
National software infrastructure for lattice quantum

chromodynamics

RC Brower1, CE DeTar2†, RG Edwards3, DJ Holmgren4, RD
Mawhinney5, W Watson III3 and Y Zhang6

1Department of Physics, Boston University, Boston, MA 02215, USA
2Department of Physics, University of Utah, Salt Lake City, UT 85112, USA
3Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
4Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
5Physics Department, Columbia University, New York, NY 10027, USA
6Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA

E-mail: brower@lns.mit.edu, detar@physics.utah.edu, edwards@jlab.org,

djholm@fnal.gov, rdm@phys.columbia.edu, watson@jlab.org, zhang8@cs.uiuc.edu

Abstract.
Quantum chromodynamics (QCD) is the widely accepted theory of the strong interactions of

quarks and gluons. Only through large scale numerical simulation has it been possible to work
out the predictions of this theory for a vast range of phenomena relevant to the US Department
of Energy experimental program. Such simulations are essential to support the discovery of new
phenomena and more fundamental interactions.

With support from SciDAC the USQCD collaboration has developed software and
prototyped custom computer hardware to carry out the required numerical simulations. We
have developed a robust, portable data-parallel code suite. It provides a user-friendly basis
for writing physics application codes for carrying out the calculations needed to predict the
phenomenology of QCD. We are using this efficient and optimized code base to develop new
physics application code, to improve the performance of legacy code, and to construct higher
level tools, such as QCD-specific sparse matrix solvers.

We give a brief overview of the design of the data parallel API and its various components.
We describe performance gains achieved in the past year. Finally, we present plans for further
improvements under SciDAC-2.

1. Physics Goals
The goal of our research is to obtain a quantitative understanding of the physical phenomena
encompassed by quantum chromodynamics (QCD), the fundamental theory governing the
strong interactions of quarks and gluons. Achievement of this goal requires terascale numerical
simulations. Such simulations are necessary to solve the fundamental problems in high energy
and nuclear physics that are at the heart of the Department of Energy’s large experimental
efforts in these fields. The SciDAC Program “National Computational Infrastructure for Lattice
Gauge Theory” is enabling U.S. theoretical physicists to develop the software and prototype the
hardware they need to carry out terascale simulations of QCD.

† Presenter

Institute of Physics Publishing Journal of Physics: Conference Series 46 (2006) 142–146
doi:10.1088/1742-6596/46/1/019 SciDAC 2006

142© 2006 IOP Publishing Ltd

Under this program our collaboration has developed efficient, core software for carrying out
terascale simulations and is using this software in large scale production on US Department of
Energy computational resources, including the special-purpose Brookhaven National Laboratory
QCDOC and the Fermilab and Jefferson Lab cluster computing facilities.

2. Numerical Methods
Numerical methods for solving QCD have been under development for the past almost thirty
years [1]. Over the past decade, algorithmic improvements have been nearly as important as
hardware improvements in bringing numerical simulation to the stage that it is now having an
impact on the analysis of experimental measurements. We expect that these impacts will grow
in the coming decade.

Typical contemporary simulations represent the space-time continuum as regular hypercubic
grid of several million or more points. The quark fields are represented on lattice sites as
collections of three-dimensional complex vectors, Ψ, and gluon fields occupy the links between
the lattice sites as three-by-three complex matrices U . The interactions of the quarks and gluons
follow the rules of quantum chromodynamics, transcribed to the lattice. Contact with the real
world is achieved in the limit of taking the lattice spacing to zero, while holding the overall
physical volume constant.

To measure physically important observables, it is necessary to carry out a massive integration
over all of the quark and gluon variables. This is done by Monte Carlo importance sampling
methods. Underlying the widely used importance sampling method is a numerical molecular
dynamics integration that moves the gluon variables around in the integration volume efficiently.

Each molecular dynamics step takes account of the influence of the quarks on the gluon
variables and the influence of the gluon variables on themselves according to the rules of QCD.
To calculate the influence of the quarks it is necessary to solve a large sparse matrix problem.
Essentially we are solving a first-order matrix differential equation (the Dirac equation), but
with a twist. All the finite differences include multiplication by the gluon field variable U , which
takes on a different value for every link in the lattice:

[DΨ]α(x) =
1
2a

∑

β,µ

[Uαβ
µ (x)Ψβ(x+ µ) − U∗βα

µ (x− µ)Ψβ(x− µ)] ∀α, x (1)

The elementary operation for each site x involves taking the value of the quark field on the
neighboring site in the forward µ direction, Ψβ(x+ µ), bringing it to the site x and multiplying
it by the gluon matrix for the link between those sites, Uαβ

µ (x). This is called a parallel transport
operation. The operation is repeated for all space-time directions µ forward and backward and
the results are combined as shown.

Operations of the type described consume nearly 90% of the computer time in a typical
simulation. The numerical operations are extremely uniform and simple. The problem lends
itself readily to massively parallel computation. We distribute the space-time volume to the
compute nodes in equal, regular subvolumes. The parallel transport operation described above
involves passing values on the faces of the subvolumes between “neighboring” compute nodes.
Communication can be naturally overlapped with computation.

A hardware design with a regular mesh communication fabric suits the problem well. This
design was the basis of the QCDOC, the specialized machine developed by Columbia University
and IBM and installed at Brookhaven National Laboratory. It is currently one of our major
computational resources. The design optimization point for the QCDOC has thousands of
inexpensive processors with small local memory and an inexpensive mesh network. It is also
the design basis for the IBM BG/L. Standard switch-based commodity cluster architectures also
work well for this problem. The optimum design point in this case has faster processors with

143

high processor to memory bandwidth, but still with comparatively modest memory requirements.
Future optimum designs involve multicore processors.

The principal objective of software design for this problem is, then, to produce a data parallel
API that hides the data locality and movement from the application programmer. Freed from
those concerns, the scientist has more time to concentrate on the physics and has more flexibility
to experiment and explore.

3. Software Design
The core software developed with SciDAC support is a multi-module three-level API tuned to the
needs of lattice QCD, diagrammed in Fig. 1. These modules compartmentalize message passing
(QMP), single-processor linear algebra (QLA), data parallel I/O (QIO) and data parallel linear
algebra (QDP). They are the general-purpose building blocks for physics application code. The
code is immediately portable to any MPP architecture with MPI. We have also written optimized
versions of key components for specific MPP architectures, including the QCDOC. The QDP
API is available in a standard C version (QDP/C) and in a powerful C++ version (QDP++).
Examples of the data parallel API are given below.

The third level consists of widely used, critical utilities, including various sparse matrix
solvers of the type described above. They are optimized for specific architectures. Optimization
is achieved in the QCDOC implementation through use of hand-coded assembly language
components. On clusters and the BG/L, the Level 3 routines have been implemented directly
over QDP/C with the key underlying QLA routines being optimized in assembly language.

Threaded interface and SMP lib

Uniform User Environment

Level 1

Level 4

Level 3

Level 2

QCD Physics Toolbox

Dirac operators, inverters, force terms , etc.

QIO (QCD IO)

C, C++ and asm
QLA (QCD Linear Algebra)

MPI, native QCDOC, GigE, etc

Lattice wide operations, Data shifts. Hides message passing/layout

QMC (QCD multi−core)

QDP (QCD Data Parallel)

QOP (Optimized in asm)

Runtime, accounting, grid tools

Binary/XML files & ILDG tools

QMP (QCD Message Passing)

Workflow

and Data Analysis toolsShared Algorithms, Building Blocks, Visualization, Performance Tools

Figure 1. Multilevel API design. The uncolored blocks have been completed, except that new
components of the Level 3 code are still being added. The blue-highlighted (or gray) blocks are
planned for SciDAC-2.

All components of the software are available together with some documentation at
http://www.usqcd.org.

4. Software Examples
The key data parallel linear algebra API is available in C (QDP/C) and C++ (QDP++). In
both cases we require the ability to carry out a variety of linear algebra operations on a variety
of data types. In most cases the operations and data types are QCD-specific. The operations
include the parallel transport operation described above. We also needed the ability to work on
a subset of the space-time lattice. The key parallel transport operation has two parts: a shift
and a multiplication. The data parallel abstraction views the shift as a uniform movement from

144

one lattice site to the next, even though the underlying operation requires communication when
the required data is off node. The implementation of QDP and QDP++ involves both internode
message passing (QMP) and on-node linear algebra (QLA). Similarly, data parallel I/O (QIO)
deals with fields, which have values on every lattice site or link, and “global” data, which are
constant over the entire lattice.

Because of the wide variety of possible linear algebra operations and datatypes, the QDP/C
and QLA API consists of a library of thousands of procedure calls, only a small subset of which
may be needed in a given project. In the QDP++ API this proliferation was avoided through
the use of the portable expression template engine (PETE)[2, 3], a clever trick that causes the
compiler to construct code for arbitrary combinations of lattice fields. In this way one avoids the
common QDP/C need for temporary fields and multiple loops over sites. However, to achieve
good performance with QDP++, it is often necessary to improve the underlying implementation
with some hand optimization.

As an example of the API, consider the calculation

ψα(x) =
∑

β

Uαβ
µ (x)χβ(x+ µ) + 2φα(x) ∀α, x even, (2)

similar in spirit to Eq. (1). The QDP/C code for this operation reads

QDP_V_eq_M_times_sV(temp, U[mu], chi, dir[mu], QDP_forward, QDP_even);
QDP_V_eq_r_times_V_plus_V(psi, 2, phi, temp, QDP_even);

The mnemonic procedure names are patterned after the arithmetic operation. Note that it is
necessary to introduce a temporary field to complete the operation. In QDP++ the code reads

Psi[even] = U[mu]*shift[chi,mu] + 2*phi.

5. Past Year Performance Gains
Further development of the software and high level algorithms has brought huge gains in the
productivity of our terascale resources. Here are some highlights of progress in the past year.

RHMC Algorithm An improvement in the molecular dynamics evolution process called the
RHMC algorithm, developed recently by Clark and Kennedy [4] reduces the computational cost
dramatically. This algorithm has already been implemented by the RBC Collaboration for their
domain wall fermion calculation on the QCDOC [see RD Mawhinney, this conference]. Their
productivity has increased by a factor of 5.4.

Level 3 Optimization for QCDOC We have continued to develop the QOP (optimized Level 3)
API and add a couple more optimized routines. In the past year these routines have improved
productivity on the QCDOC for the Asqtad lattice generation project by a factor of 1.9. That
brings the cumulative contribution of all SciDAC improvements for this code to a factor of 3.8
for the QCDOC.

Level 3 Optimization for JLab and FNAL clusters and the BG/L As we mentioned, Level 3
optimization for clusters uses the QDP/C interface and assembly-coded optimization of selected
underlying QLA routines. This work has led over the past year to an improved performance
of a factor of 1.2 and a cumulative SciDAC improvement of 2.3 for a production-scale problem
size. Using the same strategies as for clusters, we have achieved 1 TF on a single tower with
both the Asqtad and domain wall solvers.

145

Cluster SSE optimization On a prototype of the soon-to-be-installed Fermilab dual-core
AMD Opteron 275 Infiniband cluster with two processors per node, taking advantage of SSE
instructions, we have achieved 2 GF per dual-core processor for the domain wall fermion
application under production conditions [see Pochinski, this conference].

6. Objectives for SciDAC-2
The following are our major objectives under SciDAC-2

• Porting, optimization for leadership class machines
We expect to achieve further performance gains on the BG/L and BG/P by writing a version
of the message passing QMP specific to that architecture, as we have done for the QCDOC.
Similarly, taking advantage of 32-bit SSE in QLA for the Cray XT3 Opteron will help.

• Exploitation of multi-core (SMP)
Future architectures will rely on multicore processors. We will develop a new low-level API
(QMC) to fully exploit their benefits.

• Common runtime environment
To link the three major USQCD facilities into a practical meta-facility, we will unify file
transfers, grid access, system environments, user environment, and bug tracking.

• Tool box (higher level shared algorithms)
Several higher level utilities are in common use throughout the lattice community. They
include the molecular dynamics evolution, eigensolvers, etc. Providing such building blocks
will help facilitate rapid prototyping of new algorithms.

• Visualization and performance analysis
Performance analysis tools will help in finding bottlenecks in software and hardware.
Visualization tools will aid in understanding the physics.

• Work flow and data analysis
A typical project involves moving hundreds of Gigabytes of lattice files to and from archival
storage, running a measurement code on those files, and extracting and analyzing results of
the measurements. Providing tools for managing the workflow and standard components
of data analysis will facilitate the workflow and improve over all productivity.

• Full use of API by entire community
To facilitate even wider use in the lattice community, we will develop more user-friendly
documentation and dissemination of the code.

• Monitoring and control of large systems
As our clusters continue to grow in size, we need to continue to develop automated fault
monitoring and mitigation strategies

7. Cross-fertilization
Components of this project benefit from other large-scale computational science efforts. The
NSF TOPS program supports, among other projects, the development of multigrid methods
that could help us. The DOE-supported Particle Physics Data Grid project is developing file
management tools that we will use. The International Lattice Data Grid project is designed
specifically for sharing lattice files. It is using software we have developed and we will be using
it to share files internationally.
[1] Thomas DeGrand and Carleton DeTar. Lattice Methods for Quantum Chromodynamics. World Scientific Co,

Singapore, 2006.
[2] T. Veldhuizen. Expression templates. C++ Report, 7:26–31, 1995.
[3] Scott Haney. Is C++ fast enough for scientific computing? Computers in Physics, 8:690–694, 1994.
[4] M. A. Clark and A. D. Kennedy. The RHMC algorithm for 2 flavors of dynamical staggered fermions. Nucl.

Phys. Proc. Suppl., 129:850–852, 2004.

146

