Several calculations are presented in Fig. 6.11. The simplest calculation is a PWIA

calculation using Salme’s spectral function [49] and the σcc1 electron-proton off-shell

cross section [19]. Also shown in Fig. 6.11 are the results of microscopic calculations

of the continuum cross section by J. M. Laget [66], including a plane-wave impulse

approximation, and successive implementation of various interaction effects. contribu-

tions. The calculation is based on a diagrammatic expansion of the reaction amplitude,

up to and including two loops [67]. Both single and double NN scattering, as well as

meson exchange and ∆ formation are included. The bound-state wave function is a

solution of the Faddeev equation used by the Hannover group [68] for the Paris poten-

tial [69]. Details of the model can be found in [57]. The kinematics are relativistic, nu-

cleon and meson propagators are relativistic and no angular approximations (Glauber)

have been made in the various loop integrals. At low energies, below NN relative

kinetic energy of about 500 MeV, the NN amplitude is the solution of the Lippman-

Schwinger equation for the Paris potential. In our experiment, the NN relative kinetic

energy is higher (TNN = 840 MeV) and the absorptive part of the interaction dominates

the NN scattering amplitude - the implementation is explained in [58].
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Figure 6.11: Cross-section results for the 3He(e, e′p)pn reaction versus missing energy
Em. The vertical arrow gives the peak position expected for disintegration of correlated
pairs. The dotted curve presents a PWIA calculation using Salme’s spectral function
and σcc1 electron-proton off-shell cross section. Other curves are recent theoretical
predictions of J. M. Laget from the PWIA (dash dot) to PWIA + FSI (long dash) to
full calculation (solid), including meson exchange current and final state interactions.
In the 620 MeV/c panel, the additional short dash curve is a calculation with PWIA +
FSI only within the correlated pair.
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We can see from the figure that the cross sections, especially at large Pm, are

strongly enhanced by final-state interactions. FSI between the two active nucleons -

see Fig. 1.6b - increase the cross section by a factor of about four. While rescattering

between one nucleon in the correlated pair and the third nucleon - see Fig. 1.6c - might

be expected to modify the shape of the distribution, the effects are slight; this is indi-

cated by the additional calculation included in the 620 MeV/c panel of Fig. 6.11, in

which FSI with the spectator nucleon are turned off. Neither the shape nor magnitude

of the peak is much affected. MEC effects are small (around 15%).

6.3 Effective momentum density distribution results

Figure 6.12 shows the effective momentum density distribution, obtained by inte-

grating the theory and cross-section data, such as those shown in Fig. 6.11, over missing

energy from threshold to 140 MeV, as discussed above - see Eq. 1.11. Uncertainties

from missing tails of the 3bbu peak, within this integration range, due to limited exper-

imental acceptance are negligible on the scale of Fig. 6.12. The 3bbu distribution is not

the same shape as the 2bbu distribution from [48]. The 3bbu distribution tends to have

a much larger relative strength for high missing momentum, suggesting an important

role for correlations.

The relative importance of the underlying processes can be investigated within the-

ories. The PWIA curve includes conventional correlations in the 3He wave function but

not final state interactions. Since the PWIA calculations show an order of magnitude

enhancement of the 3bbu over the 2bbu at high missing momentum, we can infer that

the relative enhancement of the 3bbu is largely from correlations. Here, the two-body

correlations are more clearly seen in 3bbu than in the 2bbu, where the available phase

space is reduced since two nucleons are forced to form the deuteron. The differences

between the PWIA calculations and the data and full calculations further indicate the
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Figure 6.12: Proton effective momentum density distributions in 3He extracted from
3He(e, e′p)pn (filled black circles) and 3He(e, e′p)d (open black triangles), compared
to calculations from Laget. The 3bbu integration covers EM from threshold to 140
MeV.
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greater importance of final-state interactions in the 3bbu. The generally good agree-

ment of the full calculations shown in Figs. 6.11 and 6.12 indicates that, at this level of

comparison, there is no need for correlations beyond those already present in a modern

conventional nuclear physics model.

The conclusions described above might appear to be no longer valid for Pm ≈ 1

GeV/c. Here the 2bbu distribution flattens out, while the 3bbu distribution continues

to fall. This behavior is contrary to what one would expect from the importance of

correlations. At these very high Pm, however, one has to be careful about drawing

conclusions.
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Figure 6.13: Diagrammatic approach of J. M. Laget. Figure from J. M. Laget.
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The center of the 3bbu correlation peak moves past Em = 140 MeV, outside of the

integration range and into the pion production region, at Pm ≈ 800 MeV/c, as shown

in Fig. 6.11. Thus, the experimental integration is only including a fraction of the

3bbu strength at large Pm, leading to the apparent narrowing of the gap between the

2bbu and 3bbu. Thus, a correction is needed for a more meaningful comparison of

3bbu to 2bbu at large Pm We have estimated the fraction of the strength missed by our

experimental integration by calculating what fraction of the total strength of the Laget

full calculation lies in the region Em < 140 MeV. This is only a crude estimate, since a

close examination of Fig. 6.11 shows that the calculation has a tendency to underpredict

the cross section for the low Em tail of the correlation peak. The estimated correction

factors for the missing 3bbu strength are about 1.05, 2, and 20 for Pm = 600, 800,

and 1000 MeV/c, respectively. Applying the correction to the 3bbu would cause the

distribution to roughly flatten out, starting near 750 MeV/c, at a level nearly two orders

of magnitude greater than that of the 2bbu. These observed correction factors also lead

to our stopping the calculation at 1 GeV/c; the comparison between data and theory

is no longer meaningful when only a small fraction of the tail of the distribution is

considered. Given these data along with the theoretical calculations, it remains fair

to conclude that the correlations in the wave function preferentially lead to the 3bbu

channel, and that the reaction mechanism is reasonably well understood in a modern,

conventional nuclear physics model.

6.4 Transverse-longitudinal asymmetry results

Details of the extraction of the transverse-longitudinal asymmetry ATL for the three-

body reaction are given in Sec. 5.6. The asymmetry ATL is obtained by combining the

cross sections from both sides of the momentum transfer as in Eq. 5.14. Figure 6.14

shows cross section results for kinematics 7 (Σ1) and kinematics 8 (Σ2) for a missing

energy bin Pm = 330 MeV/c. The resulting ATL asymmetry is shown in Fig. 6.15 and
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the data is compared to the predictions of J. M. Laget and the PWIA using Salme’s

spectral function and σcc1 electron-proton off-shell cross section; details of the models

are given in Sec. 6.2.2. In this figure, the full calculation of J. M. Laget (PWIA + FSI +

MEC) is 4 times higher than the plane wave predictions, and the disagreement with the

data can be explained with the symmetry breaking due mostly to final state interaction.

This behavior was also observed in the transverse-longitudinal asymmetry in the case

of the two-body break-up channel around Pm = 330 MeV/c as shown in Fig. 6.3.

Cross section results for kinematics 10 (Σ1) and kinematics 11 (Σ1) are presented

in Fig. 6.16 for missing momentum bin Pm = 440 MeV/c. The resulting ATL is pre-

sented in Fig. 6.17. This time, only Salme’s theoretical calculations along with the

σcc1 electron proton off-shell cross section is available. The predictions of the PWIA

calculation are lower than the experimental results. This was also observed in Fig. 6.3

in the case of 3He(e, e′p)d reaction.
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Figure 6.14: Comparison of the cross section for kinematics 8 and kinematics 7 for
missing energy bin Pmiss = 330± 5 MeV/c.

Figure 6.15: ATL Asymmetry extracted at the missing energy bin Pmiss = 330± 5
MeV/c from kinematics 7 and kinematics 8.
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Figure 6.16: Comparison of the cross section for kin8 and kin7 for missing energy bin
Pmiss = 440± 10 MeV/c.

Figure 6.17: ATL Asymmetry extracted at the missing energy bin Pmiss = 440± 10
MeV/c from kinematics 10 and kinematics 11.
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6.5 Tabulated results

6.5.1 Cross sections tables

Table 6.1: 3He(e,e′p)pn cross section results for Pm=270 MeV/c (kin7).

Em(MeV) Cross Section Stat-uncer uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 27.172 1.162 4.29
17.28 25.677 0.662 4.59
27.28 18.912 1.259 6.06
37.28 11.622 0.922 7.98
47.28 6.728 0.818 12.19
57.28 4.191 0.880 21.82
67.28 2.449 1.414 57.73

Table 6.2: 3He(e,e′p)pn cross section results for Pm = 340 MeV/c (kin7).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 15.627 0.873 5.58
17.28 16.043 0.785 4.89
27.28 15.096 0.662 4.38
37.28 12.353 0.588 4.76
47.28 9.1242 0.503 5.51
57.28 5.9756 0.387 6.48
67.28 3.5692 0.266 7.44
77.28 2.0346 0.190 9.36
87.28 1.3436 0.146 10.88
97.28 1.1670 0.159 13.64

107.28 1.061 0.201 18.98
117.28 0.359 0.118 33.01
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Table 6.3: 3He(e,e′p)pn cross section results for Pm = 440 MeV/c (kin10).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 5.5349 0.352 6.36
17.28 7.3109 0.437 5.98
27.28 8.6608 0.488 5.64
37.28 9.7827 0.574 5.87
47.28 9.4637 0.705 7.45
57.28 7.704 0.719 9.33
67.28 5.298 0.783 14.75
77.28 3.770 0.969 25.67

Table 6.4: 3He(e,e′p)pn cross section results for Pm = 620 MeV/c (kin10).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 0.646 0.421 65.17
17.28 1.032 0.411 39.80
27.28 1.002 0.140 14.01
37.28 1.298 0.130 9.87
47.28 1.836 0.156 8.66
57.28 2.459 0.176 7.51
67.28 3.075 0.201 6.64
77.28 3.510 0.223 6.36
87.28 3.663 0.260 7.10
97.28 3.3369 0.260 8.14

107.28 2.803 0.301 10.54
117.28 2.024 0.302 15.37
127.28 1.474 0.410 24.42
137.28 1.146 0.720 50.00
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Table 6.5: 3He(e,e′p)pn cross section results for Pm = 740 MeV/c (kin28).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 0.1088 0.037 34.12
17.28 0.1366 0.039 28.61
27.28 0.2343 0.067 28.44
37.28 0.3803 0.092 24.13
47.28 0.5455 0.094 17.17
57.28 0.6804 0.136 19.94
67.28 0.7517 0.154 20.52
77.28 0.7629 0.203 26.56
87.28 0.7464 0.275 36.80
97.28 0.6182 0.317 51.34

Table 6.6: 3He(e,e′p)pn cross section results for Pm = 800 MeV/c (kin28).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)
7.28 0.06183 0.0309 50.00

17.28 0.15335 0.0803 52.36
27.28 0.16091 0.0519 32.30
37.28 0.19096 0.0552 28.89
47.28 0.25493 0.0549 21.54
57.28 0.34342 0.0828 24.13
67.28 0.44931 0.0818 18.22
77.28 0.56160 0.0945 16.82
87.28 0.66885 0.1103 16.49
97.28 0.76689 0.1266 16.50

107.28 0.8288 0.1359 16.40
117.28 0.8067 0.1602 19.86
127.28 0.6880 0.4614 67.06
137.28 0.5426 0.3837 70.71
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Table 6.7: 3He(e,e′p)pn cross section results for Pm = 840 MeV/c (kin28).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

27.28 0.02808 0.0118 42.30
37.28 0.11594 0.0432 37.31
47.28 0.22264 0.0543 24.42
57.28 0.29546 0.0716 24.26
67.28 0.35195 0.0758 21.54
77.28 0.40205 0.0777 19.33
87.28 0.46864 0.0799 17.06
97.28 0.54557 0.0817 14.99

107.28 0.63366 0.1037 16.37
117.28 0.72303 0.1186 16.41
127.28 0.72124 0.1374 19.05
137.28 0.65185 0.186 28.66
147.28 0.50989 0.4026 78.96

Table 6.8: 3He(e,e′p)pn cross section results for Pm = 900 MeV/c (kin28).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

67.28 0.02267 0.02023 89.27
77.28 0.24475 0.09391 38.37
87.28 0.25642 0.07119 27.76
97.28 0.31666 0.11071 34.96

107.28 0.39658 0.09573 24.14
117.28 0.47965 0.10845 22.61
127.28 0.48878 0.08730 17.86
137.28 0.44982 0.09078 20.18
147.28 0.37756 0.09271 24.56
157.28 0.26686 0.13024 48.80
167.28 0.10528 0.07445 70.71
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Table 6.9: 3He(e,e′p)pn cross section results for Pm = 900 MeV/c (kin28).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

77.28 0.02594 0.0155 59.82
87.28 0.02939 0.0232 78.95
97.28 0.03172 0.0112 35.35

107.28 0.03889 0.0199 51.34
117.28 0.04412 0.0136 31.04
127.28 0.04294 0.0132 30.74
137.28 0.04101 0.0124 30.18
147.28 0.03695 0.0168 45.68
157.28 0.03265 0.0364 111.66
167.28 0.02348 0.0235 100.

Table 6.10: 3He(e, e′p)pn cross section results for Pm = 290 MeV/c (kin9).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 0.85703 0.1370 15.98
17.28 0.83450 1.040E-01 12.47
27.28 0.68986 9.805E-02 14.21
37.28 0.52103 8.268E-02 15.87
47.28 0.40168 8.566E-02 21.33
57.28 0.30443 7.514E-02 24.68
67.28 0.26653 0.15048 56.46

Table 6.11: 3He(e, e′p)pn cross section results for Pm = 330 MeV/c (kin9).

Em Cross Section Stat-uncer Rel. uncer
(MeV) pb/(MeV2sr2)10−2 pb/(MeV2sr2)10−2 (%)

7.28 0.7263 1.015E-01 13.99
17.28 0.7907 0.10502 13.28
27.28 0.7356 1.393E-01 13.65
37.28 0.6766 9.174E-02 15.20
47.28 0.4655 8.341E-02 17.92
57.28 0.3537 9.192E-02 25.98
67.28 0.3063 0.1293 42.21
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6.5.2 Momentum density distribution tables

Table 6.12: 3He(e,e′p)pn effective momentum density distribution (kin29).

Pm Density Total uncer RelEr(extra) RelEr(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

975. 2.5396E-05 8.2274E-06 0.144 0.272 32.3
1025. 1.7472E-05 5.4984E-06 0.14 0.262 31.4
1075. 9.5250E-06 2.8642E-06 0.137 0.248 30.0
1125. 5.2697E-06 1.5308E-06 0.134 0.23 29.0

Table 6.13: 3He(e,e′p)pn effective momentum density distribution (kin4).

Pm Density Total uncer RelEr(extra) RelEr(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

120. 0.08370 0.840 0. 0.9597 10.04
140. 0.04851 0.486 0. 0.8250 10.03
160. 0.02914 0.292 0. 0.8181 10.03
180. 0.01848 0.185 0. 0.8639 10.04
200. 0.01161 0.116 0. 0.9764 10.04
220. 0.77703 0.078 0. 1.1399 10.06
240. 0.59092 0.059 0. 1.3812 10.09
260. 0.56649 0.057 0. 1.7821 10.16
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Table 6.14: 3He(e,e′p)pn effective momentum density distribution (kin13)

Pm Density Total uncer Rel(extra) Rel(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

240. 0.76676 0.0784 0. 2.272943 10.25
260. 0.43613 0.0443 0. 1.881895 10.17
280. 0.32436 0.0328 0. 1.648834 10.13
300. 0.25970 0.0262 0. 1.521616 10.11
320. 0.25888 0.0261 0. 1.398355 10.09
340. 0.24137 0.0243 0. 1.351334 10.09
360. 0.23390 0.0236 0. 1.363116 10.09
380. 0.25139 0.0254 0. 1.470393 10.10
400. 0.22596 0.0229 0. 1.673365 10.14

Table 6.15: 3He(e,e′p)pn effective momentum density distribution (kin10).

Pm Density Total uncer Rel(extra) Rel(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

370. 0.147028 0.0423 26.5882 3.0134 27.22
390. 0.183159 0.030437 15.6940 2.2047 16.61
410. 0.178076 0.015850 7.12913 1.8441 8.98
430. 0.149241 0.011299 5.44246 1.6430 7.57
450. 0.140313 0.011813 6.59901 1.5297 8.42
470. 0.128313 8.852E-05 4.4997 1.5329 6.89
490. 0.119861 6.278E-05 0. 1.5625 5.24
510. 0.109239 5.755E-05 0. 1.6598 5.27
530. 0.104896 5.597E-05 0. 1.8631 5.33
550. 0.095623 5.202E-05 0. 2.1449 5.44
570. 0.104495 5.919E-05 0. 2.6624 5.66
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Table 6.16: 3He(e,e′p)pn effective momentum density distribution (kin13).

Pm Density Total uncer Rel(Extra) Rel(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

490. 0.0624 6.5740E-05 8.44 3.83 10.53
510. 0.0836 0.01389 15.57 2.91 16.61
530. 0.0906 0.01751 18.50 2.35 19.31
550. 0.0774 5.1774E-05 3.92 2.08 6.68
570. 0.0578 3.7129E-05 3.54 1.90 6.42
590. 0.0571 3.0433E-05 0. 1.82 5.33
610. 0.0525 2.7946E-05 0. 1.79 5.31
630. 0.0435 2.3274E-05 0. 1.88 5.34
650. 0.0405 2.1779E-05 0. 1.95 5.37
670. 0.0334 1.8121E-05 0. 2.10 5.42
690. 0.0266 1.4912E-05 0. 2.50 5.59

Table 6.17: 3He(e,e′p)pn effective momentum density distribution (kin28).

Pm Density Total uncer Rel(extra) Rel(Stat) Rel(total)
(MeV/c) (fm−3) (fm−3) (%) (%) (%)

740. 0.01383 4.092E-05 26.40 8.70 29
760. 0.01131 3.463E-05 27.70 8.04 31
770. 0.01298 1.755E-05 5.40 7.259 13
800. 0.01118 1.597E-05 7.70 6.601 14
820. 0.01114 1.326E-05 0. 6.466 12
840. 9.21E-05 1.107E-05 0. 6.659 12
860. 8.70E-05 1.055E-05 0. 6.846 12
880. 6.57E-05 8.247E-06 0. 7.576 12
900. 5.47E-05 7.2658E-06 0. 8.745 13
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6.5.3 Transverse-longitudinal asymmetry tables

Table 6.18: ATL Asymmetry table for Pm = 440 ± 5 MeV/c.

Em(MeV) Cs(Kin10) erCs(Kin10) Cs(Kin11) erCs(Kin11) ATL eATL

7.28 4.9799 0.264 1.916 0.585 -0.4441 2.84E-02
17.28 7.4089 0.343 4.125 1.123 -0.2847 8.67E-03
27.28 8.4751 0.366 6.744 0.924 -0.1137 1.17E-03
37.28 9.0853 0.371 8.093 0.934 -5.773E-02 4.30E-04
47.28 8.9448 0.374 8.486 1.194 -2.630E-02 2.26E-04
57.28 7.7459 0.373 7.663 0.885 -5.352E-03 4.36E-05
67.28 5.7339 0.348 6.045 0.959 2.647E-02 3.74E-04
77.28 3.8284 0.336 4.266 0.770 5.405E-02 1.29E-03
87.28 3.2390 0.486 2.741 0.761 -8.328E-02 4.61E-03
97.28 6.6779 1.470 1.945 0.665 -0.5488 3.43E-02

Table 6.19: ATL Asymmetry table for Pm = 330 ± 5 MeV/c.

Em(MeV) Cs(Kin7) erCs(Kin7) Cs(Kin8) erCs(Kin8) ATL eATL

7.28 15.586 0.872 19.791 1.950 0.1188 2.91E-02
17.28 16.256 0.785 13.356 1.423 -9.790E-02 3.86E-02
27.28 15.124 0.661 15.369 2.342 8.044E-03 3.98E-03
37.28 12.539 0.588 14.839 3.048 8.403E-02 5.77E-02
47.28 9.1723 0.503 11.067 4.060 9.364E-02 0.1538
57.28 6.0857 0.387 6.7686 3.547 5.312E-02 0.2050
67.28 3.5622 0.265 3.2512 1.441 -4.564E-02 0.3106
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Chapter 7

Summary and Conclusion

In the introduction of this thesis, we defined the goal to be the investigation of nucleon-

nucleon correlations in the 3He nucleus, using the 3He(e,e′p)pn reaction. There are

several advantages of 3He for this study:

• 3He has been the subject of study of numerous theoretical groups, and it is now

viewed that, starting from the nucleon-nucleon force (plus a three-body force)

the structure of 3He can be predicted essentially as reliably as the structure of the

deuteron.

• The deuteron lacks the three-body forced present in 3He as well as the correlation

peak in the continuum region.

• Heavier nuclei cannot be predicted as reliably as 3He, and the correlation peak

in the continuum is obscured by many-body effects.

The experimental measurements were very successful. We used the Jefferson Lab

Hall A high-resolution spectrometers with a high-luminosity cryogenic 3He target, and

an intense high-energy, continuous-wave beam. We presented in this thesis a com-

prehensive set of cross sections at a single four momentum transfer, Q2 = 1.55 GeV2,

in kinematics corresponding to being nearly on top of the quasifree peak. The data

covered missing energies up to pion production threshold, and missing momenta up to

over 1 GeV/c; this data set is much more extensive than any previous data set on 3He,

and superior to measurements on other nuclei as well.
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In the data, the correlation peak was easily observed, and its center was seen to

vary with missing momentum as predicted by the simple plane-wave impulse approxi-

mation and spectator nucleon model. In the theoretical work of J.M. Laget, this arises

because the final-state interactions between the two correlated nucleons do not shift the

peak, and other reaction mechanism effects are small – interactions with the spectator

nucleon, isobars, and meson exchange currents.

By integrating the total strength of the continuum from breakup to pion production

threshold, we could make a simple and direct comparison of the relative strengths of

two and three body breakup of 3He. We found that the ratio of strengths, of 2bbu to

3bbu, was in general a rapidly decreasing function of pm. At low pm, below about 100

MeV/c, the 2bbu strength is about 100 times that of the 3bbu. The strengths become

equal at about 200 MeV/c, near the Fermi momentum. Above 500 MeV/c, the 3bbu

strength is nearly 100 times that of the 2bbu.

The picture, based again on Laget’s work, is as follows. At some points in time

the three nucleons all have relatively low momenta, below a few hundred MeV/c. If a

photon is then absorbed on one proton, it is ejected, and the other two nucleons have

low relative momenta and are likely to form a deuteron.

At other points in time, two nucleons have come close together, and now have high

relative momenta, indicating a short-range correlation. Now if a high momentum pro-

ton is struck, the remaining two nucleons have high relative momenta, and are unlikely

to form a deuteron, so the continuum, 3bbu, final state results.

We saw that Laget’s calculations (and preliminary work from other theorists, that

is appearing too late to include in this work) reproduce both the 2bbu and 3bbu well up

to nearly 1 GeV/c. An important ingredient in this work was the inclusion of both cor-

relations and final-state interactions. Without correlations, the high-momentum tail of

the nuclear wave function and the resulting cross sections are reduced orders of magni-

tude. The final-state interactions also increase the cross section by a factor of several.

This large contribution indicates that one likely cannot make precise statements about
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the magnitude of the two separate effects. It is likely that as more calculations are

done, using slightly different but equally good effective nuclear interactions, we will

find strength redistributed between these two large, and the other smaller, pieces of

physics.

Since Laget’s theory works well, there is no need to invoke quark effects to under-

stand the measurements. Near 1 GeV/c, however, the agreement begins to break down.

In the these we argued first that the apparent convergence in the data is likely an artifact

of the kinematic coverage. If pion production were small, and we measured the entire

continuum strength, which is largely above pion production threshold at large pmiss,

we believe we would find the ratio of 3bbu to 2bbu to be about constant and about 100.

This is based on a simple estimate, so it is a likely scenario, but it is of course unprov-

able. As regards the theory, it is very possible that added terms in the diagrammatic

expansion can improve the agreement with the data.

Finally, we presented some results for the asymmetry in the cross sections for pro-

tons going forward vs. backward of the photon direction, ATL. The data show near

0 asymmetry, very different from plane wave predictions of a large asymmetry. Final

state interactions move the prediction towards 0, and account for most of the difference.

Thus there is good qualitative success.

A very brief recapitulation is as follows:

• We have made the most extensive measurements to date of the continuum region

in 3He(e,e′p)pn.

• A modern theory provides an excellent description of the cross sections over a

wide range, and a good qualitative explanation of the asymmetry ATL.

• The success of the hadronic theory indicates that one does not need to invoke

quark degrees of freedom to understand the data.
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Appendix A

Theoretical Review

A.1 Ground state wave function for the three-nucleon system

The wave function is a solution of the non-relativistic Schrodinger equation H |ψ >=

E |ψ >. To calculate this wave function we need a potential and a solution method.

Variational method and the resolution of the Faddeev equation are the two most fre-

quently used methods. The Hamiltonian is given by:

H = H0 +
1

2

∑

Vij +Wijk. (A.1)

Here, H0 =
∑

Ti is the three nucleon kinetic energy Hamiltonian. Vij represents

the interaction of two nucleons described by a nucleon-nucleon potential. Wij is the

three nucleon interaction term which represents the three body forces.

A.1.1 Choice of a frame and Jacobi coordinates

In a non-relativistic theory, a system of three particles, each of spin 1/2 and isospin

1/2, can be represented by the normalized states: |k1k2k3, σ1σ2σ3, τ1τ2τ3〉 where ki, σi

and τi are the momentum, the spin and the isospin of the particle i, respectively. The

kinetic energy of this three-nucleon state is:

E0 =
∑

i

k2
i

2Mi

. (A.2)

The three nucleons are considered to have the same mass. In the center of mass
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frame is the most adequate for the description of the intrinsic quantities of the three-

nucleon system. We can separate the kinetic energy of this system into a part describing

the center of mass and into a relative part (taking into account the movement of the

nucleons in the center of mass frame), using Jacobi’s coordinates:

pi =
1

2

(

1

Mn

)2

(kj − kk), qi =
1

6

(

3

Mn

)2

(kj + kk − 2ki) (A.3)

The kinetic energy is then given by: E0 = 1
6Mn

+ K2 + p2 + q2,

where K =
∑

i ki.

If |ψ1〉 is the wave function in the base |p1 q1〉, the antisymmetrized wave function

is obtained by the permutation of the nucleons:

|ψA〉 =
1√
3
(1 + ε123 + ε321)|ψ1〉 (A.4)

where εijk is the circular permutation operator (ijk) → (jki).

The wave function of the system A can be found in any other frame from it’s ex-

pression in the center of mass frame plus a plane wave representing the motion of the

center of mass.

A.1.2 Faddeev Equations

Faddeev equations allow the calculation of the wave function of a bound state of a three

nucleon NNN system, as well as the wave function of a scattering state NNN → Nd.

For a three-nucleon system (1, 2, 3), Faddeev equations are given by [71]:

T k(z) = tk + tkG0(z)
∑

m6=k

Tm(z) (A.5)

where tk is the transition operator of the pair k. z = E + i ε and G0(z) = 1
z−H0

is the

Green’s function of the three free nucleons.
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The wave function of the three-nucleon bound state can be expressed as the sum of

"Feddeev amplitudes": |ψ〉 =
∑3

i=1 |ψi〉, solutions of the the coupled homogeneous

equations:

|ψ〉 = G0(z)T
i(z)

3
∑

i6=k

|ψi〉 (A.6)

where T i(z) are the three components of the scattering operator T defined by the inte-

gral equation A.5.

In the case where the three particles have equal masses, the amplitudes |ψi〉 are

formally identical: |ψi(p1, q1〉≡ |ψ2(p2, q2)〉 ≡ |ψ3(p3, q3)〉. Knowing one of them is

enough for the determination of |ψi〉.

A.1.3 Variational Method

The variational method allows the calculation of the three-nucleon system wave func-

tion, by using the Ritz variational principle which stipulates that the ratio 〈ψ|H|ψ〉
〈ψ|ψ〉

, where

ψ is a trial function, is minimal for the ground state.

A.1.4 Nucleon-Nucleon Potential

Nucleon-Nucleon potential includes the following:

• a local interaction, generally expressed as:

vlocij (~r, ~σ, ~τ) = v0(~r, ~τ) + vσ(~r, ~τ)~σi · ~σj + vτ (~r, ~τ)Sij (A.7)

where ~σ is the spin, ~τ the isospin, ~L the orbital momentum, and ~S the total spin.

The two quantities v0 and vσ which commute with ~L, L2, ~S and S2, form the

central part of the of the interaction. The quantity vτ , which commutes only

with S2, represents the tensor interaction.

• a non local interaction, expressed as:
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vnlocij = vlocij + vso~L · ~S. (A.8)

Paris Potential [69] (fr the Faddeev equations), Argonne Potential (for the varia-

tional method) and Urbana potential are the most frequently used. These three poten-

tials describe the nucleon-nucleon interaction in terms of meson exchange. The long

range part (r≥ 2 fm) is dominated by the one pion exchange process (OPEP).

vOPEP = c~τi · ~τj
[

~σi · ~σj + Sij

(

1 +
3

rmπ
+

3

(rmπ)2

)]

e−rmπ

rmπ
(A.9)

where Sij = 3
r2

(~σi · ~r)(~σj · ~r) − ~σi · ~σj generates the D state components of the

wave function.

Paris Potential

The Paris potential is a non-local potential of type VI.8, including a quadratic spin-orbit

term
(

L̃ · S̃
)2

. In this potential, two meson exchange describes the medium range of

the interaction (0.8 ≤ r≤ 2 fm). The calculation of this range was performed from πN

and ππ interactions. The short range part (r ≤ 0.8fm) is described by a “soft core”

adjusted phenomenologically.

The Argonne-Urbana Potential is used by Schiavilla et at., [72] for the two-body

potentials of Argonne [73] or [18] for the calculation of the two body wave function.
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Appendix B

Trigger electronics block diagrams
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Appendix C

Analysis codes

C.1 Acceptance definition with R-functions

The following is the definition of the "cut function" f1 constructed with the R-function

technique. The cut on the cut function f1, together with the cut on the reaction point

along the beam and the cut on the reconstructed out-of-plane angle, restricted coinci-

dence events to a flat acceptance region of both spectrometers. Below, f1 is defined as

a PAW function. This definition was used in restricting experimentally reconstructed

events to the flat acceptance region. An equivalent definition was coded into the simu-

lation code MCEEP and was used to restrict simulated events to an identical acceptance

region.

REAL FUNCTION rfcut()

include ?

REAL F1,F2

REAL sp_cut

F1=sp_cut(y_tgth,ph_tgth,th_tgth,dph)

F2=sp_cut(y_tgte,ph_tgte,th_tgte,dpe)

rfcut=PROD(F1,F2)

END

* Definition of cut on one spectrometer

REAL FUNCTION sp_cut(y_tgth,ph_tgth,th_tgth,dph)
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REAL C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,PROD

REAL D1,D2,D3,D4,D5

REAL E1,E2

REAL y_tgth,ph_tgth,th_tgth,dph

* Definition of hyperplanes forming initial domain

C1=-0.0137*ph_tgth+0.0502-th_tgth

C2=0.0502+th_tgth

C3=-0.136*y_tgth+0.02518-0.991*ph_tgth

C4=y_tgth*0.136+0.02518+0.991*ph_tgth

C5=-0.975*dph+0.0396-0.220*th_tgth

C6=dph+0.0409+0.068*th_tgth

C9=-0.421*dph-0.907*th_tgth+0.0561

C7=-dph*0.1776+0.984*ph_tgth+0.0237

C8=-dph*0.1738+0.0236-0.985*ph_tgth

C10=0.319* y_tgth-0.948*ph_tgth+0.0336

C11=-0.319*y_tgth+0.948*ph_tgth+0.0336

* Pairwise products of hyperplane functions

D1=PROD(C1,C2)

D2=PROD(C3,C4)

D3=PROD(C5,C6)

D3=PROD(C9,D3)

D4=PROD(C7,C8)

D5=PROD(C10,C11)

E1=PROD(D1,D2)

E2=PROD(D3,D4)

E2=PROD(E2,D5)
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sp_cut=PROD(E1,E2)

END

* Definition of R-function corresponding to logical AND

REAL FUNCTION PROD(X,Y)

REAL X,Y

PROD=MIN(X,Y)

* Below are alternative definitions of R-functions

* corresponding to logical AND

* PROD=X+Y-SQRT(X*X+Y*Y+2*0.9*X*Y)

* PROD=X+Y-SQRT(X*X+Y*Y)

RETURN

END

C.2 Interpolation and Extrapolation of Salme’s spectral funtion

C----------------

C Read He3-salme-cont.dat

C Normalization: 4pi x Integral(dp p^2 momdist) = 1.326

C (2-body)

C 4pi x Integral(dpdE p^2 momdist) = 0.638 (3-body)

C----------------

C SUBROUTINE H(BOUND)

C

Implicit none
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DOUBLE PRECISION E(200),P(81)

DOUBLE PRECISION SP(81),SPC(81,200),FRAC_P(200)

DOUBLE PRECISION EM(200),PM(81),FRAC_E(200,200),

INTEGER I,J,N_PM,N_EM,N_DAT_DIR

DOUBLE PRECISION SE1(200,200),SE2(200,200),S11(200,200)

DOUBLE PRECISION S12(200,200),S21(200,200),S22(200,200)

DOUBLE PRECISION HBAR,HBARC3

c INTEGER I,J,N_PM,N_EM

DOUBLE PRECISION HSP(200,200)

c LOGICAL BOUND

c PARAMETER (HBARC =197.327D0)! Hbar*C in MeV-fm

c PARAMETER (HBARC3=7.68369D6)!(Hbar*C)^3 in (MeV-fm)^3

OPEN(UNIT=3,FILE=’he3-salme-cont.dat’,STATUS=’OLD’)

READ(3,*)N_PM,N_EM

DO I=1,N_PM

READ(3,*) P(I)

DO J=1,N_EM

READ(3,*) E(J),SPC(I,J)

c write(*,*) E(J)

ENDDO

ENDDO

c ENDIF

C

c CLOSE(UNIT=3)

do i =1, 199
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EM(i)=E(i+1)

enddo

do j=1,81

PM(J)=(P(j)+P(J+1))/2

enddo

C

c DO I=1,N_PM

c do J=1,200

c IF(PM(I).LE.P(I)) GOTO 250

c ENDDO

c HSP(I,J)=0.D0 ! NOT TABULATED UP TO THIS MOMENTUM

c RETURN

c 250 IF(EM(J).LE.E(J)) GOTO 301

c ENDDO

c HSP(I,J)=0.D0 ! NOT TABULATED UP TO THIS ENERGY

c RETURN

c 301 CONTINUE ! Successful: found indices I and J

do i=1, 81

do j=1,200

c IF (J.EQ.1) THEN

c HSP(I,J)=0.D0 ! Do not interpolate for EM<E(1)

c RETURN

c ENDIF

c IF (I.EQ.1) THEN

c FRAC_E(I,J) = (EM(J)-E(J-1)) / (E(J)-E(J-1))

c S21(I,J) = SPC(I,J-1)

c S22(I,J) = SPC(I,J)
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c HSP(I,J) = FRAC_E(I,J)*(S22(I,J)-S21(I,J))+S21(I,J)

c ENDIF

c IF (I.GT.1.AND.J.GT.1) THEN !interpolation in EM and PM

FRAC_E(I,J) = (EM(I)-E(J-1)) / (E(J)-E(J-1))

FRAC_P(I) = (PM(I)-P(I-1)) / (P(I)-P(I-1))

S11(I,J) = SPC(I-1,J-1)

S12(I,J) = SPC(I-1,J)

S21(I,J) = SPC(I,J-1)

S22(I,J) = SPC(I,J)

SE1(I,J)=LOG(FRAC_E(I,J)*(S12(I,J)-S11(I,J))+S11(I,J))

SE2(I,J)=LOG(FRAC_E(I,J)*(S22(I,J)-S21(I,J))+S21(I,J))

HSP(I,J)=EXP(FRAC_P(I)*(SE2(I,J)-SE1(I,J))+SE1(I,J))

ENNDO

ENNDO

open (4,file=’Prog.dat’, status=’unknown’)

DO I=1,80

write(4,*) PM(I)

DO J=1,200

write(4,*) EM(J),HSP(I,J)

ENNDO

ENNDO

c RETURN

stop

END

C
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