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Capitulo 1

Introduccion, estado actual de los

estudios de (€, ¢'p’) y objetivos

La dispersion de electrones por niicleos es uno de los métodos més eficaces, y por tanto
mas usado, para estudiar la estructura nuclear [1-5|. El bombardeo de niicleos con haces
de electrones para obtener secciones eficaces de dispersiéon u otros observables, permite
conocer con gran detalle la constitucion interna de los niicleos y como estan distribuidos

en ellos los nucleones.

Las ventajas de la utilizaciéon de electrones como proyectiles son principalmente las

que siguen:

1. Las sondas leptonicas, al no sufrir la interacciéon fuerte, atraviesan el interior de
los ntcleos perturbandolos apenas. El estudio de la estructura nuclear mediante el
bombardeo de particulas cuya principal interaccién con el ntcleo es la fuerte, tiene
la desventaja anadida de enmascarar el objeto del estudio con efectos propios de
la reaccion en si. En este sentido, es claro que el paso de un lepton por el interior
del niucleo es mas “limpio” y como sonda, los electrones son, por tanto, mucho mas

adecuados.

2. La interaccion principal que rige un proceso de dispersion electron-niicleo es la inte-
raccion electromagnética. De nuevo esto es una ventaja, ya que la teoria que describe
este tipo de interaccion, la electrodinamica cuéntica, es bien conocida y permite re-
solver de forma exacta la parte de la reaccién correspondiente al proyectil, o dicho
con otras palabras, conocer con la precision deseada lo que sucede en el vértice

leptonico.
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De igual modo, la electrodindmica cuantica admite un tratamiento perturbativo,

dado que viene caracterizada por una constante de acoplamiento, «, cuyo valor
. ~ ~ 1 . ~

es relativamente pequefio (o ~ 137). Gracias al pequefio valor de la constante «,

se pueden describir las reacciones con electrones de forma suficientemente fiable

a primer orden en teoria de perturbaciones, lo que llamaremos a partir de ahora

“aproximacion de Born de primer orden”.

El diagrama de Feynman que caracteriza a la reaccién consiste en este caso del
intercambio de un tnico foton entre el proyectil y el blanco, caracterizado por mo-
mento y energia transferida q y w respectivamente. Este foton virtual puede tener
un cuadrimomento arbitrario, siempre dentro del rango Q? = ¢?> — w? > 0, lo cual
permite més posibilidades de estudio que las que proporcionan fotones reales, para

los cuales estamos limitados a @ = 0.

Historicamente, las medidas elasticas de dispersion de electrones han servido para
determinar los factores de forma de los nucleones y las distribuciones de carga nucleares.
Dispersion elastica quiere decir que toda la energia transferida se invierte en incrementar
la energia cinética del blanco sin producir ninguna excitacion. El blanco permanece en el
mismo estado que tenfa [2]. La seccion eficaz eléastica tiene un pico muy marcado bajo
las condiciones cinematicas adecuadas. Para un nicleo blanco de masa My en reposo,
la seccion eficaz elastica se obtiene cuando el cuadrimomento y la energia transferida

satisfacen la siguiente relacion:
Q2
= . 1.1
2M 4 (1.1)

Si fijamos un valor cualquiera del momento transferido ¢ y vamos incrementando poco

w

a poco el valor de la energia transferida w, llegara un momento en que se sobrepasa la
region elastica y la energia del fotéon virtual que interacciona con el nicleo sera suficiente
para excitarlo o, incluso, desmembrarlo en dos 0 mas componentes. Al llegar a esta zona
del espectro, el nimero de canales o procesos que contribuyen a la secciéon eficaz aumen-
tan de forma que no solo es posible detectar simplemente el electron dispersado, lo que
llamaremos reaccion (e, e’), sino también hacer medidas de secciones eficaces en las que
se detectan simultaneamente el electron dispersado y una, o més, particulas arrancadas

del nucleo blanco.

Las medidas en coincidencia son méas problematicas que las del tipo (e, €’) debido a que
tienen una tasa de conteo mucho més baja y ademas, para tener una buena relaciéon senal

ruido y coincidencias frente a no coincidencias (concidence/singles rate), precisan de un
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haz de electrones de alta intensidad y elevado ciclo de trabajo, incluso aceleradores de ciclo
de trabajo continuo. Estas dificultades experimentales han sido completamente resueltas
en los aceleradores de electrones modernos situados en los laboratorios de Saclay |[6],
NIKHEF [7], Bates-MIT [8], Mainz [9] y més recientemente Jlab [10-12] y en el futuro
GSI [13-15].

1.1 Dispersion (¢,¢'p) en condiciones exclusivas

Segun el estudio que queramos realizar, interesara trabajar en un régimen de energias
u otro. En esta tesis nos vamos a limitar a la llamada zona cuasielastica y, a su vez, nos
centraremos en el estudio de las reacciones (€, ¢'p’). En estas reacciones se detectan en
coincidencia el electron dispersado y un protén arrancado del nicleo blanco. A su vez, el
proyectil (electron) puede estar polarizado y se puede medir la polarizacion del nucleon
detectado [16-18|.

La regién del espectro méas adecuada para realizar este estudio viene caracterizada por
unos valores del momento y energia transferidas tales que, obviamente, son suficientes
como para arrancar un nucleén del interior del niicleo blanco, pero no tan grandes como
para ser capaces de producir piones o excitaciéon de resonancias nucleénicas, que se co-
rresponderia con una zona del espectro fuera de los objetivos de esta tesis doctoral. Esta
zona del espectro se denomina “zona cuasielastica” (ver figura 1.1) y en ella se dan las
condiciones adecuadas para que el foton virtual interaccione directamente con los nucleo-
nes individuales que componen el niicleo blanco, sin ser necesario considerar los posibles

grados de libertad internos de los mismos.

Mediante las sondas electromagneticas podemos seleccionar momentos transferidos
con una longitud de onda de de Broglie asociada mucho menores que las del sistema
nuclear, del orden o inferiores al tamafio de un nucleon. En estas condiciones, si ademés
la relacion entre la energia y el momento transferido es compatible con la dispersion
elastica de fotones por nucleones, es decir, trasladamos la expresion dada por la Eq. (1.1)

a nucleones en reposo:
2

W~ — 1.2

2M "’ (1.2)
con M ahora la masa de un nucleén, no la del nicleo blanco en su conjunto M 4 como antes,
estariamos en la region eléstica para nucleones libres. La contribucion de este proceso

dominard ampliamente sobre todos los demés y estaremos centrandonos en la zona del
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Figura 1.1: Seccion eficaz de dispersion de electrones por un ntcleo, frente a la energia

transferida w, para un valor fijo del momento transferido gq.

espectro denominada “pico cuasielastico” [2,19]. En tal caso, la seccion eficaz de la reaccion
vendra caracterizada por un maximo distinto al de la zona eléstica, mucho més ancho que
el primero debido a que los nucleones en el interior del nicleo no estan en reposo y no
tienen por qué satisfacer la relacion caracteristica de toda particula que se encuentra en
la “capa de masas” (onshell: E*> = p®> + M?) [20]. Trabajar en esta zona del espectro
es adecuado para determinar propiedades monoparticulares, como las predicciones del
modelo de capas para las energias y funciones de onda de los nucleones. Definiendo la

Q2
2Mw’

cuasieléastica de nucleones.

variable z = los valores de x en torno a la unidad se corresponderan con dispersion

El experimento puede ser atin més selectivo si realizamos medidas exclusivas, es decir,

medidas en las que se determinan todos los canales que contribuyen al proceso observado.
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Asi por ejemplo, las medidas elasticas son exclusivas porque al detectar el electréon y
determinar con precisién su energia y momento, sabemos que coincide con la energia
inicial menos la de retroceso del sistema nuclear y no falta ninguna energia mas, es decir,
no hay energia "perdida'en la reaccion o missing energy E,,. Por tanto, al nicleo no
se le ha transferido més que momento y la energia cinética adquirida se corresponde
precisamente con el momento que ha ganado. El niicleo queda en el mismo estado que
tenia antes de la reaccion. Conocemos, pues, todo lo que ha pasado en la reaccion, lo que

da pie al término exclusivo.

En el caso cuasielastico, en el que se arranca un nucleén, la medida precisa de la energia
del proton y del electron permite determinar cuanta energia se lleva el nicleo residual. Si
dicha energia no es suficiente como para arrancar mas que un nucleén, entonces sabemos
con seguridad que hemos detectado las particulas suficientes (todas menos una) como para
reconstruir el balance de energias y momentos. El nicleo residual no se ha fragmentado
y podemos utilizar la regla de conservacion de momento para, a partir del momento
transferido conocido, determinar cuanta energia cinética, Tz, ha ganado el niicleo residual

y, tras realizar el balance de energia, conocer cuél es la energia desaparecida E,, [19]

Em:w—TF—TB+TA:M+MB—MA, (13)

con Tr (T4) la energia cinética del nucleén detectado (blanco), respectivamente. Es decir,
conocemos con precision cudl es el estado en el que ha quedado el nicleo residual. Es,
de nuevo, una medida exclusiva porque conocemos el canal preciso por el cual ha tenido

lugar la reaccion y el balance de energia y momento completo.

Al momento lineal del blanco, p,, menos el momento del nicleo residual, pg, que
podemos determinar a partir de la conservacion del momento total, se le denomina, por
analogia con la energia desaparecida, momento desaparecido (missing momentum p,,,) [1-
4]. Tenemos condiciones exclusivas siempre que la energia transferida sea igual o superior a
la energia de separacion del primer protén — si no, no se darian las condiciones necesarias
para posibilitar las reacciones (e, e’p) — y ademéas esta energia no supere el umbral a
partir del cual hay energia suficiente para que, ademés del proton, se pueda arrancar otra
particula, o bien se fisione el nicleo, o procesos similares. En niicleos estables doblemente
mégicos, normalmente el siguiente proceso en energia en el que se rompe el niicleo en més

de un fragmento corresponde a aquél en que se arranca un segundo nucleon.
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Figura 1.2: Diagrama de Feynman del proceso A(€,€'p)B en la aprozimacion de Born.
1.2 Aproximaciéon de Impulso

Las medidas de (e, e'p) en concidencia bajo condiciones exclusivas y con cinematica
cuasielastica, como las que hemos descrito anteriormente, se pueden analizar con confianza
en la llamada aproximacién de impulso. Asi se ha comprobado en numerosas y satisfac-

torias comparaciones de las predicciones teéricas con los datos experimentales [21-25].

La aproximacién de impulso presupone que el fotéon que intercambian el electrén y
el blanco interacciona tinica y exclusivamente con un nucleén del blanco, posteriormente
arrancado y detectado en coincidencia con el electréon dispersado. Los demés nucleones son
meros espectadores que participan s6lo a través de la posible interaccién con el nucle6n
arrancado mientras recorre el medio nuclear antes de escapar de su influencia. Esta inte-

raccion es lo que llamaremos Interaccion de Estados Finales, FSI, Final State Interaction.

En la aproximacién de impulso, por tanto, el que hemos denominado como momento
desaparecido p,,, se corresponde con el momento inicial que posee el nucleén con el que
interacciona el foton en el interior del blanco. Esto implica que mediante medidas de
secciones eficaces de tipo (e, e'p) se puede determinar la distribucion de momento de los

nucleones en el interior de los nucleos.

1.3 Cinematica de los procesos (€, e'p) exclusivos

En la figura 1.2 se representa el diagrama de Feynman correspondiente a la reaccion
(e, €'p) bajo la aproximacion de Born de intercambio de un fotén. Un electréon de cuadri-
momento ki = (g, k;) intercambia un foton ¢* = (w,q) con un nicleo de masa M, y

cuadrimomento py = (E,p,). El electron es dispersado hacia un estado final de cuadri-
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momento k% = (g, ky). A su vez, se detecta en coincidencia un proton de cuadrimomento
P = (Er, pp) arrancado al nucleo blanco. Al tratarse de un proceso exclusivo sabemos,
aunque no lo detectemos, que existe otra tnica particula en el estado final, el nicleo re-
sidual, con cuadrimomento p%s = (Ep, pg). Las leyes de conservacion del cuadrimomento

en ambos vértices y en el proceso global implican las siguientes relaciones:
ki—ki=q=ppr+ps—Da, (1.4)

8i—6f:w:EF+EB—EA. (15)

A lo largo de toda la tesis presupondremos que la energia de los electrones es mucho
mayor que su masa, por lo que podremos utilizar con total confianza el llamado limite

ultrarrelativista para los electrones (m, = 0). Bajo esta aproximacion ¢; = k; y 5 = ky.

A la hora de elegir un sistema de referencia con respecto al cual fijar las variables
cinematicas, es frecuente tomar un sistema con nticleo blanco en reposo, es decir, 4 = M4
y Py = 0. A su vez, el sistema de coordenadas que se emplea normalmente para la
descripcion del proceso suele elegirse de modo que el plano que forman los vectores k; y
k;, también llamado plano de dispersion, coincida con el plano zz. La direccién del eje z

viene dada por el momento transferido q. El triedro que define este sistema es entonces:

. q _kika
U, = —, Uy

= ——" Uy = Uy X Uy, . 1.6
¢ " Tk k] y (-0

De igual modo, el momento del nucleon emitido junto con el momento transferido, definen
otro plano, que se conoce como plano de dispersion del nucleén o plano de reaccion. Ambos

planos forman un angulo ¢ entre si, como se puede apreciar en la figura 1.3.

En los casos en que ¢ = 0°,180°, los dos planos de dispersion, el de electrones y el
de nucleones, coinciden y la cinemética se denomina coplanar o “en el plano” (in-plane),

que es la més utilizada en los experimentos.

El nimero N de variables cineméticas independientes en los procesos (e, €'p) es igual
a seis [2|. Esto es muy sencillo de determinar a partir del nimero total de variables
cinematicas que definen el estado de las particulas intervinientes en la reaccién y el nimero
de cantidades conservadas impuesto por las leyes de la relatividad especial. Las masas del
nucleo blanco, electrones y protén detectado son conocidas y, al tratarse de particulas
“libres”, necesariamente han de estar sobre la capa de masas. Por tanto, el nimero de
variables cineméticas necesario para determinar su cuadrimomento es de tres, en lugar de

cuatro. El nucleo residual también se encuentra sobre su capa de masas, pero a diferencia
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Figura 1.3: Representacion esquemdtica del proceso Ale,e'p)B.

de las otras particulas, al no ser detectado, su masa no viene fijada a priori, por lo
cual es un parametro libre més y las variables cineméticas necesarias para describir el
cuadrimomento del niicleo residual son, por tanto, cuatro. Del conjunto de estas variables
hay que restarle el nimero de parametros conservados que caracterizan a un grupo de
Lorentz-Poincaré: cuatro que corresponden a las traslaciones, tres mas para las rotaciones

y otros tres para los boosts. Tenemos pues N =3 x4+4 x1—10=6.

Desde un punto de vista tedrico es irrelevante cuéles seis, de entre todas las posibles
variables cinematicas, fijemos para determinar las demés. Varias son las elecciones més
usuales. Lo més habitual, para simplificar el analisis posterior de las secciones eficaces de
este proceso, es mantener constante la energia desaparecida E,, y barrer un determinado
rango del momento desaparecido p,,. De este modo podemos probar hasta qué punto es
fiable el modelo de capas del niicleo blanco. Fijar E,, bajo la aproximaciéon de impulso
antes descrita, es equivalente a decir que el proton detectado se encuentra en una capa de-
terminada antes de ser arrancado del niicleo blanco. Al comparar después la secciéon eficaz
teorica con la medida experimentalmente, observaremos en general que ambas tienen una

dependencia en p,, similar, diferenciandose grosso modo sb6lo en un factor de escala. Este
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factor de escala, al que denominaremos factor espectroscopico S,, representa la desviacion
real entre la estructura del nicleo y el modelo de particulas independientes considerado
a priori. Cianto més proximo sea S, a la unidad, mas correcta serd la descripcion del
nicleo mediante el modelo de capas elegido. Si el factor de escala es menor que la unidad,
indica que no encontramos a todos los nucleones que se debiera en las condiciones selec-
cionadas, normalmente a la energia desaparecida compatible con arrancar el nucleén de
una capa determinada. Esto implica que los nucleones no estan “todo el tiempo” donde el
modelo de capas indica o, dicho de otra manera, que el solape de la funcién de ondas del
ntcleo real y la del modelo de capas no es del 100%. Un factor espectroscépico cercano
al 100% indica un solape amplio entre la funcion de ondas de campo medio (modelo de
capas) y el nicleo real. El modelo de capas del niicleo predice con notable éxito gran par-
te de la fenomenologia nuclear, pero hasta ahora la mejor prueba gréifica de la existencia
de capas en el nicleo se ha obtenido mediante experimentos (e, €’p) como se muestra en
la figura 1.4 [26]. Podemos observar como las capas mas “externas”, las que pueden ser

exploradas en cineméticas exclusivas, quedan perfectamente demarcadas.

De las cuatro variables que nos restan para describir completamente la cinematica de
la reaccion, dos elecciones logicas son la energia del haz de electrones incidente, ¢;, y el
angulo que forman el plano de reaccién con el de dispersiéon de electrones, ¢r. Lo més
usual, como ya hemos dicho, es trabajar en cinemaética coplanar con ¢ = 0° 6 ¢ = 180°.
En esta tesis, salvo excepciones contadas, ésta ha sido la eleccion usada. Ademaés, en
las figuras a la hora de pintar la seccion eficaz frente p,,, y salvo que se especifique lo
contrario, hemos seguido el convenio estdndar de considerar p,, > 0 cuando ¢r = 180° y
Pm < 0 cuando ¢p = 0° [3].

Normalmente, para simplificar el analisis de las secciones eficaces de este proceso, se
suelen fijar algunas de las variables de la cinemaética y se mide la seccion eficaz (u otros
observables) para la misma energia desaparecida pero variando el momento desapareci-
do. Esta variacion del momento desaparecido puede obtenerse manteniendo el momento
transferido y el momento del nucleén arrancado en la misma direccion, lo que se llama ci-
nemética “paralela” (o “antiparalela”), con lo cual para variar el momento desaparecido se
ha de variar el momento transferido. También se puede mantener el momento transferido
q y la energia transferida w fijos en el valor adecuado para mantener constante la energia
desaparecida, lo que se suele denominar cinematica con g-w constante. En los articulos y

libros mas antiguos, también se le denomina cinemética perpendicular [4].
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| 208Pb(e,e'p) 207T1

Figura 1.4: Seccién eficaz reducida frente a la energia y momento desaparecidos [26].
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1.4 Corriente hadrénica

En la aproximacion de impulso relativista de ondas distorsionadas, RDWIA, la co-

rriente hadronica viene descrita por la siguiente amplitud a un cuerpo [16,19,21, 25, 27|

THw.q) = [ dpU (p+ @) Tt (p), (17)

donde w y q son la energia y momento del foton virtual intercambiado, ¢ y 17 son las
funciones de onda del nucleon inicial ligado, con el que interacciona el fotén, y del protéon
final detectado, respectivamente. JE es el operador de corriente determinado a partir del
operador de corriente utilizado en la dispersion libre de electrones por protones. Debido
al caracter off-shell del proton ligado, se consideran dos formas distintas del operador
denominadas CC1 y CC2. Ambas son totalmente equivalentes para nucleones libres o
on-shell [28|:

= F:

Joor = (F1 + Fo)y* — ﬁ(PI + Pp)*, (1.8)
N 10
Joco = " + ;—]\;U“VQVa (1.9)

donde F| y F;, son los factores de forma de Dirac y Pauli, respectivamente, y P} =
(Er,p)) = (\/(pr — @) + M2, — q).

La funcién de onda del nucleén ligado es un cuadriespinor con momento angular total

Jo = |ke| — 1/2 y tercera componente py, solucién de una ecuaciéon de Dirac con poten-
ciales escalares-vectoriales (S-V') procedentes de un Lagrangiano relativista con términos

mesoénicos escalares y vectoriales [5,29]. Su expresion en el espacio de momentos es

1 _ip. : 9, (D) -

£(p) = s [ dre Py = (<)% | 0T, k@), (110)

b (27r)3/2 b S;q,b f;gb (p)% b
siendo @ (p) un biespinor de momento angular j, bien definido

_ | ~
Qi (p) = Zh@bmebihbbubﬂfel:b (P)X% : (1.11)
mzb

con by =Ky siky >0y by =—kp—15si Ky <O0.

La funcién de onda para el proton final es una solucién de una ecuacion de Dirac con
potenciales S-V opticos [30-32| para un nucleén dispersado con momento asintotico pg
y proyeccion de espin sg, su expresion es

. Exr+M it 1 . .
2 (p) = 4my | o S e I sp | ) Y™ (Bp) Y (p) - (1.12)
2Br 2
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Como el potencial 6ptico es en general complejo, los desfasajes y las funciones radiales
también lo son y la funcion de onda ¢*(p) viene dada por

YD) = (i) ( gi(ﬁ)ﬂ) %(p). (1.13)

*
Sﬂfﬁ, p
La corriente hadrénica y las funciones de respuesta nucleares, que como veremos en la

siguiente seccion caracterizan la seccion eficaz del proceso, se relacionan por las expresiones

deducidas en el apéndice.

1.5 Seccién eficaz y funciones de respuesta

La derivacion formal de la seccion eficaz se encuentra en el apéndice. Suponemos que
la funcién de onda de los electrones estd bien descrita mediante una onda plana, por
tanto la seccion eficaz en el laboratorio (para un protén final polarizado a lo largo de una
direccién cualquiera) se puede escribir en términos de las llamadas funciones de respuesta

como sigue [16,17,27]:

2

vrL [(RTL + Rngn) cos P + (RlTLgl + RSTLgs) sin qﬁp]

vrT [(RTT + Rngn) cos 20 + (RlTTgl + RsTTgs) sin 2¢F]

h {UTL: [(RlTL’bA’l + RZngs) coS ¢p + (RTL’ + RZngn) sin QSF]

v [RU'S + RYS}} (1.14)

+ + 4+ o+

donde o es la seccion eficaz de Mott (ver apéndice), {ef, 2} son la energia y el 4ngulo
solido correspondientes al electron dispersado y Qp = (0, ¢r) el angulo solido para el
proton final. El factor f.., deducido en el apéndice, es un factor de retroceso del niicleo

residual y viene determinado por la expresion:

(1.15)

_1:‘1_%poF‘
rec Eg p%

siendo py v Ep el momento y energia del niicleo residual respectivamente. Los factores
cinemaéticos v, se deducen en el apéndice. Del mismo modo, también se puede ver en
el apéndice la relacion que existe entre las funciones de respuesta y el llamado tensor
hadrénico, que contiene toda la informacién dindmica correspondiente al vértice nuclear.

En las funciones de respuesta polarizadas la dependencia en la polarizaciéon del nucleén
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detectado viene determinada por las componentes Sy (k = l,n,s) del espin (sp)r del
nucledn final, en el sistema de referencia en el que dicho nucleén esta en reposo, a lo largo

de las direcciones:
X
|_Pr o, _ 9XPr
PF g x pp|
De las dieciocho funciones de respuesta mediante las cuales queda completamente descrita

, s=nxl. (1.16)

la seccion eficaz del proceso (€, €'p) en el caso mas general posible, no todas son distintas
de cero en todas las condiciones experimentales [3,17]. En la tabla 1.1 se muestra cuéles
se anulan cuando el electrén inicial no esta polarizado, cuando restringimos el estudio a la
cinematica coplanar (¢ = 0°,180°), cuando no se tiene en cuenta la interaccion entre el
proton arrancado y el nicleo residual o cuando el momento del protén saliente es paralelo

al momento transferido [2, 3].

Otra forma de expresar la seccién eficaz en términos de las asimetrias de polarizacion,
las cuales son cocientes entre diferentes clases de funciones de respuesta, es [3,18,27]
_do  _ [1+ P8y + PSi+ P.S,+ h(A+P,S, + PIS+PS,)|,  (117)
de fdQ fdQ F 2 n 5
siendo og la seccion eficaz completamente despolarizada, A la asimetria del helicidad del
haz incidente y Py (P}) las polarizaciones inducidas (transferidas) respectivamente [3,18,

27]. En funcion de la seccion eficaz, estos observables pueden escribirse como sigue:
1
oo ==Y do(h,sp), (1.18)
2 h,sn
donde do(h, sp) denota de forma simplificada la seccion eficaz diferencial do/(de ;d€2;dQ2p)
y sg representa la proyeccion del espin del nucleon saliente,

_o(h=1)—0o(h=-1)
~o(h=1)+o(h=-1)

(1.19)

siendo o(h) = X, do(h, sp),

o(sp=1)—o(sp = —1)
o(sg =1)+o(sp = —1)’

P, = (1.20)

donde o(s;) = L3, do(h, s;) v si es la proyeccion del espin del nucleén saliente en una
2 h

cierta direccién k = [, n, s. Andlogamente, las polarizaciones transferidas P, vienen dadas

por

_|do(h=1,84, =1) —do(h = —1,8;, = 1)] = [do(h = 1,8, = —1) —do(h = —1,s;, = —1)]

"~ [do(h=1,8p=1)+do(h=—-1,8;, = 1)] +[do(h = 1,8, = =1) + do(h = =1, s, = —=1)]’

P} (1.21)

Es sencillo comprobar que en cinematica coplanar las inicas componentes que sobreviven

de las dos polarizaciones son P,, P/ y P! [17].
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Respuestas | h =0 | ¢ = 0,180° | PWIA | paralela
R" S S S S
RT S S S S
RTT S S S N
RTL S S S N
RV N N N N
RIT S N N N
RI™ S N N N
R N S S N
Rl N S S S
RIT S N N N
RTL S N N S
RTV N S S S
RT N S S N
RL S S N N
RT S S N N
RIT S S N N
RTL S S N S
RV N N S S

Tabla 1.1: Propiedades de las funciones de respuesta en procesos A(e, e']V)B. S significa
que la respuesta no se anula en la circunstancia impuesta, mientras N significa que es

nula.
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En el &mbito de la dispersion de protones por nicleos, las medidas de observables de
polarizacién del nucleén emitido, asi como del protén utilizado como blanco, fueron fre-
cuentes, especialmente a energias intermedias. También se hicieron muchos estudios sobre
el “poder de andlisis” A, y la funciéon de rotacion de spin @ [33]. Con blancos no polari-
zados, la seccion eficaz, A, y @) forman el conjunto completo de observables que pueden
adquirirse en dispersion elastica y determinan de forma “exacta” todos los parametros
del modelo, frecuentemente basado en potenciales 6pticos, utilizado para describir dichos

procesos elasticos.

En dispersiéon de electrones por nicleos, la utilizacién de un analizador méagnetico
(Stern-Gerlach) para poder medir el momento magnético del proton emitido, representa
un desafio experimental importante, dado que la eficiencia del espectrémetro de protones
se reduce en al menos un orden de magnitud al introducir el polarimetro. En el caso
cuasielastico, eligiendo la cinematica de forma adecuada, podemos seleccionar qué condi-
ciones ha de cumplir el nucleén que arrancamos del nticleo, en cuanto a su momento y
su energia de ligadura. La medida de la seccién eficaz permite determinar la distribucién
de momentos en el niicleo, como hemos dicho anteriormente, y la medida de los obser-
vables de polarizacién suministra el mapa de espin del nucleén arrancado en el niicleo
blanco (polarizacion transferida) y del intercambio de espin/momento magnético del nu-
cleén arrancado al atravesar el medio nuclear (polarizaciéon inducida). La primera permite
estudiar con un detalle nunca antes visto, la distribucion de carga y espin (momento mag-
nético) del nucleon en el nicleo blanco y las segunda proporciona informaciéon adicional
sobre la interaccién del protéon con el niicleo residual en el estado final; interaccion de

estados finales.

1.6 Objetivos y estructura de la tesis

Basandonos en los trabajos previos sobre reacciones (e, e'p) realizados por el grupo
de Fisica Nuclear de Madrid y colaboradores [19,21-23,34-36|, en esta tesis doctoral se

pretenden satisfacer los siguientes objetivos:

e Completar el formalismo relativista desarrollado por el citado grupo, extendiéndolo

a las reacciones (€, €'p) y calculando todos los observables de polarizacion.

e Comparar con los datos y experimentos pasados y presentes, con el fin de determinar
la fiabilidad del modelo.
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e Realizar una comparacién detallada de los calculos relativistas y no relativistas,

para establecer las razones de las diferencias observadas entre ambos formalismos.

e Asegurar el marco tedrico del proceso de reaccién con el fin de poder utilizar los datos
experimentales para obtener informacién sobre las propiedades de los nucleones en

el medio nuclear.

Con este fin y siguiendo la normativa vigente de la Universidad Complutense de Madrid
respecto a la publicacion de tesis doctorales que contemplen distintas publicaciones, he-
mos estructurado la presente del siguiente modo: El primer capitulo, que aqui concluye,
consiste en una introduccién con una revisiéon del estado actual del tema de la tesis docto-
ral. Este capitulo se ve completado mediante un apéndice donde se desarrolla formalmente
el calculo de la seccion eficaz de la reaccion A(€,e'p)B. Los capitulos del 2 al 8 consisten
en la presentacion de diferentes publicaciones a las que ha dado lugar el trabajo de inves-
tigacion del doctorando. En el capitulo 2 se estudian las propiedades de factorizacion de
los observables més relevantes para el estudio de los procesos A(€,e'p)B bajo distintas
aproximaciones. En el capitulo 3 se presenta un anélisis de las secciones eficaces medi-
das por diferentes grupos experimentales en ®0 [37-39] y se comparan con los calculos
relativistas de ondas distorsionadas desarrollados por nuestro grupo. En el capitulo 4 se
estudia la reaccion *He(e, e'p)®H. En los capitulos 5 y 6 se analizan los observables de
polarizacién, las polarizaciones inducidas en el capitulo 5 y las polarizaciones transferi-
das en el capitulo 6. Los capitulos 7 y 8 consisten en un estudio del cociente entre las
polarizaciones transferidas, particularizado a la reaccién *He(€,e'p)>H, con el objetivo
de buscar evidencias sobre las posibles modificaciones en las propiedades de los nucleones
producidas por el medio nuclear. En el capitulo 9 se muestra una discusién integradora
de todas las publicaciones presentadas y, por ultimo, en el capitulo 10 se presentan las
conclusiones a las que ha dado lugar esta tesis. Al final de cada capitulo se encuentra una

bibliografia con todos los articulos que se citan en cada uno de ellos.
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A(€, €'p)B responses: From bare nucleons to complex

nuclei
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E-28040 Madrid, Spain

2Departamento de Fisica Atémica, Molecular v Nuclear, Universidad de Sevilla, Apartado
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We study the occurrence of factorization in polarized and unpolarized observables in coin-
cidence quasi-elastic electron scattering. Starting with the relativistic distorted wave impulse
approximation, we reformulate the effective momentum approximation and show that the latter
leads to observables which factorize under some specific conditions. Within this framework, the
role played by final state interactions and, in particular, by the spin-orbit term is explored. Con-
nection with the nonrelativistic formalism is studied in depth. Numerical results are presented
to illustrate the analytical derivations and to quantify the differences between factorized and

unfactorized approaches.

PACS number(s): 25.30.Rw, 24.10.Jv, 21.60.Cs
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2.1 Introduction

Quasielastic (e, e'p) reactions have provided over the years an enormous wealth of
information on nuclear structure, particularly, on single particle degrees of freedom: ener-
gies, momentum distributions and spectroscopic factors of nucleons inside nuclei [1-3].
In recent years important efforts have been devoted to provide more realistic theoretical
descriptions of these processes [4-16]. However, there are still uncertainties associated to
the various ingredients that enter in the reaction dynamics: final state interactions (FSI),
off-shell effects, nuclear correlations, relativistic degrees of freedom or meson exchange
currents (MEC). These ingredients affect the evaluation of electron scattering observables
and hence lead to ambiguities in the information on the nuclear and nucleon structure
that can be extracted from experiments. In recent years, electron beam polarization as
well as polarization degrees of freedom for the outgoing nucleon can be measured, what
makes it possible to extract a new wealth of observables from quasielastic (€, e'p) reac-
tions. For instance ratios of transferred polarizations are used to measure ratios of nucleon

form factors.

One of the basic results which has made (e, €'p) reactions so appealing for investigations
of single particle properties is the factorized approach [1,17,18]. Within this approxima-
tion, the (e,e'p) differential cross section factorizes into a single-nucleon cross section,
describing electron proton scattering, and a spectral function which gives the probability
to find a proton in the target nucleus with selected values of energy and momentum com-
patible with the kinematics of the process. The simplicity of the factorized result makes it
possible to get a clear image of the physics contained in the problem. Even being known
that factorization does not hold in general, it is often assumed that the breakdown of fac-
torization is not too severe, and then it is still commonplace to use factorized calculations
for few body systems or for inclusive scattering. The importance of factorization lies on
the fact that the interpretation of experimental data is still usually based on this property
by defining an effective spectral function that is extracted from experiment in the form
of a reduced cross section. Assuming that factorization holds at least approximately, re-
duced cross section would yield information on momentum distributions of the nucleons
inside the nucleus. On the other hand, these momentum distributions would cancel when
taking ratios of cross sections and consequently these ratios might give information on

the electromagnetic form factors of the nucleons [19,20].

In spite of the importance of the factorization assumption, there have been however
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almost no formal (and very few quantitative) studies of its validity. So far, it has been
shown by different authors [3,18, 21| that in the nonrelativistic case and when using
plane waves to describe the ejected nucleon (PWTIA), factorization holds exactly for the
unpolarized cross section. When interactions in the final state are included (DWIA), then
certain further assumptions are needed to recover the factorized result [3|. The meaning
and importance of the additional assumptions required to attain a factorized result has

not been quantitatively studied thoroughly.

In the relativistic case, factorization of the unpolarized cross section is broken even
without FSI, due to the negative energy components of the bound nucleon wave func-
tion [18,21]. A quantitative estimate of the breakdown of factorization is lacking for the

relativistic case when taking into account FSI.

Furthermore, there has not been any study of the validity of the factorization picture
for polarization observables, even though this factorized picture is implicitly assumed

when using ratios of transferred polarizations to determine nucleon form factors [19,20].

Within a nonrelativistic framework, the breakdown of factorization has been usually
interpreted as due to the spin-orbit dependent optical potentials. We note however, that
other effects such as the Coulomb distortion of the electron waves, and contributions
beyond the impulse approximation (IA) such as MEC, play also a role in breaking fac-
torization. In the particular case of the plane wave limit (i.e., neglecting FSI between
the ejected proton and the residual nucleus) factorization is strictly satisfied in IA at
the level of the transition amplitude [3,18]. This contrasts strongly with the relativistic
formalism, where the enhancement of the lower components of the bound nucleon wa-
ve function destroys factorization of the transition amplitude even in the case of no FSI.
Hence, an important difference between relativistic and nonrelativistic approaches already
emerges in the plane wave limit. Whereas factorization holds in nonrelativistic PWIA it
does not in the relativistic plane wave impulse approximation (RPWIA), which includes

negative-energy components in the bound nucleon wave function [18,21].

As mentioned above, the mechanism that breaks factorization has been only establis-
hed for the unpolarized cross section in the nonrelativistic approach. Here we explore
such mechanisms for both polarized and unpolarized observables starting from the more
complex relativistic distorted wave impulse approximation (RDWIA) and making sim-
plifying assumptions that lead to factorization. We make also the connection with the
nonrelativistic framework and present conclusions that are valid in both relativistic and

nonrelativistic cases. It is important to point out that most of the (e, e'p) experiments
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performed recently involved energies and momenta high enough to make compulsory the
use of relativistic nucleon dynamics. Within this context, the RDWIA, which incorpo-
rates kinematical and dynamical relativistic effects, has proved its capability to explain
polarized and unpolarized (e, €'p) experimental data [6,9-11]. Starting from the RDWIA,
the effective momentum approximation (EMA-noSV), originally introduced by Kelly [22],
is reformulated here paying special attention to aspects concerned with the property
of factorization. In addition, an analysis is made of the various assumptions that lead
to factorized polarized and unpolarized observables and which are mainly linked to the
spin-orbit dependence of the problem. Finally, a quantitative estimate of the validity (or
breakdown) of factorization is made for different observables that are commonly extracted

from (e, €'p) experiments.

The paper is organized as follows: in Sec. 2.2 we outline the basic RDWIA forma-
lism and revisit the EMA-noSV approach, emphasizing its connection with the factorized
approximation. In Sec. 2.3 we present our analysis for polarized and unpolarized observa-
bles, deriving the specific conditions which lead to factorization. In Sec. 2.4 we concentrate
on reduced cross sections and connect them to the momentum distributions. Results for
polarized and unpolarized observables are presented in Sec. 2.5. Numerical calculations
performed within different approaches are compared. Finally, in Sec. 2.6 we draw our

conclusions.

2.2 Relativistic distorted wave impulse approximation
(RDWIA)

The RDWIA has been described in detail in previous works (see for instance [6,11]).
In this section we limit our attention to those aspects needed for later discussion of the

results presented. In RDWIA the one body nucleon current

T(w,q) = [ dpii (p+ @) Tl (). (2.1

where w and g are the energy and momentum of the exchanged virtual photon, is cal-
culated with relativistic ¢£* and Y3¥ wave functions for initial bound and final outgoing

nucleons, respectively, and with relativistic nucleon current operator J*.

The bound state wave function is a four-spinor with well defined angular momentum

quantum numbers &y, up corresponding to the shell under consideration. In momentum
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space it is given by

gnb( )

b _# re P Tyke () = (—i b
nb(p) - (271')3/2 /d wnb( ) ( ) (Snbfnb( )Up

) o), (22
which is the eigenstate of total angular momentum j, = || — 1/2, and ®4*(p) are the

spinor harmonics

_ 1. R
O (B) = X (b, hljom) V" (D)1 (2.3)

mgbh

with ¢, = kp if kK, > 0 and £, = —kp — 1 if Kk < 0.

The wave function for the outgoing proton is a solution of the Dirac equation containing
scalar (S) and vector (V) optical potentials [6,7]. For a nucleon scattered with asymptotic

momentum p, and spin projection sg, its expression is

Ep—i—

# (p) = 4w > et Em 5 SELImY™ (Br)vr(p) - (2.4)

Kum

As the optical potential may be in general complex the phase shifts and radial functions

are also complex, and the wave function ¢*(p) is given by

V() = (i) ( 2(2) .p> o (p). 25)

Assuming plane waves for the electron (treated in the extreme relativistic limit), the
differential cross section for outgoing nucleon polarized A(€, ') B reactions can be written
in the laboratory system in the general form

do _ Eppr
d€fdedQF N (2’/1')3

UMfrec w/u/WlW ) (26)

where o is the Mott cross section, {ef, )} are the energy and solid angle corresponding
to the scattered electron and Qp = (QF, ¢r) the solid angle for the outgoing proton. The
factor fr.. is the usual recoil factor f,.! = |1 — (Er/E)(py - Pr)/P%|, being py and Ep
the momentum and energy of the residual nucleus, respectively. Finally, w,,, is the familiar
leptonic tensor that can be decomposed into its symmetric (helicity independent) and an-
tisymmetric (helicity dependent) parts and W is the hadronic tensor which contains all
of the hadronic dynamics of the process. The latter is defined from bilinear combinations

of the one body nucleon current matrix elements given in Eq. (2.1), as

ZJ“* w,q)J" (w,q) - (2.7)

2]1,-{-1
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The cross section can be also written in terms of hadronic responses by making use
of the general properties of the leptonic tensor. For (€, e'p) reactions with the incoming
electron polarized and the final nucleon polarization also measured, a total set of eighteen
response functions contribute to the cross section. Its general expression is written in the
form

do Erpr
degdQdye — (2mp M
UL [(RTL + RZLgn) cos ¢ + (RlTLgl + Rngs) sin qﬁp]
VT [(RTT + R?;Tgn) cos 2¢p + (RlTTgl + Rngs) sin 2¢F]
h {UTL: [(RZTL'@ + RTY §s) cos ¢ + (RTL’ + RzL'S\n) sin qﬁp]
v [RS8 + RIS, }} (2.8)

Free % {vr (R + RES,) +vr (R" + RLS,)

+ + 4+ o+

where v, are the usual electron kinematical factors [5,11] and A = £1 is the incident
electron helicity. The polarized and unpolarized nuclear response functions are constructed
directly by taking the appropriate components of the hadronic tensor W (see Ref. [5] for
their explicit expressions). The cross section dependence on the recoil nucleon polarization
is specified by the components Sy (k =1, n, s) of the ejected proton rest frame spin (sr)g

along the directions: I = py/pr, n = (g X pr)/|q X pr| and s =n x 1.

To finish this section and in order to ease the analysis of the results, the cross section
can be also expressed in terms of the usual polarization asymmetries, which are given as

ratios between different classes of response functions,

do 09

— =221 +P,S,+PS5 +P,S, A+ P'S,+ P'S, + P35S, , 2.
degddy | 2 [1+ PuSu+ PS4 PSS, + h (A+ PiSa+ PISi+ PS)| L (29)

with oy the unpolarized cross section, A the electron analyzing power, and Py (P}) the
induced (transferred) polarizations.
2.2.1 Factorization and effective momentum approximation

In nonrelativistic PWIA, the (e, ¢’p) unpolarized cross section factorizes in the form

do PWIA
(m) = Eppr frec Oep NNr(P) 5 (2.10)

where o, is the bare electron-proton cross section usually taken as o (or o.s) of de

Forest [23], and Nyg(p,,) is the non relativistic momentum distribution that represents
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the probability of finding a proton in the target nucleus with missing momentum p,,,
compatible with the kinematics of the reaction. It is well known that the factorized result
in Eq. (2.10) comes from an oversimplified description of the reaction mechanism. FSI, as
well as Coulomb distortion of the electron wave functions, destroys in general factoriza-
tion. In fact, most current descriptions of exclusive (e, €'p) reactions involve unfactorized
calculations. However, the simplicity of the factorized result makes it very useful to analy-
ze and interpret electron scattering observables in terms of single particle properties of
bound nucleons. Therefore it is common to quote experimental reduced cross section or

effective momentum distribution on the basis of the experimental unpolarized cross section

as
(i)™
de ;A0 dQp
pP(p, ) = . 2.11
( m) EFprrec Oep ( )
A similar expression can be used for the theoretical reduced cross section,
(zateams)”
th £ rdQdQF
p(p,,) = o 2.12
( ) EFpF f rec Oep ( )

constructed from the the theoretical unpolarized (e, e’'p) cross section, independently of
whether it is calculated within a relativistic or nonrelativistic formalism. We will say that
the factorization property is satisfied by p™(p,,) when the theoretical unpolarized cross
section factors out exactly o.p, and then, the theoretical reduced cross section does not

depend on it.

As we will demonstrate later in this paper, factorization is not a property exclusive
of the nonrelativistic PWIA approach. It is well known that, due to the negative energy
components of the bound proton wave function, factorization is not satisfied even in RP-
WIA [18]. However, if we neglect the contribution from the negative energy components,

the unpolarized cross section factorizes to a similar expression as in Eq. (2.10).

Starting from a fully relativistic calculation of the nuclear current, in what follows
we explore the most general conditions under which factorization is recovered. First, it
is important to note that in order to extract the elementary cross section “o.,” from the
general relativistic theory (RDWIA), the upper and lower components of the relativistic
wave functions that enter in Eq. (2.1) must be forced to satisfy the “free” relationship

with momenta determined by asymptotic kinematics at the nucleon vertex, that is

a-'pas

Ydown (p) = m

Yup(P) 5 (2.13)
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with Eqs = 1/p2, + M? and p,, the asymptotic momentum corresponding to each nucleon.

In what follows we discuss this condition (2.13) in the nonrelativistic language.

The nonrelativistic formalism is based on bispinors x(p) solutions of Schrodinger-like
equations. Generally, the nonrelativistic formalism can be analyzed using the following

semirelativistic (SR) four-spinor

seoy_ L [ x(P)
¥ (p)—\/N<ap (p)), (2.14)

E—|—MX

to be introduced in Eq. (2.1) in order to calculate a relativistic-like nucleon current ampli-
tude. In this way the relativistic kinematics is fully taken into account and no expansions
in p/M are needed. The one body nucleon current matrix element takes then the following

form:
T(w,q) = [ dpxi (b + )Ty (p, @) (p) (2.15)

with J t7(p, @) now an effective (2x2) current operator that occurs between bispinor wave

functions x3" (x}’) for the outgoing (bound) nucleon respectively.

The calculation of the nuclear amplitude using four-spinors like the one written in
Eq. (2.14), implies removal of the enhancement of the lower components that is present in
the four-spinors of Egs. (2.2) and (2.4). This is a well known fact present in nonrelativistic
calculations, but this alone is not enough to get factorization. It is also required the use
of exactly the same nuclear current operator as in a free electron-proton scattering. In
Eq. (2.15) then, the non-truncated effective current operator must be evaluated at the

asymptotic momentum values, leading to

J*(w, q) /dpx (p+a) Tt (pr—a,a)x (p) - (2.16)

One can show that this condition is implicit in one of the necessary assumptions introduced

in Ref. [3] to recover factorization in the nonrelativistic case.

In a relativistic calculation, the assumptions written in Eq. (2.13) set up the so-called
Effective Momentum Approximation with no Scalar and Vector terms (EMA-noSV)*, ori-
ginally introduced by Kelly [22], to which we will refer in what follows as EMA. The EMA
approximation in the relativistic framework, or the nonrelativistic calculation based on
Eq. (2.16), are essentially the same conditions which are necessary to recover factoriza-

tion, in either formalism. These conditions are necessary but not sufficient and in what

*The factorization property could be also analyzed within the framework of the asymptotic projection
approach (see Refs. [9,11,16] for details)
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follows, we concentrate on the EMA case to study additional assumptions needed to obtain

factorization.

In EMA, the bound nucleon wave function in momentum space is given by

Yl M (p) (2.17)

Il
N
N—

&
/-~
ER
= F
N
g
~~
]

N—
~_
K
aE
o o
—

)

N—

with E; = /p? + M? and p; = py — q. Likewise the outgoing relativistic distorted wave

function in Eq. (2.5) becomes

YLEMA(p) = (i) (azﬂi(”) " )) L (p). (2.18)

EF-|-Mg"C

Introducing these expressions into the equation of the one body nucleon current matrix
element (Eq. (2.1)), we get

Toa = X [0pe ) u(ps, 0)] X (Emsel i) Vi (br)

sh num

> <€bm£b2h|]b/vbb><£m£ S\JM)U:,,T% (Pr,q)

me, My

Z bare pFS’pIh)AZ;;(pF’ q) ; (219)

X

where we have written both nucleon wave functions in terms of free positive energy Dirac

spinors and we have introduced the bare nucleon current matrix element

Jlﬁwe(pFS’pIh’) = ﬂ(pF’ 8)j“u(p1, h) ’ (2'20)
with the term U,’:b',’;fl (pr, q) given by
87TM my* %
U, = i) [ dp g, (P)g:(1p + @)Yy (B)Y™ (P F @)™ , (2:21)
2Er(Eyr + M)

and the amplitude

1 1, 1 e
A5 (pp, ) = 3 (mgselim Y™ (Bp) 3. (bome,5hljsm)(Emegslim UL, (Pr, @)(2-22)

Kpum Mg, My

The result in Eq. (2.19) defines the nucleon current in EMA, and is our starting point
for the analysis of the conditions that may lead to factorized observables. Notice that
Jtar4 involves a sum over initial and final spin projections (s, h) of the bare nucleon cu-

rrent, times an amplitude that depends on the bound and ejected nucleon wave functions.
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Factorization in J,, 4 occurs if AL (pg, q) does not depend on the spin variables s and

h.

Before entering into a detailed discussion of the observables, it is important to stress
again that factorization may only be achieved assuming EMA and/or asymptotic projec-
tion, i.e., neglecting dynamical enhancement of the lower components in the nucleon wave

functions. This is a priori assumed within some nonrelativistic calculations.

2.3 Analysis of observables within EMA

In this section we investigate the conditions that lead to factorization of polarized and
unpolarized observables. Response functions, transverse-longitudinal asymmetry, electron
analyzing power, as well as induced and transferred polarizations are examined. The
analysis is made directly at the level of the hadronic tensor which, within the EMA

approach, can be written in the following way:

1

WEMA = %y + 1 % (JgMA)* JE‘MA

= Z Z [Jb‘im (pFSaPIh)]* Jé/are(PFSIa Plhl)

ss’ hh'

1 *
2 + 1 >[4 (e, @) A (Prs @) - (2.23)
b

Note that in Eq. (2.23) s, s" are the spin variables corresponding to the outgoing nucleon,

while h, h' correspond to the bound nucleon.

In order to simplify the analysis that follows, the general expression of the hadronic

tensor can be written in a more compact form as

EMA - Z Z Wiy ss’, hh,’ s’,hh’ (pFa q) ) (224)

ss' hh'

where we have introduced a general bare-nucleon tensor Wi ./,

Wgslj,hh’ = (Jbare) JI;/are = [H(pFﬂ S)j\uu’(plﬁ h’)] ’ [ﬂ(pF’ Sl)juu(plﬁ h’l)] ) (225)

and a general spin dependent momentum distribution function X;7 ./,

X;;?,hh’ (pF’ q) = 2][) +1 Z [ sh pF, Al;lbh/ (pF, q)

= > D (tmg SF\Jqu stm Br)Ye"" (Pr)

2-717 +1 Mo KpM gy m!



32 Capitulo 2. Factorizacién

1 1. 1., 1,
x>y Mwngihbw%)wnu§SUu)@mnz§hﬂﬁu9<ﬂn%§8ﬂﬂu3
Mgy Ty m%b m’e

X Uinte (Pes @) Ug i (Prr ) (2.26)

Making use of general symmetry properties (see Appendix A), the bare-nucleon tensor

in Eq. (2.25) can be decomposed into terms which are symmetric and antisymmetric under
interchange of y and v. Each of these terms shows a different dependence on the spin

variables: ss’ and/or hh'. Explicitly, the bare nucleon tensor can be written in the form

Wl.tslj’hh’ = Sl“j 5551 5hh’ + ZZI 535’ + A/::’ 6}1,}1’ + Sgslj,hh’ , (227)

S

where S (A) refers to symmetric (antisymmetric) tensors. Notice that the first (symmetric)
term in Eq. (2.27) does not depend on the initial bound neither on the final outgoing
nucleon spin variables; the antisymmetric second (third) term depends solely on the initial
(final) spin projections; finally, the fourth (symmetric) term presents dependence on both
initial and final nucleon spin projections simultaneously. This bare-nucleon tensor would

lead to the o, cross section in Eq. (2.10).

The general result for the bare nucleon tensor given in Eq. (2.27) constitutes the star-
ting point for the analysis of factorization for polarized as well as unpolarized observables.
In what follows we explore the specific conditions, linked to the spin dependence in the
problem, that lead to factorized results. We investigate separately the role played by the
dependence on the initial and/or final nucleon spin variables. As we show in next subsec-
tions, the factorization property at the level of spin-averaged squared matrix elements is
intimately connected with the spin dependence: a bound nucleon in a s-wave or, in gene-
ral, no spin-orbit coupling effects on the radial nucleon wave functions, may lead for some
specific observables to exactly factorized results. As it is clear from the analogy between
Eq. (2.16) and Eq. (2.1) with the input from Eq. (2.13), the analysis of spin dependence

here and in what follows is also valid for the nonrelativistic case.

2.3.1 No spin-orbit in the initial state

The general expression of X1 .., (2.26) is greatly simplified for no spin-orbit in the
initial state or, more generally in LS coupling. For instance in the case of nucleon knockout
from s-shells the orbital angular momentum ¢, = 0 and the spin dependent momentum

distribution is simply given by

Xogww (Pr, @) = Nyi (Pr, @) O (2.28)
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with

1 1 1 ~ o
NJE(pp. @) = = SN Umssplipy(fm/ ssel )Y (D) Y (Pr)
2.7’) + 1 Kum n’u’m' 2 2

1 . 1 . K Ty * &' m/
> {lmags| i) (Cmis s W) USTE" (Pr, @) Um0 (PR @) - (2:29)

mem,

X

In the case of no spin-orbit coupling with ¢, # 0 waves, a similar reduction to Eq. (2.28)

follows after summation of the spin dependent momentum distribution X on j, = £,+1/2.

Making use of Egs. (2.27) and (2.28), the hadronic tensor in EMA becomes

ng/[A = ZNsssF' lZ Wgsg,hh‘|
ss’ h
= YN [SM G+ A = S YN + S NEAL . (2.30)

ss’ ss’

From this result it clearly emerges that those responses coming from the symmetric tensor
S* factorize, while the ones coming from the antisymmetric part do not. Let us signal

out more precisely what factorization really means in this situation.

First, note that the momentum distribution function ), N7F that multiplies the sym-
metric tensor depends on the outgoing nucleon spin sg. In the case when recoil nucleon
polarization is not measured, an extra sum in sg has to be carried out and hence the mo-
mentum distribution, which is independent of sp, gives rise to the unpolarized responses
R" R", R™" and R™ in Eq. (2.8). On the other hand, if the spin of the outgoing proton
is measured via a polarimeter placed along a fixed direction (I, n or s), the momentum
distribution, now dependent on the final spin, contributes to the induced polarized res-
ponses: RL, R, RT7, and RI7 . Hence, in the case of no spin-orbit coupling in the initial
bound state, both types of responses (unpolarized and induced polarized) factorize, but
each kind of response factorizes with a different momentum distribution function. Then,
the induced polarization asymmetries P, (k = [,n,s), which are basically given by the
ratio between the induced polarized responses Ry and the unpolarized ones R*, will dif-
fer from the bare result. On the contrary, the momentum distribution functions cancel
when taking a ratio between two responses of the same kind, i.e., a ratio between two
induced polarized responses along a specific direction, or a ratio between two unpolarized
responses. Therefore such ratios would coincide with the bare results. This property can
be expressed in the general form

Ry R* R°

i R 2.31
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where o, 8 = L, T,TL or TT and k = [, n, s fixes the recoil nucleon polarization direc-
tion. The functions R*# represent the bare-nucleon responses, also usually named single-
nucleon responses [21]. The result in Eq. (2.31) explains also why the Ar; asymmetry,
which is obtained from the difference of electron unpolarized cross sections measured at
¢or = 0° and ¢ = 180° divided by the sum, is identical to the bare asymmetry in this

case. In terms of response functions we may write

v RTL v RTL
Arp = = = TL = Abare  (2.32)
ULRL + UTRT + ’UTTRTT ULRL + UTRT + UTTRTT L

To complete the discussion, we note that the electron analyzing power and transferred
polarization asymmetries involve responses coming from the antisymmetric part of the
tensor (2.30), which do not factorize, divided by unpolarized responses obtained from the
symmetric tensor term. Therefore the behaviour of A and P}, will differ from the bare
one. The amount of discrepancy between the factorized and unfactorized calculations of

different observables is discussed in Sec. 2.5.

2.3.2 No spin-orbit in the final state

Let us consider now the case of no spin-orbit coupling effects on the radial wave
function of the outgoing proton. In this case neither d, nor g, in Eqs. (2.4), (2.18) depend
on j. After some algebra (see Appendix B for details), this condition leads to s = §' = sp
in the bare-nucleon tensor, and therefore the momentum distribution depends only on the
hh' spin variables of the initial nucleon. The hadronic tensor is then given by

Wena = Z FsF hh’Nhh’(va q), (2.33)
hh!
where the momentum distribution function Ny (pp, q) is defined in Eq. (2.56) of Appen-

dix B. Using the decomposition in Eq. (2.27), we can write the following expression

WEna = [SW + A?ZSF:I ; N + % I:S“VSF hh + Ahh’] Niyp. (2.34)

The analysis of how polarized or unpolarized responses behave with respect to facto-

rization emerges straightforwardly from Eq. (2.34). Let us discuss each case separately:

e Unpolarized responses: RV, RT, R™" and R'”. They do not depend on spin and
come from the symmetric part of the tensor, i.e., they are given by S* >, N,
and hence factorize exactly. This result coincides with that one obtained in the

nonrelativistic study of Ref. [3].
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TL

. . J
e Transferred polarization responses: R, and R{[,.

They come from the antisym-
metric part of the tensor and depend on the final proton spin polarization, i.e.,
AL N, in exactly the same form as displayed in Eq. (2.27). Consequently,

these responses also factorize.

e Fifth response RT" . It comes from the antisymmetric part of the tensor and does
not depend on the recoil nucleon spin, i.e., it is given by >, ]vhh,.A%, and clearly

does not factorize.

e Induced polarized responses: RY, R}, RI'} and RI7 . They come from the sym-
metric tensor part and depend explicitly on the spin polarization of the outgoing

proton, i.e., they are constructed from 3, Npy S™

opsp.hhs and consequently do not

factorize.

Once the behaviour of the response functions is established, the asymmetries and po-
larization ratios can be easily analyzed. The case of A7y, which only depends on the
unpolarized responses, reduces to A%7¢ (see Eq. (2.32)). A similar comment applies also
to the transferred nucleon polarizations P/, P, and P,. Notice that the momentum dis-
tribution function involved in the unpolarized and transferred polarized responses is the
same and hence, it cancels when forming the polarization ratios. The electron analyzing
power A and induced asymmetries Py, given in terms of responses which do not factorize,

should differ from the bare calculations.

As a particular case of no spin-orbit in the final nucleon wave function, it is worth
to explore the plane wave limit for the outgoing nucleon. In this case (see Eq. (2.58) in
Appendix B), the momentum distribution N,ﬁl‘f" is diagonal and independent on A, thus
the fifth response R”" vanishes since ¥, A%, = 0. Similarly, the induced polarization

responses do not contribute because 3, St ;= 0.

2.3.3 No spin-orbit in both initial and final states

To finish with this analysis, let us consider the case of no spin-orbit coupling in the
initial nor in the final state. In this situation, factorization already comes out at the level
of the nuclear current matrix element. Note that £, = 0 in Eq. (2.54) of Appendix B, leads

to h = up and the matrix element simply reads

Jg‘MA = ﬂ(pFa SF)j\uu(pI’ :ub) UEI(pF’ q) ) (235)
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where U?, is defined in Eq. (2.55). This result resembles the situation occurring in the

free case. From the current (2.35) the hadronic tensor can be written in the form
1 0 uv uv
EMA 2 ‘U pF’ ‘ Z SFSF,ubub o 5 ‘U—l(pF’ Q)‘ (8 + ASFSF) . (2'36)

Then all responses (polarized and unpolarized) factorize with the same momentum distri-
bution. Note also that the whole dependence on the nucleon polarization s is contained
in the antisymmetric tensor. This implies that the polarized induced responses must be

zero. Furthermore, since Y, A"/, = 0 the unpolarized fifth response RT*" also vanishes.

2.4 Reduced cross sections and momentum distribu-

tions

Starting from a shell model approach, the relativistic (vector) momentum distribution
is defined as follows:

1
2+ 1

NG = gy S vt on) = o [0+ £00] - @30

Using the EMA approximation means projecting out the negative energies components of
the bound proton wave function, obtaining then the relativistic EMA momentum distri-

bution:

1 2E;

NEMA
(pr) an B + M

Z BV (p )l B (py) = — —————g%, (n1) , (2.38)

2b+1

this expression reduces to the nonrelativistic momentum distribution in the proper limit

because of its lack of contribution from negative energies.

In general, in a nonrelativistic formalism, the momentum distribution is defined from

bispinors x4’ (), solutions of Schrédinger—like equation:

Nyr(pr) = EXM’T (pr) ng (p1), (2.39)

b+1

with x4’ (p;) the Fourier transform of x}*(r),
1 i
X ) = gy [ dre P, (2.40)

Now, in nonrelativistic PWIA, the wave function for the ejected proton in the r-space
is
X () = PTG (2.41)
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and looking at the the Fourier transform in Eq. (2.40), it is natural to define a nonrelati-

vistic distorted wave amplitude as follows:
Xow (P @) = G [ dr it ) €97 ). (2.42)

Two observations are worth mentioning:

1. xpw(Pg,q) is an amplitude, not a bispinor.

2. If the final proton wave function is a plane wave, the following relationship is satis-
fied:

> Ixew(pr @)l* = X5 (p)X1 (p)) - (2.43)

SF

So, we can define a nonrelativistic distorted momentum distribution

pow (Prs Q) 2J 1 2 2 Ixow(pp,a)l” (2.44)

Mp SF
that takes into account FSI, and has the property that we recover the nonrelativistic

momentum distribution in Eq. (2.39) in the plane wave limit.

Let us generalize the above expression to the relativistic case. We request that we
recover from it the relativistic EMA momentum distribution of Eq. (2.38) when there
is not FSI and the initial wave function is evaluated within EMA. For that purpose we

define a relativistic distorted wave amplitude,

Yow (Pr, @) = 3/2 / dr 3 () 9Tyl (r) = 3/2 / dp v (p + @) v (p)
(2.45)
with K = \/(QEIEF)/(EIEF + p; - pr + M?), so that the relativistic distorted momen-

tum distribution is given by this amplitude squared after sum and average over initial

and final spins,
1

pow (Pr,q) = Tt 1

>3 Wow(pe a)l - (2.46)

Uy SF
It is easy to check that ppw (Pp, q) coincides with the relativistic EMA momentum distri-
bution Eq. (2.38), when one takes EMA approximation for the initial wave function and

the plane wave limit for the final one,

pEMA(pp, q) = NFM4(p;). (2.47)

It is also important to remark that ppw (pg, g) coincides with the corresponding reduced

cross section of Eq. (2.12) whenever there is factorization.
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2.5 Numerical results

To show quantitatively the effects introduced by the different approaches to the general
description of (€, e'p) reactions, we compare our fully RDWIA calculations with the EMA
results, exploring also the effects introduced by the spin variables in the initial and final
nucleon states. The results presented in this section illustrate and reinforce the conclusions

reached in the preceding sections concerning the factorization properties.

Guided by the factorization properties one may focus on two different aspects in the

analysis of observables.

1. On the one hand, one may factor out the elementary electron-proton electromagnetic
cross section, in order to isolate and investigate nuclear properties like momentum

distributions.

To the extent that factorization holds the reduced cross section will follow the mo-
mentum distribution. In the first part of this section we compare factorized and
unfactorized results for the reduced cross section to the momentum distribution.
We show how the different ingredients that break factorization may obscure the

extraction of momentum distributions.

First of all, we note that since F'SI modify the response of the ejected nucleon,
it is more adequate to compare reduced cross sections with distorted momentum
distributions (as defined in the previous section). This is done in Fig. 2.1 that we

discuss below.

2. On the other hand, one may take ratios between observables to cancel out the de-
pendence on the momentum distribution, in order to isolate and investigate intrinsic

nucleon properties in the nuclear medium, like nucleon form factors.

In Fig. 2.1 we present reduced cross sections at quasielastic kinematics for three cases:
complete RDWIA approach (solid line), EMA (dashed line) and EMA with no spin de-
pendence in the final state, referred to as EMA-noLS (dotted line). We also show by a thin
solid line the distorted momentum distributions (ppw, Eq. (2.46)) which are equivalent
to what one would obtain from a factorized approach to RDWIA. Note that up to |p,| of
around 250 MeV /¢, the factorized approach ppw follows reasonably well the full calcula-
tion. Actually in this p,, range, EMA and EMA-noLS are also reasonable approximations

to the complete calculation. However, at |p,,| > 250 MeV /c the full approach produces
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Figura 2.1: Reduced cross section for proton knockout from 1p;/, (upper panel) and 1ps/,
(middle panel) in 'O and from 2s;/, in **Ca (lower panel). RDWIA calculations (solid
line) are compared to EMA (short-dashed line) and EMA-noLS (dotted line) results. The
corresponding relativistic distorted wave momentum distribution is also plotted (thin solid

line). Negative (positive) p,, values correspond to ¢ = 0° (180°) respectively.
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more reduced cross section for p,, < 0 than for p,, > 0, leading to a much larger asym-
metry in this region as we would see in Fig. 2.2. We also note that differences between
complete RDWIA reduced cross section and ppy (hence deviations from factorization)
are more noticeable at |p,,| > 250 MeV /c in the p,, < 0 region. Nonrelativistic calcula-
tions would generally yield results on the line of the EMA ones presented here. Note also
that, the reduced cross section in EMA practically coincides with ppw for the s/, orbital
in °Ca, and even in the *O p; /5 and ps/» orbitals the reduced cross sections in EMA and

ppw are rather close in the whole p,, range.

In Figs. 2.2 to 2.4 we show the T'L asymmetry, electron analyzing power, induced
polarization and transferred polarizations, respectively, for proton knockout from the p; /5
(left panels), ps/o (middle) in *0 and sy, (right) shells in “’Cla. Results are computed for
CCQC2 current operator and Coulomb gauge. The bound nucleon wave function corresponds
to the set NLSH [24-27| and the outgoing nucleon wave function has been derived using
the EDAIO relativistic optical potential parameterization [28|. As in the previous figure,
the selected kinematics corresponds to the experimental conditions of the experiments
E89003 and E89033 performed at Jlab [29-31]. This is (¢,w) constant kinematics with
g =1 GeV/c, w = 440 MeV and the electron beam energy fixed to g; = 2.445 GeV. Co-
planar kinematics, with ¢ = 0°, are chosen for computing the polarization asymmetries.
Therefore, as P, = P; = P}, = 0 when ¢ = 0°, they are not plotted. In each graph, we
show five curves corresponding to the following approaches: RDWIA (solid), RDWIA but
without spin-orbit coupling in the final nucleon state, denoted as RDWIA-noLS (dashed),
EMA (short-dashed), EMA-noLS (dotted), and finally the factorized result (dash-dotted).

As shown in Sec. 2.3, factorization only holds within the EMA approach and assuming
specific conditions on the spin dependence in the problem. In Table 2.1 we summarize the
basic assumptions within EMA that lead to factorization for the different observables. To

simplify the discussion of the results that follows we consider each observable separately.

The asymmetry Arp, presented in Fig. 2.2, shows that factorization emerges within
EMA in the case of the s1/, shell (where EMA, EMA-noLS and factorized results coin-
cide). For spin-orbit dependent bound states (pi/; and ps/), factorization emerges only
when there is no spin-orbit coupling in the final state (EMA-noLS coincides with facto-
rized results). Also note that the oscillatory behaviour shown by Az; in RDWIA and in
RDWIA-noLS is almost entirely lost within EMA, even when there is no factorization.
This reflects the crucial role played by the dynamical enhancement of the lower compo-

nents of the nucleon wave functions for this observable. The spin dependence in the final
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Figura 2.2: Ary, asymmetry for proton knockout from 1p;/, (left panel) and 1ps/, (middle
panel) in '°0 and from 2s;/, in **Ca (right panel). RDWIA calculations (solid line) are
compared to RDWIA-noLS (dashed line), EMA (short-dashed line), EMA-noLS (dotted
line) and factorized (dash-dotted line) results. The EMA-noLS calculation coincides in
all panels with the factorized (A57¢) result. In the right hand panel EMA, as well as
EMA-noLS, coincides with the factorized (A%9e).
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no LS initial | no LS final | no LS both

Arp | AR A A

A — — 0

P, — — 0

P, — — 0

P — — 0

Prlb - Pn’,bare Pn’,bare

Pll . Pl’bare Pl’bare

P.5{ - P;bare P;bare

Tabla 2.1: Properties of factorization of different observables using the EMA approxima-
tion and turning off the spin-orbit coupling in the initial wave function (first column), in

the final wave function (second column) or in both simultaneously (third column).

nucleon state modifies significantly the values of Ary even at low missing momentum, but
preserves its general oscillatory structure, compare for instance RDWIA vs RDWIA-noLS
or EMA vs EMA-noLS.

The electron analyzing power A is presented in Fig. 2.3. This observable is zero in co-
planar kinematics so the azimuthal angle is fixed to ¢ = 225° in Fig. 2.3, but the remarks
that follow also apply to other ¢z # 0°,180° values. As we demonstrated in Sec. 2.3, the
fifth response RTZ" involved in A only factorizes if there is no spin-orbit contribution in the
initial and final nucleon wave functions. Moreover, in such situation RTX = 0 and hence
A =0, as occurs for 515 shell within EMA-noLS in Fig. 2.3. From a careful inspection of
Fig. 2.3 we also observe that the main differences between the various approaches come
from the spin-orbit term in the final state. Note that the discrepancy between RDWIA
and EMA (or likewise between RDWIA-noLS and EMA-noLS) is significantly smaller
than the discrepancy between RDWIA and RDWIA-noLS (or EMA vs EMA-noLS). In
all of the cases with A # 0, oscillations survive. The behaviour of A contrasts with the
one observed for the asymmetry Azr. This is due to the fact that factorization is broken

down already at the EMA level even in the s/, shell.

The induced polarization P, is presented in Fig. 2.4. Here the discussion of results fo-
llows similar trends to the previous one on A. Factorization requires no spin dependence

in any of the nucleon wave functions, being the induced polarized responses equal to zero
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Figura 2.3: Electron analyzing power A at (¢,w) constant kinematics and azimuthal angle

¢r = 225°. The labeling of the curves is as in Fig. 2.2. For this observable factorization

is only achieved in the EMA-noLS curve on the right hand panel. See text for details.
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Figura 2.4: Induced polarization P, at coplanar kinematics with ¢ = 0°. Kinematics and

labeling as in Fig. 2.2. Only the EMA-noLS calculation for a s/, shell factorizes.
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Figura 2.5: Longitudinal transferred polarization P/ (top panels) and sideways transferred
polarization P! (bottom panels) at coplanar kinematics (¢r = 0°). In this case, factori-
zation is obtained within the EMA approach when there is no spin-orbit coupling in the
final state (EMA-noLS, dotted line).
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in such a case (notice that P, is zero in the plane wave limit). In any other situation facto-
rization breaks down and P, shows strong oscillations in all cases. Again, it is important
to point out that the behaviour of the RDWIA calculation is qualitatively followed by the
EMA approach, differing much more from the RDWIA-noLLS or EMA-noLS. This reveals
the important effects introduced by the spin-orbit coupling in the optical potential for

polarized observables, contrary to what happens for the unpolarized Ary.

The comment above applies also to the transferred polarizations P and P; (Fig. 2.5) for
which RDWIA and EMA approaches give rise to rather similar oscillating (unfactorized)
results. On the contrary, RDWIA-noLS, which is also unfactorized, deviates significantly
from RDWIA due to the crucial role of the spin-orbit dependence in the final state.
Finally, EMA-noLS coincides with the bare asymmetries showing a flat behaviour without
oscillations. This is in accord with the findings in Sec. 2.3.2, where we demonstrated
that the unpolarized R* and transferred polarized Rla; responses factorize with the same

momentum distribution function (see Table 2.1 and Eq. (2.34)).

2.6 Summary and conclusions

A systematic study of the property of factorization in quasielastic (€, €'p) reactions
has been presented. Starting from a RDWIA analysis, we have reformulated the EMA
approach and studied the conditions which are needed to get factorization. In this context,
we have explored the role of the spin-orbit coupling in the initial and /or final nucleon states

and its influence on the breakdown of factorization.

From our general study we conclude that exact factorization only emerges within the
EMA approach, i.e., neglecting the dynamical enhancement of the lower components in
the nucleon wave functions by using Eq. (2.13). Furthermore, additional restrictions on the
spin dependence in the problem are necessary to get factorization in the case of polarized

observables.

Within the EMA approach, the factorization properties of various (€, e'p’) responses

and asymmetries are as follows (see also Table 2.1):

The unpolarized R* responses factorize to a single, polarization independent, momen-
tum distribution when the initial or the final nucleon wave functions are independent on
spin-orbit coupling (i.e., depend on ¢ but not on j). As a consequence, the A7y asymmetry

is in these cases given by the bare-nucleon A5 asymmetry.
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The fifth response RTY (and consequently A), depending on electron beam polariza-
tion, never factorizes, but becomes zero when both initial and final nucleon wave functions

are independent on spin-orbit coupling, as well as in the nonrelativistic plane wave limit
(PWIA).

The transferred polarization responses R?' factorize when the final nucleon wave func-
tion is independent on j. Consequently the transferred polarizations are in this case given
by the bare-nucleon ones, independent on whether the initial state may or may not depend

on spin-orbit coupling.

The induced polarized responses Rj do not factorize even when the final nucleon
wave function is independent on j, unless the initial wave function is also independent
on j, in which case Rj become zero. If the final wave function depends on spin-orbit
coupling but the initial wave function does not, the induced polarized responses factorize
with a polarization-dependent momentum distribution different from the unpolarized one.
Therefore, as stated in Eq. (2.31), a new factorization property emerges when there is no

spin-orbit coupling in the initial state.

From our numerical calculations a clear difference in the behaviour of polarized and
unpolarized observables comes out. In the case of the unpolarized Ar; asymmetry, its
general structure is not substantially modified by the final spin-orbit dependence, being
much more affected by the lower components of the nucleon states. The strong oscilla-
tions in Ary within RDWIA practically vanish in EMA. On the contrary, the polarized
asymmetries A, P, and P/, present a very strong sensitivity to the final spin dependence,

while the general structure of the RDWIA results is preserved by the EMA calculations.

As a general conclusion, we can say that observables that require less extra assumptions
(apart from EMA) to factorize, are more sensitive to any ingredient of the calculation
that breaks factorization. Such observables are good candidates to test the elements of

any model/calculation, as it is the case of the A7, asymmetry.

In spite of the fact that factorization is not reached when realistic calculations are ma-
de, we show that the reduced cross sections extracted from fully unfactorized calculations
follow the factorized distorted momentum distribution quite well for moderate values of
the missing momentum, where the bulk of the cross section lies. Then, reduced cross
sections and integrated quantities directly related to them, like nuclear transparencies or
inclusive cross sections, are reasonably predicted by the factorized scheme, as long as one

remains at quasielastic kinematics. We may conclude that the unpolarized cross section
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follows closely the factorized calculation that takes FSI into account. In other words, in
spite of the breakdown of factorization of the cross section introduced by FSI and by
negative energy components of the relativistic model, one may still extract a meaningful

effective momentum distribution within this formalism.

While the bulk of the cross section factorizes to a good approximation, ratios of cross
sections like Ary or polarizations are very sensitive to the ingredients of the calculation
that break factorization. This is why in particular the A7y observable is very sensitive to
the negative energy components of the wave functions, and provides a plausible signature

of the relativistic dynamics.

Contrary to Arp, polarizations are much more sensitive to the spin-orbit properties of
the upper components of the wave functions than to the dynamical enhancement of the
lower components. Yet, RDWIA transferred polarizations closely match the factorized
results in certain p,, ranges. This suggests that measuring transferred polarizations in
those ranges may safely explore modifications of the nucleon form factor ratios in the

nuclear medium.
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Appendix A

In this appendix we present in more detail the hadronic bare-nucleon tensor (2.25),

which can be written using traces in the form
Weg e =Tr j“u(pF,s)ﬂ(pF,s’)j"u(pl,h’)ﬂ(pl,h) , (2.48)

—u ~
where we use the notation J = ~0J#1A0,
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Making use of the following relation |17, 18]

_ Oss' + 75 sy £+ M
ulp, sya(p, ) = = oo P (2.49)

with ¢4, a pseudovector defined as %, = u(p, s')y*v°u(p, s) which reduces to the four

spin S* in the diagonal case, i.e., ¢¥ = S*, the bare nucleon tensor reads

Wigmw = ﬁTT :?M(PF‘l‘M)jU(PI—{—M)] St Oppy
+ ﬁTT jA “(Pr+ M) Ty $ﬁhhf(PI+M)] sl
+ ﬁﬂ“ :j"vs ¢551(PF+M)J”(PI+M)] Shw
b [T b Pet T P 00)] . 20

This result is expressed in a compact form in Eq. (2.27).

Appendix B

Let us consider the case of no spin-orbit coupling in the final nucleon wave function.
This means that the radial functions g, and ¢, depend only on / but not on j. Then the

upper component of the wave function is given by

Er + M —307 \m (=~ * 1 - P
Vi) = Am ZTZG %y, (pF)gz(p)2<fm§sFl.7u><I>ﬁ(p)
o m ju
= G(p,Pp)Xsr (2:51)
with
E + —i0% m* m (o
G(p,pp) = - Z Y™ (Br)g; (0) Y (D) - (2.52)

The resulting wave function for the ejected proton is then

. oM
s EMA(p) = mG(p,pp)U(pF, Sp) . (2.53)

Introducing this result into the expression of the current matrix element, we get

1 . _ ~ m
Tona = 3 (lma,shljvis) [0(pr, sp) TMulpy, )| Us® (roq)  (2:54)

’mlbh
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being,
2M
V(Er + M)(Ep + M)

Ui’ (pr @) = (=) [ dpG*(p+ 4, Pr) 9w, ()Ys, *(B) . (2.55)

We observe that the whole dependence on the spin polarization sp is contained in the
Dirac spinor u(pg, Sr). From Eq. (2.54) we can immediately construct the hadronic tensor
WE 4, which can be written in the form of Eq. (2.33) with the momentum distribution

function given by

1
2 +1

1 . 1 . My, * m’
> X <fbmeb§h|ﬂbub>(fbm2bthbbub)Unbl” Ur,* . (2.56)

Bo my, mzb

Nhh’ (va ‘I)

As a particular example, let us consider the case of the plane wave limit without
dynamical relativistic effects. In this situation the function G(p, pr) (Eq. (2.52)) simply

reduces to
Er+ M

GPW(p7pF) = 2EF

(27)*6%(p — pp) (2.57)

and the momentum distribution results

2

~pw M
N
2E;Ep

hh' Prq) = O

(2m) NPMA(py). (2.58)
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We use the relativistic distorted wave impulse approximation to analyze data on 160(e, e'p) > N
at |Q?| < 0.4 (GeV/c)? that were obtained by different groups and seemed controversial. Re-
sults for differential cross sections, response functions and Ay, asymmetry are discussed and
compared to different sets of experimental data for proton knockout from p;/, and p3/s shells
in 0. We compare with a nonrelativistic approach to better identify relativistic effects. The
present relativistic approach is found to accommodate most of the discrepancy between data

from different groups, smoothing a long standing controversy.
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3.1 Introduction

Quasielastic (e, 'p) processes are a powerful tool to study bound nucleon properties.
Indeed, coincidence (e, €'p) measurements at quasielastic kinematics have provided over
the years detailed information on the energies, momentum distributions and spectrosco-
pic factors of bound nucleons. This is so because at quasielastic kinematics the (e, e'p)
reaction can be treated with confidence in the impulse approximation, ¢.e., assuming that
the detected knockout proton absorbs the whole momentum (¢q) and energy (w) of the
exchanged photon (for recent reviews of the subject see ref. [1| and references therein).
Until recently most data were concentrated in the low missing momentum range p,, < 300
MeV /c, where p,, is the recoil momentum of the residual nucleus. In the last years [2]
higher p,,-regions are being probed at small missing energies F,, to study further aspects
of bound nucleon dynamics and nucleon currents. A substantial amount of theoretical
work on (e, €'p) has been carried out on the basis of nonrelativistic approximations to the
nucleon current. This is the case of the standard distorted wave impulse approximation
(DWIA) [1] that uses a nonrelativistic approximation to the nucleon current operator and
wave functions. DWIA has been successfully used over the years [3| to analyze (e,€'p)
data using bound and scattered proton wave functions deduced from phenomenological
nonrelativistic potentials. The limits of validity of the nonrelativistic DWIA approach are

now being studied by Meucci, Giusti and Pacati [4], among others.

In past years we investigated [5-8] nuclear responses and differential cross sections
for exclusive quasielastic electron scattering within the framework of relativistic mean
field approximations. In the relativistic distorted wave impulse approximation (RDWIA)

[5,9-11] the one-body nucleon current,

Ty, @) = [ dpbe(5+ DI, DUs (D), (3.1)

is calculated with relativistic ¥)g and 1'r wave functions for initial bound and final outgoing
nucleons, respectively, and with relativistic nucleon current operator, .J . The bound state
wave function is a four-spinor with well-defined parity and angular momentum quantum
numbers, and is obtained by solving the Dirac equation with scalar-vector (S-V) potentials
determined through a Hartree procedure from a relativistic Lagrangian with scalar and
vector meson terms [12|. The wave function for the outgoing proton is a solution of the
Dirac equation containing S-V global optical potentials [13] for a nucleon scattered with

asymptotic momentum pr. Dirac equations for both scattered and bound wave functions
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are solved in coordinate space and their solutions are then transformed to momentum

space where necessary.

Eq. (1) sets up the scenario where differences between RDWIA and DWIA are at play.
To go from the relativistic to the nonrelativistic approach the one-body (4 x 4 matrix)
current operator is first of all expanded in a basis of free nucleon plane waves. This amounts
to a truncation of the nucleon propagator that ignores negative energy solutions of the
free Dirac equation. Next, a Pauli reduction [6] is made to transform the current operator
into a 2 X 2 matrix, and an expansion in powers of (¢/M) and/or (p/M) (where M is
the nucleon mass) is made [14]. Finally the transition nucleon current is calculated as the
matrix element between bispinorial, nonrelativistic bound (¢p) and scattered (¢r) wave
functions instead of the 4-component g, ¥ wave functions. We then cast relativistic

effects into:

i) Kinematical. These are effects due to the truncation of the current operator to first,
or higher order in p/M, q/M. For moderate p/M values the relativized form proposed

in [14] gives proper account of such effects.

ii) Dynamical. These are effects due to the differences between relativistic and nonre-
lativistic wave functions which depend not only on the 4-spinor versus 2-spinor structure,
but also on the potentials used in the respective Dirac and Schrodinger equations for the
bound and scattered nucleon. Salient features of dynamical effects are: a) A dynamical
depression of the upper component of the scattered nucleon wave function in the nuclear
interior, typically identified as the effect of the Darwin term coming from the derivative
of the optical S-V potentials [6]. b) A dynamical enhancement of the lower components,

mainly that of the bound nucleon wave function.

So far, we applied successfully RDWIA to 2%Pb and *°Ca at low |Q?| [5,6], and to
160 at high |Q?| [8,15]. The effect caused by the nonlocal Darwin term for “°Ca and
208Ph cases was studied in detail in refs. [5,6]. The Darwin term causes an apparent
enhanced absorption when comparing the RDWIA differential cross section to the DWIA
one at moderate p,, values, thus predicting larger spectroscopic factors [5,6,16|. For larger
missing momentum values (p,,/(Mc) > 1/3) the lower components of the relativistic
wave functions start to play a more important role, enhancing the higher momentum
components of the nucleon wave functions. In previous work [7] we found that RDWIA
calculations, compared to standard DWIA, tend to produce lower cross sections at p,, <
300 MeV /¢ and larger cross sections at p,, > 300 MeV /c, improving agreement [5-7] with

experiment.
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The effect of the dynamical enhancement of the lower components was studied in
RPWIA in refs. [17,18]. It was also studied in RDWIA in ref. [8] at high |Q?|. In both
cases it was found to play a crucial role in the T'L responses. Recent data [15] on %O at
high |Q?| seem to confirm former RDWIA predictions. In particular, the richness shown
by the structure of the Ar; asymmetry, which is different for p/» and ps/s shells, is
only consistent with predictions of relativistic calculations that include the dynamical
enhancement of the lower components of bound Dirac spinors. Moreover, recent data on
polarization observables in C at |Q?| ~ 0.5 (GeV/c)? also agree nicely with RDWIA
analysis [19,20].

For 'O there is an important controversy in the comparison of theory to data at low
|Q?|. We refer to the data sets from 1p-shell proton knockout experiments on O per-
formed at Saclay [21] and NIKHEF [22,23| in various kinematics in late 80’s/early 90’s.
These experiments measured the cross section as a function of missing momentum and,
in particular Chinitz et al. |21] and Spaltro et al. |22], extracted also the T'L response
and Arr asymmetry at |Q? = 0.3 (GeV/c)? and 0.2 (GeV /c)?, respectively. The mea-
surements from Chinitz et al. were compared to relativistic [21] and nonrelativistic [22]
DWIA calculations showing relatively small deviations from theory. On the other hand,
the data of Spaltro et al. [22] were compared to results from standard nonrelativistic
DWIA calculations, and were found to be far from theory. Using nonrelativistic optical
potential parameters by Schwandt et al. [24], and spectroscopic factors fitted to data in
parallel kinematics, Spaltro et al. [22] found that the experimental RT” is enhanced by a

factor ~ 2.05 for the 1ps/, shell and by a factor ~ 1.5 for the 1p; ;.

Though the large discrepancy between DWIA results and experiment found by Spaltro
et al. may in part be due to two-body currents, calculations of exchange current effects
are still contradictory [25,26]. Hence, the controversy surrounding the 7T'L response and
asymmetry data still persists. In view of forthcoming information on O responses from
experiments at Jefferson Lab in the near future, it is important to reexamine these sets
of data with RDWIA calculations. We investigate whether a systematic fully relativistic
analysis of the (e, ¢'p) data at low |@?| may explain the apparent discrepancies between
data from Saclay [21] and NIKHEF [22,23].

The paper is organized as follows: in Sec. 3.2 we summarize the basic formalism nee-
ded to describe coincidence electron scattering reactions, paying special attention to the
relativistic distorted wave impulse approximation (RDWIA). Section 3.3 contains the

theoretical results obtained and their comparison with the experimental data. In Sec. 3.4
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we present our conclusions.

3.2 Description of (e, ¢'p) calculations

The general formalism for exclusive electron scattering reactions has been presented
in detail in several previous papers. We refer in particular to Refs. [1,5,27]. Here we just
summarize the kinematics and focus on those aspects that are of relevance to the points
under discussion in this paper. As a guide to the reader we write down the unpolarized
cross section in Born approximation assuming plane waves for the incoming and outgoing

electron (treated in the extreme relativistic limit),

do

m = Kopou frec [ULRL +vrRY + vpp RT cos ¢y + vrr R cos 2¢F] . (3.2)

where €’ and €, are the energy and solid angle corresponding to the scattered electron and
Qp = (0F, ¢r) is the solid angle for the outgoing proton. The factor K is given by K =
|pr|Er/(27)3, with pr the momentum carried by the ejected proton and Er its energy.
The term f,.. is the usual recoil factor f,.. = |1 — (Er/Ea_1)(Pa1 - Pr)/|Pr|*|, where
pa_1 and E4_; are the momentum and energy of the residual nucleus, respectively. The
kinematical factors are vy, = A2, vr = A\/2+tan? 0, /2, vrr = \/2, vrr, = M/ + tan? 6, /2
with A\ = 1—(w/|q])?, where w and ¢ are the energy and momentum transfer in the reaction
and 6, the electron scattering angle. The above factors, that contain the dependence on
the electron kinematics, coincide with those given in [27,28] except for a factor v/2 in
the interference T'L term. We remark that in refs. [21,22] a different convention for K
was used (see for instance eq. (1) of ref. [22]), which amounts to a factor M/EFr of the

responses presented in this work with respect to the ones displayed in [21,22].

Our calculation of differential cross sections and responses includes also the effect
of Coulomb distortion of the incoming and outgoing electron waves. This breaks the
simplicity of eq. (3.2), which is however still useful as a guide. Nevertheless, for %O
Coulomb distortion effects in the electron wave functions are tiny (less than 1.5% effect

on the cross section).

The hadronic current enters only in the response functions R*, o = L,T,TL,TT where
L and T denote the longitudinal and transverse projections of the nuclear current with

respect to the momentum transfer ¢, respectively. Note that the response functions can be
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separated by performing measurements with different kinematical factors v, and/or values
of the azimuthal angle ¢r, while keeping the momentum and energy transfer constant.
The response R’ is obtained from differential cross sections at ¢ = 0° and 180°, both
in theory and in experiment. Experimental data for the cross section are often presented
in terms of reduced cross sections or effective momentum distributions p(p,), obtained by
integrating over a particular missing energy peak the differential cross section divided by
K (27)%0,p. Thus p(pr,) is defined by,

o) = [, (e /K 7o) . (33)

The free electron-proton cross section, oy, is usually taken as occ1 of de Forest [29].
One must be aware that the cross section given in eq. (3.2) has a strong dependence in
the kinematical variables via K and o, which is removed in the reduced cross section.
For instance, at the kinematics of the experiment of Chinitz et al. [21] (Tr = 160 MeV,
Q%] = 0.3 (MeV/c)? and €pearn = 580 MeV) a small variation of 5 MeV in T and w
(keeping E,, and p,, constant), may change the cross section by as much as 7% and the
reduced cross section by less than 2%. In order to minimize kinematical dependences, it
is safer to determine spectroscopic factors by scaling the theory to data on reduced cross
sections rather than to data on cross sections. This is so because experimentally, a folding
and average of the cross sections, responses and/or reduced cross sections is performed
over the experimental acceptance, and central values for the kinematical variables are
quoted. Theoretical calculations are done for the quoted central values. Due to this, it is
not unusual that spectroscopic factors may depend on whether one chooses to set the scale
by comparing to reduced cross sections or to differential cross sections, or even to separate
responses. In this work we first derive the spectroscopic factor (S,) from the reduced cross
section data. Then we use this same factor to compare to data for the individual responses.

In this way the analysis of R7% and other responses is more consistent and meaningful.

Another quantity also obtained by the experimentalists and discussed in next section

is the asymmetry Ap;, given by

A — (¢r =180°) — o(¢r = 0°)
7 o(pp = 180°) + o(dp = 0°)

(3.4)

One can see from eq. (2) that this observable is closely related to R, with the advantage

that it is free from the scale factor ambiguity.
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3.2.1 Relativistic Distorted Wave Impulse Approximation (RD-
WIA)

In RDWIA the process is described [5] in terms of the one-body nucleon current given
in eq. (3.1). The relativistic bound nucleon wave function, 9p, is a four-spinor with well
defined angular momentum quantum numbers k, p, corresponding to the shell under

consideration. In coordinate space it is given by:

9x(r)oK(7
wxm=(. ()u(?), (35)
ifu(r) o, (7)
which is the eigenstate of total angular momentum with eigenvalue j = |k| — 1/2,
. r . A
¢ (F) = Y_(Imzoliu)Yim(7)x5? (3.6)

2

withl =k if Kk >0and | = —k —1 if Kk < 0. The functions f, g, satisfy the usual coupled
linear differential equations [5,30, 31].

The wave function for the outgoing proton, ¢g, is a scattering solution of the Dirac
equation, which includes S—V global optical potentials. This wave function is obtained as

a partial wave expansion in configuration space |5, 6]:

Er+ M

V() =4\ S5

> e B m L onli Y (B, ()

K1,

where #(7) are four-spinors of the same form as that in eq. (3.5). The phase-shifts and

radial functions are complex because of the complex potential.

The choice of the current operator J# is to some extent arbitrary (see discussion in
refs. [5,17,32]). Here we consider the two most popular choices denoted as CC1 and
CC2 [29]:

A o

Jeor = (Fi+ )y - ﬁ(P + Pr)" (3.8)

Jho, = Fiy+ i&a’“’Q (3.9)
CcC2 IM Vo

where F; and F» are the nucleon form factors related in the usual way [33] to the electric

and magnetic Sachs form factors of the dipole form. The variable P in eq. (3.8) is the

four-momentum of the initial nucleon for on-shell kinematics, i.e., P* = (E(p), ) (E(p) =
P2+ M? and p = pr — Q).
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Thus the evaluation of the one-body current matrix element involves the use of 4 x 4-
operators and 4-spinors with negative energy components. This is at variance with the
nonrelativistic (DWIA) approximation where a truncated current operator is used [34] and
matrix elements are evaluated between bispinorial wave functions (¢p, ¢r). Therefore in
the discussion of results in next sections we shall refer to relativistic kinematical effects
—that have to do with the differences due to the use of the complete relativistic current
operator instead of the truncated one— and to relativistic dynamical effects. A way to fully
incorporate the kinematical relativistic effects was suggested in ref. [6,14], and studied in
detail in ref. [35] for the reaction ?H (e, ¢'p).

3.2.2 Remarks on relativistic dynamical effects

As mentioned in the introduction the dynamical effects come from the differences bet-
ween relativistic and nonrelativistic potentials and wave functions. In ref. [6] we discussed
in detail effects on reduced cross sections for 2°®Pb in parallel kinematics due to differences
between the upper components of the four-spinors ¥, ¥ which are Dirac solutions with
S-V potentials and the bispinors ¢ g, ¢ which are Schrédinger solutions with standard

(Wood-Saxon type) potentials for bound and scattered nucleons.

To illustrate the meaning of this effect we recall that the Dirac equation with S-V

potentials
(Eyo—p-7—M)p=0 (3.10)
with
E = E-V(r) (3.11)
M = M-S(r) (3.12)

¢up
= , 3.13
¢ (wdown) ( )

can be written either as a system of coupled linear differential equations for ¥y, Yaown,
or as a second order differential Schrodinger like-equation for 1,, containing also a first

order derivative term (the Darwin term). Furthermore, using the transformation

Yup(r) = K(r)o(r), (3.14)

the non-local (Darwin) term can be eliminated to obtain a more standard Schrédinger
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equation with second derivatives only

_V2
2M

o) = M i (3.15)

- UDEB

with Upgp the Dirac equivalent potential [6] with central and spin-orbit terms

Upgs = Ve+Vso &0

1
Ve = m[VQ—QEV—SQ—I—QMS-i—VD]
Vo = L%+L32_A_i<%)2
DT rAer T240r2 442\ or
Veo = 1 104
QM’I‘zi{aT
E+M
Alry = E—f—M_K(T). (3.16)

The factor K(r) relating the upper component of the Dirac solution (i),,) to the
solution of the equivalent Schrédinger equation (¢(r)) is called the Darwin factor. As it
will be shown in next section, K (r) produces a depletion of the outgoing wave function

in the nuclear interior |36,37|.

Another dynamical relativistic effect is that coming from the non-zero overlap with
Dirac sea of the Dirac solutions with S-V potentials. The ¥z, ¥)r wave functions have the

general structure
Y(@) =y @)+ @), (3.17)

where 1(*) and (=) are the projections on the positive and negative energy solutions of

the Dirac equation for free particles:

YOG = D u @)@ (D) = A (D)¥ (D) (3.18)
vOP) = =X u@nEv@E) = Ao @E)Y@) (3.19)

where we use the notation and conventions of Bjorken and Drell [33], so that the positive

and negative energy projectors are

Ay (D) = (3.20)

with P, = (E,p) and E = \/p? + M>.
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The positive and negative energy components of 1 can also be written as

+ viy) (B) -
w( )(ﬁ) = <¢((j_;2mg§,)> = g Oj(p, S)U's(p') (321)
R CTAR

Egs. (3.21,3.22) make it more transparent what are the new ingredients of the relati-
vistic calculation. In particular the difference between 44, and Qﬁdown is what we call the
dynamical enhancement of the down component. Explicit expressions and figures showing
&(p) and B(p) for several orbitals can be found in ref. [18]. Here we just mention that
the dynamical enhancement of the down component is proportional to the nonzero Dirac
sea overlap, B(p), and that though it is small, it was found to play an important role in
the T'L response function in the RPWIA calculations presented in ref. [18], and in the
RDWIA calculations at high |Q?| reported in refs. [8,15]. Its role for the present RDWIA
calculations is discussed in next section. A way to define an effective 2x 2 current operator

that includes these dynamical relativistic effects was introduced in ref. [38].

3.2.3 Projected calculation

The sensitivity of the different scattering observables to the negative energy com-
ponents can be analyzed by constructing properly normalized 4-spinors of the form in
eq. (3.18). Then, one can compare the results obtained using the fully relativistic am-
plitude given in eq. (3.1) with those obtained when the negative energy components are

projected out. This is done when the nucleon current is calculated as
Ty oeond) = [ a3 5+ 74w 05 9 (323)
where 1ﬁ§3+) (wl(mﬂ) is the positive-energy projection of ¥p (Yr), i.e.,

@) = Aoy @vs@), VP F+d) = Ao+ Dvr+ ) - (3.24)

The dynamical enhancement of the lower components is contained in the current of
eq. (3.1), but not in eq. (3.23). It is important to realize that the positive-energy projectors
inserted in eq. (3.23) depend on the integration variable p. One could also neglect this
p~dependence by using projection operators corresponding to asymptotic values of the

momenta, i.e., projectors acting on ¥z and g respectively, with Py = (Ep,pr), P§ =
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P — Q" the asymptotic four-momentum of the outgoing and bound nucleon respectively,
with Q" = (@, ) and @ = Ep— \/(ﬁp — )% + M?. We refer to this approach as asymptotic

projection. This latter projection is almost equivalent to “EMA-noSV” procedure employed

in ref. [39], in which the 4-spinors used have upper components identical to the upper
components of the Dirac equation solutions, but the lower components are obtained with
an additional approximation, the effective momentum approach (EMA). Although EMA-
noSV approach also neglects the enhancement of the lower components, it is not at all
equivalent to the exact projection method in egs. (3.23,3.24). The EMA-noSV approach
computes the nucleon current with four-spinors that have the same structure than the
ones encountered in the scattering of free nucleons, because it enforces the relationship
between upper and lower components to be driven by the asymptotic value of the momenta
at the nucleon vertex. In particular, the Gordon transformation is exact for EMA-noSV
approach. Therefore, CC1 and CC2 operators would lead to identical results within EM A-
noSV, provided the same choices for the off-shell values of w, E, Fr, p and pr are made.
This would be a strong prerequisite to a factorized calculation, though still not a sufficient
condition. In order to keep the drawings in Sec. 3.3 clear enough, we do not show in the
figures the results obtained within EMA-noSV, but we shall comment how this approach

compares with the fully relativistic and /or the projected one.

3.3 Results and Discussion

In this work we consider three data sets for nucleon knockout from p;/; and ps/;
shells in '®O that correspond to kinematical conditions of three different experiments. We

summarize them as follows:

Set (a) corresponds to the experiment of Leuschner et al. at the Medium Energy Acce-
lerator (MEA) at NIKHEF-K [23]. The coincidence reaction O(e, ¢'p)'® N was analyzed
in quasielastic parallel kinematics at three different beam energies: 304, 456 and 521 MeV.
The total kinetic energy of the outgoing proton was around 90 MeV. The spectral function
of %0 was measured in the range, 0 < E,, < 40 MeV and —180 < p,, < 270 MeV/c,

where F,, and p,, are the missing energy and missing momentum, respectively.

Set (b) corresponds to the experiment performed at the Saclay Linear Accelerator by
Chinitz et al. [21]. The kinematical setup was constant |§| — w kinematics. The electron
beam energy was € = 580 MeV, the outgoing proton kinetic energy Tr = 160 MeV,
and the transfer momentum and energy: |g] = 570 MeV/c and w = 170 MeV (|Q?| = 0.3
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(GeV/c)?). The missing energy resolution was 1.3 MeV, which made not possible to resolve
the (5/2%,1/27%) doublet at an excitation energy E, = 5.3 MeV in '° N from the 3/2~ state
at £, = 6.3 MeV.

Set (c), also in |¢] — w constant kinematics, was obtained by Spaltro et al. [22] with
the two high-resolution magnetic spectrometers at the medium-energy electron accelera-
tor MEA of NIKHEF-K. Data were measured at momentum and energy-transfer values
centered at (w,|q]) = (90 MeV, 460 MeV/c), i.e., close to the center of the quasielastic
peak at |Q?| ~ 0.2 (GeV/c)?. The experiment covered a missing momentum range from 30
to 190 MeV /c. The missing energy resolution was about 180 keV, which made it possible
to resolve the (5/2%,1/2%) doublet from the 3/2~ state.

Next we discuss our results for spectroscopic factors, reduced cross sections and res-

ponses corresponding to these sets of data and kinematical conditions.

In Sec. 3.3.1 we deduce spectroscopic factors from reduced cross sections, that are then
used in Sec. 3.3.2 for response functions. Section. 3.3.1 discusses also results corresponding
to different relativistic S-V potentials. In our previous work on *°Ca and 2®Pb we found
that spectroscopic factors were larger than the ones obtained with the nonrelativistic
analyses and were very stable when different parameterizations of the S-V potentials for
bound (HS, NLSH) [5,7] and scattered (EDAI, EDAD1, EDAD2, EDAD3) [6] protons
were used. We shall see that the case of 10 that we examine here is different in several

respects.

3.3.1 Reduced Cross Section and Spectroscopic Factors

Let us first discuss the comparison of theory and experiment on reduced cross sections
for set (a) (Leuschner et al. [23]). We recall that because of parallel kinematics, for this set
the only response functions that contribute to the cross sections are RY and RT. Fig. 3.1
shows the reduced cross section for p;/; and ps, shells. The sign of p,, refers to the
projection of the initial nucleon momentum along the direction of the transfer momentum
¢. It is defined to be positive for |§] < |[pr| and negative for |g] > |pr|. Fully relativistic
calculations using the CC1 and CC2 current operators (RCC1, RCC2) are shown by
thin and thick lines respectively. Throughout this paper we use the Coulomb gauge. The
Landau gauge produces similar results. Gauge ambiguities [40] are rather small for the

fully relativistic results in these two gauges [17,18|.
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Figura 3.1: Reduced cross sections for proton knockout from 1p;/, and 1p3/, orbits in 150
versus missing momentum p,, corresponding to the experiment performed by Leuschner
et al. [23] (set (a)). The bound relativistic proton wave function has been obtained with
the NLSH (right panel) and NLSH-P (left panel) parameterization. Theoretical results
shown correspond to a fully relativistic calculation using the Coulomb gauge and current
operators RCC1 (thin solid line) and RCC2 (thick solid line). The optical potential used is
EDAI-O from ref. [13]. Also shown are the results after projecting the bound and scattered
proton wave functions over positive-energy states: PCC1 (thin dashed line), PCC2 (thick
dashed line). EMA-noSV results (not shown) are practically identical to PCC2 ones. Each

curve is scaled by the corresponding spectroscopic factor in Table 3.1.

300
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Spectroscopic factors for each of the two shells are evaluated by scaling theoretical
calculations to experimental data. They are listed in Table 3.1 for different choices of
wave functions and current operators. In this table we also quote the statistical error

within parenthesis and the y? values per degree of freedom.

Results on the right panel in Fig. 3.1 correspond to bound state wave function calcu-
lated using the parameters of the set NLSH [41]. Results with the older HS set [12,31], as
well as with the newest NL3 one [42] are similar. For the scattered proton wave function
we use the energy-dependent A-independent potential derived by Clark et al. [13] for %0
(EDAI-O). Two things are striking in these results that are at variance with the situation

we met in previous works on “°Ca and 2%*Pb |5, 6]:

1. There are clear deviations in the shape of theoretical and experimental effective
momentum distributions in the right hand side panel of Fig. 3.1. Actually, the NLSH
wave functions have smaller (larger) r.m.s. radii in r-space (p-space) than what is

shown experimentally.

2. The spectroscopic factors are small, of the same order or even smaller than non-
relativistic ones when Perey factor is included in the latter. As seen in Table 3.1
the spectroscopic factors increase when global A-dependent type (EDAD-1,-2) po-
tentials are used instead of the A-independent potential fitted to '°O (EDAI-O).
Moreover, the x? values are large for NLSH bound wave functions independently of

the optical potential used.

We have verified that all EDAD-type calculations (EDAD-1,-2,-3) give similar results
on reduced cross sections and responses. Compared to EDAI-O they give about 15 — 20%
smaller reduced cross sections with almost identical shapes. Consequently, EDAD-1,-2,-
3 spectroscopic factors are 15 — 20% larger than EDAI-O ones but the x? values are
analogous (see Table 3.1). Why this is different from the cases we analyzed in refs. [5, 6]
can be easily understood from Fig. 3.2. In this figure we compare the relativistic central
potentials (S, V) and Darwin factors (K) corresponding to EDAI-O and to EDAD-1,-2
optical potentials for 2%Pb (right panels) and for ®O (left panels). We can see that in
the case of 0, EDAD-1,-2 potentials produce a deeper K(r), i.e., a larger reduction of
the scattered wave in the nuclear interior than EDAI-O potential —also, V¢ is somewhat
more absorptive—, while in the case of 2°Pb both are about the same. Consequently, at

the energies considered, EDAD-1,-2 potential lead to larger spectroscopic factors than
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NLSH NLSH-P
P12 D32 P12 D32
CC1 CC2 CC1 CC2 CC1 CC2 CcC1 CC2
Relativistic
EDAI-O Sa 0.58(1) 0.64(2) 0.45(3) 0.49(3) 0.54(1) 0.58(1) 0.43(1) 0.45(1)
X%/Npr 6.6 4.5 25.3 15.7 1.3 1.3 2.7 3.5
EDAD-1 Sa 0.63(4) 0.72(2) 0.56(3) 0.62(2) 0.58(1) 0.64(1) 0.52(1) 0.55(2)
x%/Npr 9.6 3.7 15 7.2 1.2 1.2 1.2 4.8
EDAD-2 Sa 0.61(4) 0.69(3) 0.53(3) 0.59(2) 0.56(1) 0.62(1) 0.50(1) 0.52(1)
x%/Npr 10 2.6 18 9.2 1.4 1.1 1.7 4.1
Projected
EDAI-O Sa 0.65(2) 0.66(2) 0.51(3) 0.52(3) 0.58(1) 0.59(1) 0.47(1) 0.46(1)
X%/Npr 4.5 3.2 16.9 13.3 1.2 1.6 3.6 4.3
EDAD-1 Sa 0.72(3) 0.74(2) 0.64(3) 0.64(2) 0.64(1) 0.65 (2) 0.57(2) 0.56(2)
x%/Npr 4.0 2.6 7.6 5.9 1.4 1.6 4.4 6.3
EDAD-2 Sa 0.69(3) 0.71(2) 0.61(3) 0.61(3) 0.62(1) 0.63(1) 0.55(2) 0.54(2)
X%/Npr 4.6 3.1 9.7 7.4 1.3 1.5 3.7 5.3

Tabla 3.1: Spectroscopic factors derived from Leuschner’s experimental reduced cross sec-
tions in ref. [23] (data set (a)) using NLSH and NLSH-P relativistic bound nucleon wave
functions, and EDAI-O, EDAD-1 and EDAD-2 relativistic optical potential parameteri-
zations (see text). Results with EDAD-3 are almost identical to the ones with EDAD-1.

The numbers within parentheses indicate the statistical error.
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Figura 3.2: Real and imaginary part of the optical potentials (upper panels) and real part
of the Darwin factor (lower panels) (the imaginary part is negligible) for 0O (left panels)
and 2% Pb (right panels).

EDAI-O in 6O, while the two potentials lead to similar spectroscopic factors in 2°4Pb.

The same is true for EDAD-3 and other versions of the relativistic EDAD potentials.

To have a more conclusive determination of *O spectroscopic factors one would need
to constrain the optical potential choice by means of inelastic (p,p') data, in addition
to the elastic ones [43]. But this is not available for the small knock-out proton energies

(~ 90 MeV) considered here nor in a fully relativistic framework.

The large x? values in the left part of Table 3.1 for all the optical potentials have
to do with the fact that the data do not follow the shape of theoretical reduced cross
sections in the right panel of Fig. 3.1. A similar problem has been found for data sets

(b) and (c) where the quality of NLSH fits is even worse. This, after all, is not surprising

12
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P1/2 P32
b.e. (MeV) rms-r (fm) rms-p (MeV) b.e. (MeV) rms-r (fm) rms-p (MeV)
NLSH 11.4 2.838 175.7 18.8 2.679 185.2
NLSH-P 12.1 3.043 170.6 18.4 2.907 173.6

Tabla 3.2: Comparison of binding energies and rms radius in p— and r— space for the wave
functions NLSH [41] and NLSH-P. The contribution from the negative energy components

to the norm of the wave function is about 2% in all cases.

because the standard Lagrangians, like NLSH, are fitted to bulk properties of a few heavy
nuclei, and one may expect that the predicted r.m.s. radii of °O orbitals differ somewhat
from experiment. Unfortunately, as seen in Table 3.1 this produces large uncertainties
in spectroscopic factors. To solve this problem we may adjust the parameters of the
relativistic potentials (or Lagrangian) so as to obtain the correct values of the single
particle energies and r.m.s. radii for the orbitals considered, in an analogous way to what

is usually done in nonrelativistic analyses of (e, ¢'p) data. This is what we do next.

Compared to data sets (b) and (c), data set (a) has many more data points extending
over a larger p,, range. Therefore, this data set can be used much more reliably to de-
termine simultaneously spectroscopic factors and r.m.s.r. values. We have then adopted
the following strategy: First, we use data set (a) to slightly tune the parameters of the
NLSH potential so as to reproduce the experimental binding energies and r.m.s.r. values
of the p;/» and pss orbitals in O, closely resembling the standard nonrelativistic pro-
cedure. We denote by NLSH-P the new relativistic potentials and wave functions (see
Table 3.2). These new relativistic wave functions are then used to make predictions for

the kinematical conditions of data sets (b) and (c).

The NLSH-P wave functions are obtained by changing the parameters of the NLSH
Lagrangian so that the radii and depth of the S and V potential wells derived from the
Lagrangian are modified in the same proportion. The negative energy content of the
resulting bound state wave function is barely changed by this procedure. The rescaling of
the depth size and radii of the NLSH-P wells is within 10% of the initial NLSH ones. The
improvement obtained in the description of the shapes and quality of the fits is clearly
visible in Fig. 3.1 and Table 3.1.

The role played by relativistic dynamical effects is also analyzed from the results

presented in Fig. 3.1 and Table 3.1. Each curve in Fig. 3.1 is scaled by the corresponding
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spectroscopic factors in Table 3.1. The reduced cross sections evaluated after projecting
the bound and scattered proton wave functions over positive energy states (see eq. (3.23))
are shown by thin-dashed (PCC1) and thick-dashed (PCC2) lines. Note that the difference
between PCC1 and PCC2 results is very small because the so-called Gordon ambiguities
are reduced after projection [17,18]|. The results obtained using the asymptotic values of
the momenta in the projection operator as described in Sec. 3.2.3, are almost identical to
the PCC2 results and thus are not shown here. Once the global scale factor is taken into
account, all the calculations predict a very similar behavior, what indicates that, aside
from the Darwin term, the effect of relativistic dynamics in the reduced cross sections is
not important in parallel kinematics at low values of |@?|. This agrees with a recent work
by Giusti and collaborators [4]. This observation also agrees with results of some previous
works [8,17,18] where we saw that the dynamical enhancement of the lower component
makes an important effect in the cross section mainly at high missing momentum values
and/or in the RT" response function (which does not contribute in parallel kinematics),

whereas its influence on RY and R” is quite modest.

Comparing the fully relativistic results with NLSH-P wave functions for CC1 and
CC2, one observes that the differences are at most of the order of ~ 8%. In the case of the
projected calculation, we note that the spectroscopic factors are slightly larger than those
corresponding to a fully relativistic calculation. This is due to the enhancement of the lower
components of the wave functions which is not contained in the projected approximations.
Their effect is negligible for CC2 operator and is enhanced by the CC1 choice. We recall
that another dynamical relativistic effect, namely the Darwin term, is contained in all the
figures and tables shown here. For EDAI-O optical potential this effect amounts to a 10%
reduction of the reduced cross section in '®O for the kinematics discussed in this work.
This is comparable to the effect of the Perey factor that was included in nonrelativistic
DWEEPY calculations [22,23] while for EDAD-optical potentials this amounts to a 20%

reduction.

One thus expects the spectroscopic factors listed in Table 3.1 for EDAI-O in the
projected case to be similar to those obtained from fits with standard nonrelativistic
DWIA calculations including Perey factors. In this last case the extracted factors for
various choices of optical potentials are 0.60 < S, < 0.65 for p;/5, and 0.49 < S, < 0.60
for p3/» [23], which are also roughly in agreement with those in Table 3.1 for NLSH-P and
EDAD-type potentials.

A smaller spectroscopic factor is expected for the ps/, shell than for the p,/,, because
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Set (b) Chinitz et al. [21] Set (c) Spaltro et al. [22]

P12 P32 P12 D32
CC1 CcC2 CC1 CC2 CC1 CcC2 CC1 CC2

EDAL-O (R) (4) (3) 0.49(2) 0.51(2) (3) (2) (1) (2)
EDAI-O (P) (4) (4) 0.53(4) 0.53(3) (2) (2) (1) (2)
EDAD-1 (R) 0.59(4) 0.61(3) 0.53(3) 0.55(3) 0.68(4) 0.72(2) 0.62(2) 0.67(2)
EDAD-1 (P) 0.65(4) (3) 0.57(5) 0.57(4) (3) (3) (3) (3)

Tabla 3.3: Spectroscopic factors derived from two different sets of data on experimental
reduced cross sections from the full relativistic approach (R) and from the projected one
(P). The nomenclature used is the same as in Table 3.1. The numbers within parentheses

show the statistical error only. All results correspond to the NLSH-P bound wave function.

the p3/p strength is known to be fragmented into three states: the state considered here
at E,, = 18.4 MeV, and two weaker peaks at around 22.0 and 22.7 MeV. According to
[23,44] the two higher lying peaks would contain about 10% of the total ps/, strength.
The spectroscopic factors determined from data set (a) indicate that, taking this extra

10% contribution into account, there is similar 3/2~ and 1/2~ spectroscopic strength.

In what follows we use the new bound state wave functions (NLSH-P) to make pre-
dictions for comparison to the other data sets (b) and (c). We stress that we have used
high quality data to fix the size of the wave function and that because data set (a) corres-
ponds to parallel kinematics no experimental information on the R' response has been

employed.

Let us now focus on the spectroscopic factors obtained from reduced cross sections in
data sets (b) and (c). Fig. 3.3 shows the reduced cross sections for p;/, and ps/, shells. Left
and right panel correspond respectively to data sets (b) and (c). As in Fig. 3.1, for each
curve a global scale factor has been fitted to the experimental data. The corresponding
scale factors and their statistical errors are listed in Table 3.3. Similarly to what we saw
for set (a), also for sets (b) and (¢) EDAD-type optical potentials give larger spectroscopic
factors than EDAI-O (see also Fig. 3.4).

The results for the pj/, shell corresponding to the Saclay experiment (left panel)
include the contribution of the (5/2%,1/2%) doublet. We have verified that the change in
the shape of the responses or reduced cross section after inclusion of the doublet is small.

The main effect of its inclusion is a decrease of the deduced spectroscopic factor for the
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Figura 3.3: Same as Fig. 3.1 for the experiments performed by Chinitz et al. [21] (left
panel, set (b)) and by Spaltro et al. [22| (right panel, set (¢)). In all the cases the NLSH-P
relativistic bound proton wave function and EDAI-O optical potential has been used. For
p3/2 shell in set (b) the contribution from the nearby 5/2% and 1/27 states has been taken
into account (see text). Each curve is scaled by the corresponding spectroscopic factor in
Table 3.3.
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Figura 3.4: Spectroscopic factors derived within the fully relativistic approach from the
low-Q? data discussed in this work with NLSH-P wave function, CC2 current operator
and EDAI-O (left) or EDAD-1 (right) optical potentials. The inner error bars include
statistical errors only, the outer one includes also the additional systematic error in the
reduced cross sections for each experiment. The bands covering the whole |Q? range
corresponds to the value obtained from the data set (a) [23], while the dots at |Q?| = 0.2
(GeV/c)? and 0.3 (GeV /c)? correspond to the data set (c) [22] and set (b) [21], respectively.
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p3/2 shell of the order of 10%. In ref. [21] the contribution of this doublet was subtracted
from the experimental data with a procedure based on a nonrelativistic formalism. We
have chosen to use the uncorrected data from ref. [44], and include the contribution
from the doublet in our theoretical calculation. The s — d content has been determined
through fits to data set (a) for this state |23]. The values of the spectroscopic factors are
S1/24 = 0.034(2) (RCC1), 0.034(2) (RCC2), S5/24 = 0.086(5) (RCC1), 0.088(5) (RCC2)
(with a x*/Npr of the order of 0.5).

Let us now discuss the results corresponding to data set (b) in left panel of Fig. 3.3. As
shown, the calculations reproduce in general the experimental data for both shells with the
scale factors listed in Table 3.3. Although the various approximations give similar results,
we note that the RCC1 (thin solid line) reduced cross sections for the p/, shell are less
symmetrical around p,, = 0, a behavior that is not favored by the data. For this data set
(b) all the calculations, except RCC1 for the p; /5 shell, reproduce well the asymmetry of the
reduced cross section. We will return to this point when talking about the 7L observables
in next section. Finally, it is important to remark that the spectroscopic factors obtained
from the data set (b) (Table 3.3) agree, within statistical errors, with those obtained from

data set (a) taking into account the systematic error of both experiments: around 5.4%
for data set (a) [23] and 6.3% for data set (b) [44].

Concerning set (c) 22| the data on reduced cross sections in right panel of Fig. 3.3
have been obtained from the differential cross sections and detailed kinematics setup
in Appendices A and D of ref. [45] (the systematic error for data set (c¢) reduced cross
section is 6% [22]). For the p;/, shell, the reduced cross section is well reproduced by
both relativistic and projected calculations, except in the case of the RCCI1 calculation
(thin solid line) that underestimates the data for negative missing momentum values.
This is consistent with the results previously discussed for data set (b). For this shell, the
spectroscopic factors that fit data set (c) are larger than the ones derived from data sets
(a) or (b), but they are all compatible within statistical errors. In the case of the ps/, shell,
although the shape of the cross section is well reproduced by the various calculations, the
situation on the spectroscopic factors is clearly different (see Table 3.3). With EDAI-O
optical potential the values of the spectroscopic factors that fit the ps/, data on reduced
cross sections in set (¢) are 25—30% larger than the ones obtained from data set (a). These
scale factors are also larger than the ones obtained from data set (b), but in this case the
discrepancy is of the order of 15%, which is comparable to the combined systematic and

statistical error for these values. EDAD-type potentials not only give larger spectroscopic
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factors but also give, on average, better agreement between ps/, spectroscopic factors of
the three different sets (a), (b) and (c¢). This is seen in detail in Tables 3.1 and 3.3 and is
further illustrated in Fig. 3.4.

In summary, the shapes of the reduced cross sections are well described by all the
RCC2 calculations and data sets, what makes us conclude that we can rely on the spec-
troscopic factors derived with EDAD-1 and NLSH-P potentials. Thus the differences in
the ps/» spectroscopic factors (see Fig. 3.4) obtained with the same ingredients (wave
functions, operators and optical potentials) may be attributed either to a global scale
variation among the three experiments for the ps/ shell, or to limitations of the theory.
Coupled channel contributions or MEC could possibly make a different effect for the three

kinematics analyzed in this work.

3.3.2 Response Functions and longitudinal-transverse Asymmetry

In this section we present results for the response functions and asymmetries and
compare them to the data in sets (b) and (¢) measured at Saclay [21] and NIKHEF [22],
respectively. As already mentioned, these two experiments were performed under |¢] — w
constant kinematics so that the T'L response and asymmetry (R?%, A7r) can be obtained

from the cross sections measured at ¢ = 0° and ¢ = 180° with the other variables (w,

q2
RTT and RT were

2Q?

Q?, E,n, pm) held constant. Moreover, the response functions R* +

also determined for data set (c) [22].

Figs. 3.5 and 3.6 show respectively RT% and Ay, for p; /2 (upper panels) and ps/, (lower
panels) corresponding to set (b) (left panels) and set (c¢) (right panels). In each panel we
present four curves with the same conventions as in previous figures: RCC1 (thin solid),
RCC2 (thick solid), PCC1 (thin-dashed) and PCC2 (thick-dashed). Each RT” curve is
scaled with the corresponding spectroscopic factor quoted in Table 3.3. As it was also the
case for reduced cross sections, there are no appreciable differences in the shapes of curves
obtained with the different types of optical potentials. Obviously, the asymmetry Ay, is
independent on the value of the spectroscopic factor. The results for the ps/, shell in
bottom-left panel of Figs. 3.5 and 3.6 include the contribution of the (5/2%,1/2%) doublet
as explained for set (b) in previous section. The asymmetry Ar; was not produced by the
Saclay experiment (set (b)), but we have deduced Ar;, from the data using the RTZ values

as well as the cross section data in [44].

In Fig. 3.5 we also show by dotted lines the nonrelativistic results of ref. [22]. For
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Figura 3.5: Response R™" for proton knockout from '®O for 1p;/» (top panels) and 1ps /s
(bottom panels). Results and data shown correspond to kinematics of data set (b) [21]
(left) and set (c) [22]| (right). Line conventions as in Figs. 3.1 and 3.3 (NLSH-P wave
function and EDAI-O optical potential). The curves have been scaled by the spectroscopic
factors in Table 3.3. Additional dotted curves correspond to the nonrelativistic analyses
of ref. [22].
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Figura 3.6: Same as Fig. 3.5 for the A7y, asymmetry. We recall that this observable is

independent on the spectroscopic factor.
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Set (b) Set (c)
P12 P32 P12 P32
Nry, X2/NDF Nrp, XZ/NDF Nrp, X2/NDF Nrp X2/NDF
RCC1 0.83(10) 0.65 0.95(17) 5.3 0.63(10) 1.1 1.09(12) 3.2
PCC1 1.32(42) 4.5 1.14(22) 5.8 1.15(17) 1.1 1.28(12) 2.5
RCC2 1.14(12) 0.49 1.02(15) 3.4 0.90(13) 1.0 1.17(12) 2.5
PCC2 1.48(32) 2.2 1.11(17) 3.8 1.26(19) 1.0 1.28(11) 2.1
NR  1.56(12) 1.66(9) 1.50(12) 2.05(10)

Tabla 3.4: Extra scale factor Ny needed to fit the experimental RT” response. These
factors would multiply those in Table 3.3 to scale theory to experiment on RT%. A value
of 1 indicates that no extra enhancement or quenching of the response is found. The
numbers in parentheses show the statistical error only. The quality of the fit (x?/Npr)
is also quoted in every case. NR corresponds to the nonrelativistic analysis of ref. [22].

These numbers correspond to EDAI-O potential. Very similar numbers are obtained with
EDAD-1, EDAD-2 or EDAD-3.

comparison to previous studies in refs. [21,22], we quote in Table 3.4 the factor required to
scale the theoretical predictions to the RT" data, additional to the factors in Table 3.3. A
value of one in this table indicates that the same spectroscopic factor fits both the reduced
cross section and RTL, i.e., indicates that the TL strength is consistently predicted by
the theory.

Let us first discuss the comparison between theory and experiment for data set (b).
From the results shown in Figs. 3.5 and 3.6, it is clear that the effects of the negative-
energy components show up more in R”* and Azy, than in the cross sections (Fig. 3.3).
In the case of the p;/, shell (left-top panel of Fig. 3.5), the RCC2 calculation agrees
with experimental data within statistical errors, while PCC1 and PCC2 results for RT*
(dashed lines) lie about a 30-50% below the data, and the RCC1 calculation (thin solid
line) overestimates the R’ response by around 20% (see Table 3.4). In the case of the
p3/2 orbit (left-bottom panel), all the approximations predict similar curves: The projected
results are much closer to fully relativistic ones than for the p;/, shell. Overall, the fully
relativistic calculations seem to be favored by the data. The fact that in this shell the
variation introduced by the negative energy components is much smaller than for the

p1/2 shell explains why the difference between RCC1 and RCC2 results is smaller for the
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p3/2 than for the p;/; shell. These results agree with the conclusion reached from RPWIA
calculations in ref. [18] about the behavior of j = ¢ 4 1/2 spin-orbit partners which was
also corroborated in RDWIA calculations at high [Q?| [8].

With regards to the T'L observable, independent on the spectroscopic factor, we may
conclude that for p;/5 shell, Az is best reproduced by RCC2 results, while for ps/, shell
the four theoretical results are very close together, and the experimental data agree with
all of them.

In the right panels of Figs. 3.5 and 3.6 we see the results corresponding to data set
(c). Most of the comments on data set (b) apply also here, though the data are somewhat
more scattered and have larger error bars. In the case of the p; /s shell, PCC1 and PCC2
results are very similar and lie below the data; among the fully relativistic calculation,
the RCC2 result reproduces the data within statistical errors, while RCC1 overestimates
them by a 35%. In the case of the ps/, shell (bottom-right panel), all the calculations
underestimate the experimental 7'L response by around 17-28%, except RCC1 for which

the “additional” factor in Table 3.4 is compatible with one within statistical errors.

In Fig. 3.7 we show the results for the responses R* + vrr/vp RTT (top panels) and
R" (bottom panels) for the p;/» and ps/s shells compared to the data from NIKHEF [22].
Each curve is scaled with the spectroscopic factors quoted in Table 3.3. Notice that these
responses are rather insensitive to dynamical enhancement of lower components. This
is consistent with the behavior observed in Fig. 3.1 and also with results of RPWIA
calculations [18]. The results in Fig. 3.7 indicate that the separated responses are in
general well reproduced by the relativistic as well as by the projected calculations for
both shells, exception made of the data point at the lowest missing momenta where, as

indicated by the large error bars, the L/T separation is more problematic.

Summarizing, for the p;/, shell the RCC2 results agree well with all observables and
data sets, while RCC1 (projected) calculations show a too large (small) RTZ and App.
For the p3/; shell the theoretical calculations lie much closer together, and generally agree
with all data sets and observables, except for RT* and Az, of data set (c). Although the
RTL Agrp data on ps /2 in set (c) lie higher than theoretical calculations, they are almost
compatible with RCC1 and RCC2 calculations within statistical errors. This situation
is quite different from the one found in ref. [22], which is also shown for comparison in
Fig. 3.5. The dotted lines in this figure show the nonrelativistic results of ref. [22] that
were obtained with nonrelativistic spectroscopic factors (0.61(3) for p;/, and 0.53(3) for

ps3/2) and standard (Woods-Saxon type) nonrelativistic optical potentials and bound wave
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functions. The latter were also fitted to Leuschner data [23].

3.3.3 Further Discussion on 7'L observables

In this section we focus in Fig. 3.5 comparing our results to previous nonrelativis-
tic ones. The dotted curves -representing the nonrelativistic calculations by Spaltro et.
al. |22]- clearly underestimate TL responses for all shell and data sets. The deviation
from data is larger for p3/, shell, particularly in data set (c), where the dotted curve gives
roughly one half of the experimental T'L response. Why is it that relativistic results in

this figure are so much closer to data that nonrelativistic ones?.

We have examined in detail effects due to the various aspects that are relevant in
comparing relativistic to nonrelativistic results. The effects of Darwin term are already
taken into account as they basically affect the spectroscopic factors. The effects of the
negative energy components, as already mentioned, are very small for R*, RT responses
in all data sets (a), (b) and (c) but, as seen in Fig. 3.5 and Table 3.4, they are important
for T'L observables in data sets (b) and (c), particularly for the p;/, shell. We are then
left to consider the effect of truncation of the current operator (TCO). TCO produces
also a negligible effect at the kinematics of data set (a), but it is more important at
the kinematics of data sets (b) and (c). This again affects more the T'L responses and
asymmetries where it may represent up to a 15% effect (see also ref. [4]). Thus for p;/,
shell, TCO roughly explains the difference at the maxima between dotted curves and the
curves obtained with projected calculations. However for ps/, shell TCO explains only a
small fraction of the difference between dotted curves and results of projected calculations.
The largest fraction of this difference is due to the use of a too small spectroscopic factor
(see ref. [22]) that was taken from ref. [23] and that by no means fits the data on reduced
cross sections in set (c¢). As seen in Tables 3.1,3.3 and Fig. 3.4 the spectroscopic factor
deduced from reduced cross sections in data set (c) is 25 —30% larger than that from data
set (a).

The message from this is, not only that relativistic effects are important in perpen-
dicular kinematics at low |Q?|, but also that a careful analysis of all pieces of information
has to be done to get a consistent picture of the three different sets of data. Since RT”
responses are known to be sensitive not only to relativistic effects but also to exchange cu-
rrents, or other possible many-body effects, it is important to establish a clear framework

that allows to look for the proper magnitude of such effects.
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Indeed if we compare our results to data for the Ary observable that is free from spec-
troscopic factor ambiguities, we find that all data are well reproduced with the standard
CC2 current operator, except the p3/» data in set (c¢) which are only larger than theory
by a factor ~ 1.17. This is to be compared to the 2.05 factor that one could expect from
ref. [22].

3.4 Summary and Conclusions

In summary we find that the fully relativistic treatment improves substantially the
description of reduced cross sections and individual responses of all three sets of data on
%0(e, e'p) at low |@Q?|. Although predictions from CC1 and CC2 current operators are
rather close in most cases, data seem to favor the CC2 current operator. Therefore our
remarks here will focus mainly on results with CC2 and with the improved NLSH-P bound
nucleon wave functions, that have the correct r.m.s. radius. Using the most complete set
of data on reduced cross sections in parallel kinematics of Leuschner et al. [23] (set (a))
we obtain spectroscopic factors ranging from 0.58 to 0.64 for p;/; and from 0.45 to 0.55
for ps/2, depending on whether we use A-independent (EDAI-O) or A-dependent (EDAD-
1,2,3) optical potentials. In O, the latter potentials produce a larger Darwin effect,
thus larger spectroscopic factors. Compared to the cases studied in previous works on
90Cq and 2°8Pb, the determination of spectroscopic factors in O with the relativistic
approach is different in several respects. In the former cases, the standard NLSH wave
functions were found to reproduce well the shapes of reduced cross sections and the only
fitted parameter was the spectroscopic factor. The latter was practically independent
on the optical potential used and was ~ 0.7 for the levels just below the Fermi level.
On theoretical grounds smaller spectroscopic factors for 160 are expected. In particular,
from shell model Monte Carlo calculations on %O [46], one may expect S, ~ 0.5 though
other theories predict somewhat larger values [47,48]. Larger spectroscopic factors are
obtained from Spaltro et al. data [22] on reduced cross sections in perpendicular kinematics
(set (c)), while Chinitz’s et al. data [21] also in perpendicular kinematics (set (b)) give
similar spectroscopic factors than set (a). As one can see in Fig. 3.4, within error bars,
spectroscopic factors derived from all data sets with EDAD-1 are compatible with each
other. To overcome the uncertainty due to the optical potential (see also Fig. 3.4) one
would need to fit the relativistic potential to both elastic and inelastic proton scattering

data from %0 in a manner similar to what has been done for nonrelativistic potentials [43].
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The analyses of individual responses is practically independent on the optical potential,

once they are scaled by the corresponding spectroscopic factors.

There is a long standing controversy surrounding the T'L data for the p;/; and p3/,
shells measured at Saclay [21] and NIKHEF [22]. We have therefore paid particular atten-
tion to T'L responses and asymmetries and we conclude that there is not a fundamental
inconsistency. Even at the low |Q?| values considered here, the T'L response is much
more sensitive than L and T responses to relativistic effects, in particular to the dyna-
mical enhancement of the lower components. The role played by the latter is appreciated
comparing fully relativistic results (RCC2 or RCC1) to those obtained using wave func-
tions projected on the positive energy sector (PCC2 or PCC1). RCC2 results agree well
with experimental T'L responses on p;/; (as well as with 7L asymmetries) which are
underestimated by PCC2 and overestimated by RCC1, because CC1 current operator
overemphasizes the role of negative energy components. The overall agreement with data
on T'L responses and asymmetries from set (b) and set (c) is quite satisfactory, with the
exception of data on ps/, shell from set (c), but even in this case theory is much closer to
experiment than previously found in ref. [22]|. In particular, the large difference between
data on T'L responses from the two different sets is well accounted for by the present
analyses. This is in contrast with the situation depicted in ref. [22]|, which is represented
by dotted lines in Fig. 3.5.

In short, the puzzle of the large discrepancy in the TL-response obtained in Saclay [21]
and NIKHEF [22], and the “additional” TL-strength found in both experiments is, to
a large extent, explained by the effect of the negative energy components in the wave
functions —a dynamical relativistic effect that may not have been expected at low transfer

and missing momentum.

The large general mismatch of data set (c) on p3/, shell seems to point to a normali-
zation problem which would require experimental verification. Our analyses indicate that
the problem is not so much connected to the T'L response, but rather to the normaliza-
tion used. Nevertheless, since meson exchange currents and particularly isobar currents
are claimed to affect more the ps/» than the p,/; orbitals [49], it would be interesting
to see whether our fully relativistic calculation extended to include the isobar and other
meson exchange effects would lead to better agreement with 7L ps/, data from set (c). It
will also be interesting to see how relativistic and nonrelativistic approaches compare to
new data expected from future experiments that have been approved to measure reduced

cross sections and TL-responses in 'O with unprecedented precision at Jefferson Lab.
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4.1 Introduction

There have been many studies of the (e,e’p) reaction with the overall objective of lear-
ning more about the detailed single nucleon distributions in nuclei. Of special interest are
investigations of few body systems and light nuclei since they are more amenable to more
complete and detailed theoretical calculations. Interpretation of the experimental results
in terms of single nucleon properties is most readily done in the simple non-relativistic
Plane Wave Impulse Approximation (PWIA). However, it has been clear for sometime
now that the simple non-relativistic PWIA is not able to account for the observed cross
sections. One has to understand the nature of the competing processes, particularly in the
more interesting kinematic regions of high missing momenta. An important experimental
tool in this regard is the response function decomposition of the cross sections. In the one

photon exchange approximation the cross section can be written as [1] :

d°c

m =K O'Mott[l/LRL + VTRT + VLTRLTCOSCb -+ I/TTRTTCOSQ¢] (41)

where ¢ is the angle between the electron scattering plane and the plane containing the
mpy

(2m)°

is the momentum of the ejected proton), o is the Mott cross section, the v; are ad-

momentum transfer ¢ and the detected proton, K is a kinematic factor (where p,

ditional kinematic factors and the R; and R;; are the response functions. The response
functions describe the interaction of the longitudinal, L, and transverse, T, polarization
states of the virtual photon with the nuclear charge and current. Theoretical calculations
suggest that each of these response functions can exhibit selective sensitivity to particu-
lar reaction mechanisms in the (e,e’p) process. For example, past measurements of the
Ry interference response function have indicated that it is sensitive to relativistic effects
and meson exchange currents (MEC). Measurements of the >H (e, €'p)n reaction [2] have
shown that it is sensitive to inclusion of relativistic terms in the nucleon current while
a previous study [3] of the *He(e, e'p)®H reaction indicated the need to include meson
exchange terms in order to reproduce both the cross sections and the Rr response func-
tion measured for missing momentum p,,;;s = 265 MeV /c. Studies of the %O(e, e'p)'° N
reaction have suggested that the Ry, response function is sensitive to both MEC [4] and

a fully relativistic treatment [5] of the reaction.

The *He system is of particular interest since it is a tightly bound system for which
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one can obtain the nuclear wavefunction from microscopic calculations based on realis-
tic NN interactions. In this paper we report on a measurement of the R, interference
response function in the * He(e, ¢'p)® H reaction. These particular measurements were mo-
tivated in part by the measurement of R, r, performed at the MIT-Bates Laboratory, for
the *He(e, e'p)>H reaction at missing momentum p,,;s; = 265 MeV/c, incident electron
energy, E, = 572.5 MeV, momentum transfer, |j] = 360 MeV/c, and energy transfer,
w =200 MeV [3]. The present experiment was designed to provide measurements of R

under similar kinematic conditions but over a wider range of p,;ss.

4.2 The Experiment

The research reported here was done with the three-spectrometer facility at the Mainz
microtron, MAMI, by the A1 collaboration. Data were taken at incident beam energies of
675 and 855 MeV and cover a range of p,,;ss from 131 MeV /¢ to 300 MeV /c. As was the case
for the data of Ref. [3] w was set at approximately 200 MeV and kept relatively constant
in an attempt to keep final state interaction (FSI) effects constant for all measurements
and also to minimize FSI effects since proton-nucleus energies of around 200 MeV are near

the minimum of the p —* He optical model potential derived by Van Oers et al [6].

The experimental setup was almost identical to that described in Ref. [7] and Ref. [8]
except that for the present measurements the electron and proton spectrometers were
interchanged, i.e. Spectrometer A was used to detect protons and Spectrometer B was
used to detect electrons. (Details of the MAMI three spectrometer facility are described
in Ref. |9].) Spectrometer C was used as a luminosity monitor. The angular acceptance
of Spectrometer B, as defined by the data analysis cuts, was 2.29° in the horizontal
direction and 7.45° in the vertical direction. The large angular acceptance of the proton
spectrometer, spectrometer A, allowed us to break each angular setting into three data
points of angular acceptance of 4.30° (vertical acceptance is 11.46°). The target consisted
of cold *He gas (T = 20-23 K and P = 5-10 atm) encapsulated in an 8 cm diameter

stainless steel quasi-spherical cell whose walls were 82 pm thick [10].

The target density was determined [8] by measuring elastic scattering from *He in

Spectrometer B and normalizing the measured counts to the elastic scattering data and
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form factor parametrization of Ref. [11]|. Spectrometer C was configured to detect negati-
vely charged particles and data were taken in Spectrometer C during the elastic scattering
runs. For each beam energy the angle and momentum settings for Spectrometer C we-
re kept fixed. Thus, with appropriate cuts to eliminate background, the recorded counts
in Spectrometer C, along with the measured beam current, provided a measurement of
the target density for any particular data run relative to what was determined from the
elastic scattering data runs. The effective target length, as defined by the data analysis
cuts, varied depending on the particular kinematic settings between 5.2 to 6.0 cm. The
combined effective solid angles and target length of the two-spectrometer extended-target

system was determined using the Monte Carlo code AEEXB [12].

Beam energies of 855 and 675 MeV were used with average beam currents of 40 pA.
Due to constraints imposed by the available beam energies and the geometry of the
experimental hall we were not able to keep ¢ constant and |g] varied from 404.6 to 639.5
MeV /c. These changes in |g] are responsible for the discontinuities that are seen when the

data are plotted as a function of p,,ss.

To determine the asymmetry term, A7y, and the interference response function, Ry,

data were taken in perpendicular kinematics.
of — Op

App = 07: s (4.2)

R;r is defined in Equation 4.1. For each value of p,,;ss two measurements were made,

the first with the proton spectrometer set at an angle forward of ¢ (closer to the beam

direction) to meaure oy, and the second with the proton spectrometer set at an equal

angle backward of ¢ ( further away from the beam direction) to measure o3. Under these

conditions the central value of p,,;ss is the same for both measurements.

Data were taken at one set of angles at the 855 MeV beam energy and three different
sets of angles at the 675 MeV beam energy. After breaking up the horizontal angular
acceptance of the proton spectrometer into three angular regions, each angular setting
yielded three data points, with each data point spanning a total width in p,,;ss between
25 to 58 MeV /c. The kinematics for these data are shown in Table 4.1. To determine Ay,
and Rpr the same cuts were put on |g], w, and p,;ss for each data point of the pair of

angular settings used.

The combined energy resolution of spectrometers A and B along with the approxi-
mately 100 keV spread in the beam energy resulted in an E,,;s; spectrum in which the
two-body breakup peak had a FWHM of approximately 700 keV. (See Figure 4.1) This
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Figura 4.1: *He(e,e'p)?H. E,;,, spectrum for ppiss = 150 MeV/c. The three body
breakup threshold is at E,,;;s = 26.1 MeV.
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was more than sufficient to provide clean separation between the two-body breakup peak
and the threshold for the three-body continuum. Total combined systematic errors for
individual cross section measurements were approximately 6%. Data are presented here
only for the *He(e, ¢/p)3H reaction, that is only for the two-body final state E,;ss peak.
The data were corrected for radiative losses due to internal and external bremsstrahlung

processes [13], [14].

4.3 Results

The cross section data for proton angles forward of ¢ (o) are shown in Figure 4.2
and those for angles back of ¢ (o) are shown in Figure 4.3. Only statistical errors, which
range between 1% to 7% , are plotted and these are almost always smaller than the size of
the data points. The cross section data are tabulated in Table 4.1. Also shown in Figures
4.2 and 4.3 are four different theoretical predictions. We show two PWIA calculations,
one using a *He wavefunction derived from the Argonne V14 nucleon-nucleon potential
[15] and the other using a *He wavefunction derived from the Argonne V18 nucleon-
nucleon potential and the Urbana IX three nucleon potential [16]. The calculations labeled
Schiavilla incorporate the orthonormal-correlated states method described by Schiavilla
[17] and include the effects of short range correlations, orthogonality corrections, final

state interactions, and two-body charge and current operators.

The curves labeled RDWIA are fully relativistic distorted wave impulse approximation
(RDWIA) calculations by Udias using the Madrid code [18]. This calculation uses the same
ingredients as in the corresponding ones in ref. [19] that were compared to the transferred
polarization ratio data at similar energies of the ejected proton as in this experiment.
Namely: a) a relativistic mean field wave function fit to reproduce the rms radius and
binding energy of * He which reproduces the momentum distributions from the *He data
in Ref. [8]. b) an optical potential obtained by folding a density-dependent empirical
effective p-N interaction (EEI) [20] with the measured charge density for tritium. Here
we use the same potential as in Ref. [19], derived from parameters that were adjusted by
Kelly to fit proton scattering data from *He, obtaining a better fit to the proton elastic
scattering data in this nucleus than any previous optical potential. ¢) The CC1 current

operator.
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Figura 4.2: *He(e, e'p)>H. Cross sections for proton angles forward of q

The PWIA calculations were averaged over the finite acceptances of the spectrometers
while the full Schiavilla and the RDWIA calculations of Udias were done only at the central
point of these acceptances. Using the Argonne V14 PWIA calculation we compared the
effects of acceptance averaging these calculations. The difference between the point and

acceptance averaged calculations were typically less than 8 %.

Figure 4.4 shows the asymmetry term Ay and Figure 4.5 shows Rpr. In these figures
the two sets of error bars represent the statistical and systematic errors separately. Except
for Arp, at ppiss = 300 MeV/c the systematic errors are always larger than the random
errors. The theoretical predictions shown in Figures 4.4 and 4.5 are derived from the cross
section calculations shown in Figures 4.2 and 4.3. To investigate the effects of MEC on
Rrr and Arr the Schiavilla calculations were also run without the MEC term but with

everything else included. Figures 4.6 and 4.7 show these results.

In comparing theory with the cross section, Ry, and Ay data it is difficult to draw

any firm conclusions. There is some indication from A7, that the RDWIA calculations



4.3. Results 99

d°c /dQ*dE (cm?/MeV /sr?)

—32
10777 4 -
—33 NN N
107 5 A NN 2
7 \\\\ © D\\ L
| o N\ 5 L
| ° L
~34
10+ -
H o data C
] — — ArgV14 PWIA B
- — = — ArgV18-UrbIX PWIA -
7 — — — — Schiavilla [
i ———— RDWA L
—35
10

| | | |
100 150 200 250 300 350
P (MeV/c)

Figura 4.3: *He(e, e'p)>H. Cross sections for proton angles backward of q

of Udias or the full calculation of Schiavilla is necessary to produce the qualitative shape
of the data. The inclusion of MEC terms in the Schiavilla calculation also substantially
improves agreement with the R, data as was seen in the earlier MIT-Bates results [3].
However it is less clear which predictions produce the best fits to the cross section data.
The full calculation of Schiavilla or the RDWIA calculations of Udias agree best with the
forward angle cross section data while the simple PWIA calculation seems to do better

for the back angle cross sections.

We note that the data measured at 855 MeV have Bjorken x = 1.08 and the largest
value of Q2. From the point of view of the electron kinematics the 855 MeV data should
have been the best case for quasi-elastic scattering ( x near 1 ) with the smallest con-
tribution from meson exchange currents. In contrast, at 675 MeV and 6 = 50°, x= 0.58
which should imply a greater role for meson exchange currents. However Figures 4.6 and
4.7 indicate that, at least in the context of the Schiavilla calculation, meson exchange
currents are more important for the 855 MeV data than for the 675 MeV data. Overall
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Figura 4.4: *He(e, ¢'p)®H. The transverse-longitudinal asymmetry Az,



4.3. Results

3
R, (fm”)

-1
107" | :
] N L
- ~ =
N
N
— §\\ N —
i RN L
} N
N
J \ L
NN
ER
-2
1077 o b =
-3
10~ =
7 o data L
] — — ArgV14 PWA B
- — = — ArgV18—UrbIX PWIA +
7 — — — — Schiavilla r
J ——— RDWA L
—4
10 | | | |

100 150 200 250 300 350

miss

Figura 4.5: *He(e, €'p)®H. The longitudinal-transverse response function Ryr

101



102 Capitulo 4. La reacciéon *He(e,e'p)>H

0.0

—-0.2 — —

~0.3 %\\\ \\\ |

S04 1 i,
< -0.4 % \\\

N /

—0.5 — % NN //// —
\
o data % % \\\ ///
~0.6 } L -
— — — — Schiavilla % i

—0.7 - Schiavilla No MEC % § E —

—0.8 | | | |

100 150 200 250 300 350
P (MeV/c)

Figura 4.6: *He(e, ¢'p)®H. Ay, Schiavilla calculations with and without MEC terms



4.3. Results

(fm?)

LT

10

10

10

10

-5

10

|
/Kx
(<
/
/
/
/
T

[e]

/0

o

ot/

o/
\\\\\H‘

[e]
T

-
T \\HH‘

data

Schiavilla

Schiavilla No MEC

100 150 200 250 300 350

P (MeV /c)

miss

103

Figura 4.7: *He(e, €'p)®*H. Rpr Schiavilla calculations with and without MEC terms



104 Capitulo 4. La reacciéon *He(e,e'p)>H

these data suggest that the inclusion of MEC terms and/or a fully relativistic calculation

is necessary but at this time we are unable to conclude which effect is dominant.

4.4 Summary

We have taken data for the *He(e, e'p)®H reaction in perpendicular kinematics that
allowed us to determine Rpp and App for ppss from 130 to 300 MeV/c. Reasonable
agreement, with theory appears to require inclusion of final state interaction effects and
the addition of meson exchange reaction terms and/or a fully relativistic treatment of
the entire reaction. Additional data might clarify this situation. In this regard there is a
proposal under review for a new series of measurements of the *He(e, ¢'p)3H reaction to
be done at Jefferson Lab.

We wish to thank the MAMI staff for their support during these experiments. This
work was supported by the Deutsche Forschungsgemeinshaft (SFB 201) and Ri 242/15-2,
by the U.S. National Science Foundation, and by the U.S. Department of Energy.
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E, 0. q 6, w Pp Drmiss d’c /dQ2dE | % error
MeV | deg. | MeV/c | deg. | MeV | MeV/c | MeV/c | em?/MeV /sr? | stat.
8565.11 | 47.70 639 22.86 | 185.11 | 549.95 | 300.3 6.34 z 10736 7
8565.11 | 47.70 639 25.01 | 185.11 | 554.19 | 279.3 9.31 z 1036 6
8565.11 | 47.70 639 27.16 | 185.11 | 558.14 | 258.2 1.76 x 10735 4
855.11 | 47.70 639 78.85 | 185.11 | 549.76 | 301.2 3.33 £ 107% 4
855.11 | 47.70 639 76.70 | 185.11 | 554.01 | 280.3 5.65 x 103 3
8565.11 | 47.70 639 74.55 | 185.11 | 557.97 | 259.1 9.72 z 1073 2
675.11 | 55.00 559 27.50 | 208.11 | 614.26 | 169.5 3.55 z 10734 2
675.11 | 55.00 559 29.65 | 208.11 | 616.28 | 150.0 5.77 x 10734 2
675.11 | 55.00 559 31.80 | 208.11 | 618.02 | 131.0 9.12 z 1073 1
675.11 | 55.00 559 58.93 | 208.11 | 614.28 | 169.4 8.93 x 1073 1
675.11 | 55.00 559 56.78 | 208.11 | 616.30 | 149.9 1.31 10733 1
675.11 | 55.00 559 54.63 | 208.11 | 618.03 | 130.8 1.80 z 10733 1
675.11 | 36.00 404 22.86 | 208.11 | 601.55 | 260.2 1.04 z 10734 3
675.11 | 36.00 404 25.01 | 208.11 | 603.24 | 250.1 1.50 z 10734 3
675.11 | 36.00 404 27.16 | 208.11 | 604.75 | 240.7 2.27 x 1073 2
675.11 | 36.00 404 62.56 | 208.11 | 601.60 | 259.9 5.52 z 10734 2
675.11 | 36.00 404 60.41 | 208.11 | 603.28 | 249.8 6.82 x 1073 2
675.11 | 36.00 404 58.26 | 208.11 | 604.79 | 240.4 8.01 z 1073 2
675.11 | 50.00 518 22.86 | 208.11 | 607.65 | 221.5 9.74 £ 10°% 4
675.11 | 50.00 018 25.01 | 208.11 | 610.07 | 204.1 1.67 £ 10734 3
675.11 | 50.00 518 27.16 | 208.11 | 612.24 | 187.0 2.65 x 10734 3
675.11 | 50.00 518 64.41 | 208.11 | 607.74 | 220.9 4.02 1073 2
675.11 | 50.00 018 62.26 | 208.11 | 610.15 | 203.4 5.90 x 1073 2
675.11 | 50.00 | 518 | 60.11 | 208.11 | 612.32 | 186.4 | 8.50 z 10~ 2

Tabla 4.1: Kinematics (Central Angles and Momenta) and Cross Sections
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5.1 Introduction

Several experiments have been proposed or have been carried out to measure the
polarization of the ejected nucleon in (e, e'p) reactions [1-3]. In this way, new sets of

polarization response functions can be isolated [4-7].
If we write the cross section for the coincidence (e, e'p’) reaction in terms of recoil
nucleon polarization dependent and independent terms, we have [4,6,7|:

o, )
de.dQ.dY 2

where €, is the scattered electron energy, oy is the unpolarized cross section, s denotes

[1 +13-6] , (5.1)

the nucleon spin projection upon &, and P is the induced polarization. Each of these
observables can be written in terms of response functions that are bilinear combinations
of the nuclear electromagnetic current operator [4,5,7]. If the electron beam is unpolarized
and the experiment is performed in coplanar kinematics (¢’ = 0,7), the relationship
between the nuclear responses and the cross section is given by:
o, _ E'|P [ do ]
dedS2.dSY 2(2m3) [d ] 4y on
{Vi(R + RES,) + Vir(Rr + RS,)+
cos ¢'Vrr(Rrr + R’T‘Lgn) + cos 2¢'Vor (R + R’}Tgn)}

(5.2)

The kinematical factors are V, = A2, Vpr = A\/2+tan? 0. /2, Vo = A/2, Vor = A/ A + tan? 0, /2
and A = 1 — (w/|q])? where w and ¢ are the energy and momentum transfer in the reac-
tion, 6, is the electron scattering angle and F’, |P" | are the energy and momentum of
the ejected nucleon. Hence, for coplanar kinematics, i.e., when the ejected nucleon lies
within the electron scattering plane 13, the net ejectile polarization for an unpolarized
beam or induced polarization (P,), is normal to the scattering plane. In the one-photon
exchange approximation P, is zero when no final state interactions (FSI) between the
ejected nucleon and the residual system are considered [4,5,7]. Thus, P, is an observable
well suited to study FSI effects in nuclear systems and measurements of P, at different Q?
would give information about the onset of nuclear transparency. If nuclear transparency
is present at certain ) value, that is, if FSI effects are quenched, we would see a decrease
of P, what would be a clear signature of nuclear transparency free from the ambiguities

on the occupancies of the shells under study [9].

The first analysis of the experiment performed at BATES by Woo et al. that measured

P, in '2C(e, €'p) [1] was made in a non relativistic framework. Other non relativistic results
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for this experiment were recently presented in Ref. [8]. The non relativistic approach to
(e,€'P) is based on the impulse approximation, i.e., assuming the one-photon exchange
picture in which the single photon interacts only with the nucleon that is detected [4].
If no FSI are considered, the ejected nucleon is described by a plane wave (plane wave
impulse approximation or PWIA). FSI are taken into account using potentials that distort
the final nucleon wave function (distorted wave impulse approximation or DWIA) [4]. The
non relativistic analyses found a a systematic underestimation of P, of around 10% at
best [1].

There are two main sources of an induced nonzero normal polarization in proton
knockout reactions caused by the interaction with the residual nucleus in the final state.
One is due to the absorption, that is, the flux lost into inelastic channels, parametrized
in the imaginary part of the optical potential. Semi-classically, for scattering on a given
side of ¢, ejecting a nucleon from the front or the rear face of the nucleus would select out
different directions of the angular momentum [=7x p and, as the absorption depends on
how much the nucleon travels in the nuclear medium before being detected, the effect is
a net induced polarization due to absorption. This is well known from hadronic reactions
and is named as the Maris Effect or Newns polarization [10]. It is, however, a small source
of P, [1]. The bulk of the induced polarization is primarily due to the real part of the
spin-orbit potential, that parametrizes the explicitly spin-dependent terms in the optical

potential [1].

Since the spin is a property intrinsically related to relativity, one may a priori consider
that a relativistic approach is better suited to describe nucleon polarization observables.
In recent years, the relativistic mean-field approximation has been successfully used for
the analyses of (e, €'p) reactions in the so-called relativistic distorted wave impulse ap-
proximation (RDWIA) [11-15|. The polarization degrees of freedom for the electron and
the ejected nucleon have been included in this formalism years ago [7]. In RDWIA, the

nucleon current
Hy(.q) = [ dFde(+ D) Ji(w,.3) vs () (53)

is calculated with relativistic ¥p and ¥ r wave functions for initial bound and final out-
going nucleons, respectively. JA]’\*, is the relativistic nucleon current operator of ccl or cc2
forms [16]. As bound state wave function, Dirac-Hartree solutions from relativistic La-
grangian with scalar and vector (S-V) meson terms [17] or solutions of Dirac equation
with phenomenological Woods-Saxon wells are customarily used. The wave function with

asymptotic momentum P' for the outgoing proton is a solution of the Dirac equation
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containing S-V optical potentials. Recently a relativistic calculation of P, following those
general lines has appeared [18]. In Ref. [18] it was found that the agreement with the
data improved slightly compared to the non relativistic analyses of Ref. [1]. However,

relativistic effects for this improvement remained unspecified in [18].

Some of the differences between the relativistic and non relativistic approaches are
independent of the dynamics, having to do with the proper (relativistic) kinematics being
taken into account. Also, the non relativistic operators are normally obtained from an
expansion and truncation in powers of p/M and sometimes also of ¢/M and w/M. When
the momenta and energy involved in the reaction are of the order of the nucleon mass,
as it may be the case for (e, €'p) reactions, one must be very careful with the behavior
of the expanded and truncated operator. In Ref. [19] different non relativistic expansions
were studied and new expressions that compared better with the unexpanded result we-
re deduced. In Ref. [8] improved non relativistic operators were used, particularly with
the inclusion of the extra spin-orbit term in the charge density operator as described in
Ref. [19]. This term proves to be necessary to reproduce at least qualitatively [15,20] the
features seen in the Ry, response and T'L asymmetry
_o(@=m)—o(¢'=0)

o(¢'=0)+o(¢'=m)’
as measured in a recent TJNAF experiment at Q* ~ 0.8 (GeV /c)? |21].

Ary (5.4)

The non relativistic approach can be better compared to the relativistic one thinking
in terms of the direct Pauli reduction [13]|. Starting from a non relativistic formalism
based on bispinors x solutions of a Schrédinger-like equation, one may at best construct
properly normalized four-spinors of the form

1 -7
e = (0. 5 5 (55)

to be introduced in Eq. (5.3) in order to calculate a relativistic-like nucleon current matrix
element. In this way the relativistic kinematics is fully taken into account and no expan-
sions in p/M are needed. One further step to relativize the calculations is done by rewriting
the Dirac equation for the upper component as a Schrodinger-like equation and introdu-
cing its non relativistic bispinor solution x in Eq. (5.5). This ‘non relativistic’ bispinor
is phase-shift and energy eigenvalue equivalent to the relativistic solution [13,22,25-27].
Comparing this solution of the Schrodinger-like equation to the upper component of the
fully relativistic wave functions, one finds an additional factor (i) so that the upper com-

ponent of the full Dirac solution is quenched in the nuclear interior compared to the non
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relativistic solution [13,22,25,27]. This quenching can be associated to the Darwin fac-
tor [28] that appears from an extra term linear in p’ that must be dealt with to obtain the

Schrodinger-like equation and that is not present in the usual non relativistic treatment.

One can then build a non relativistic formalism based on the Schrodinger-like equation,
with central and spin-orbit potentials that are phase-shift equivalent to the relativistic
potentials, incorporating a posterior: the Darwin term in order to recover exactly the same
upper component as in RDWIA and, by means of Eq. (5.5), avoid the expansions in p/M.
This formalism would incorporate all the kinematical and operator-related relativistic
effects, as well as the dynamical quenching of the relativistic upper components due to

the Darwin term.

This is done for instance by Kelly in several works |29] though with an additional
approximation, the effective momentum approach (EMA) for the lower components. This

amounts to approximate the & - p term that appears for the lower components in Eq. (5.5)

(X(mlower = %x(ﬁ)u,}pw) (5.6)

by & - pus, with p,s the momentum corresponding to the asymptotic kinematics at the
nucleon vertex. Results obtained within this approximation both with relativistic and

non relativistic potentials were compared to experiment in Ref. [1].

The differences between the calculations of [18] and those presented in [1] can be
either due to the EMA procedure, or to an additional dynamical relativistic effect different
from the Darwin term, namely the enhancement of the lower components (ii): The lower
components of the fully relativistic solutions are enhanced at the nuclear interior due to
the presence of negative energy components [13,30,40]. Solving the Dirac equation with
scalar and vector potentials we see that the lower components are related to the upper

ones by o
_ 9P
X(mlower - F TM+S— Vx(mupper- (57)

Comparing with Eq. (5.5), we see that the lower components are enhanced with respect
to the ones of free positive energy spinors by a factor

E+M

A7) =5 +M+S(r)—V(r)

(5.8)

(we recall: S < 0,V >0, and A~!(r) is ~ 2 at the nuclear interior for the usual values of

the potentials). A= (r) equals the inverse of the Darwin factor squared. This enhancement
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of the lower components with regard to free spinors has been sometimes referred as spinor
distortion [29].

As one can see from Egs. (5.5) and (5.7), for small values of the momentum p’the lower
components would play a minor role with respect to the upper ones, due to the factor
P/(E+ M). In this low-p region (p < 300 MeV), the enhancement of the lower components
is not important for the (e, €'p) cross sections [13] and the most visible difference between
RDWTIA and non relativistic (kinematically corrected) DWIA results is caused by the
effect mentioned above in point (i), namely the Darwin term. Due to dynamical effects,
relativistic cross sections at low-p are smaller than the non relativistic ones and RDWIA-
deduced spectroscopic factors from the low-p data are 10% to 15% higher than the non
relativistic ones [11,12]. With increasing p, however, the lower components cease to be
small and their enhancement, present in the fully relativistic wave functions but not in
Eq. (5.5) or in similar non relativistic expressions, increases the cross sections at p > 300
MeV/c, compared to the non relativistic ones. This improves sizeably the agreement, with
the data of the RDWIA (e, e'p) cross sections [14,15|. In short, in regions where the
momenta of the bound and/or final nucleon are comparable to the nucleon mass, the
RDWTA cross sections are larger than the non relativistic DWIA ones, in spite of the
Darwin factor that in these kinematical regions would play a minor role. The more visible
dynamical effect in high-p regions would be the one mentioned in paragraph (ii) that is,
the enhancement of the lower components. This enhancement is crucial to obtain good
agreement [15,20] with the recent data for Ry, response and Ary, in %0 taken at TINAF
for Q% ~ 0.8 (GeV/c)? |20,21].

To compare with non relativistic calculations, one can project the negative energy
sector out of the fully relativistic solutions, thus removing the enhancement of the lower
components described in paragraph (ii). More specifically, if the negative-energy compo-

nents are projected out, the nucleon current is calculated as

Tnoil,@) = [ A5 7+ DI, D) (7, (5.9)

where 1" (1p07) is the positive-energy component of ¥ (), i.e., P57 (5) = A ()Y (D),
Ay (P) = (M +p)/2M, with p, = (VP2 + M2, (similarly for ). That is, the matrix
element of the current is computed in a truncated space with only positive energy spinors
without enhancement of the lower components. This truncation is inherent to all non re-
lativistic calculations. The dynamical enhancement of the lower components is contained

in the current of Eq. (5.3) but not in Eq. (5.9). Apart from kinematical effects, the matrix
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elements obtained with the prescription of Eq. (5.9) are equivalent to the ones computed
in non relativistic approaches based upon either the Foldy-Wouthuysen reduction [6,31]
or the direct Pauli reduction [13,32].

The EMA approach (or more properly the EMA-noSV one where, as we have said, no
spinor distortion is considered [29]) also removes the enhancement of the lower components
but it is not completely equivalent to the exact projection method. Indeed, it is equivalent
to neglecting the p-dependence of the projection operators in Eq. (5.9), using instead the
asymptotic values of the momenta at the nucleon vertex. We can say that the EMA-noSV
approach computes the matrix element with spinors that have the same structure as
the ones that enter in the scattering of free nucleons, because it enforces the relationship
between upper and lower components to be driven by the asymptotic value of the momenta
at the nucleon vertex. The EMA-noSV calculation lacks any ‘spinor distortion’; exactly
as in the scattering of free nucleons. In particular, the Gordon transformation is exact for
the EMA-noSV approach and ccl and cc2 operators would lead to identical results within
EMA-noSV, if the same choices for the off-shell values of w, E, E', P and P' are made in

both cases.

The projected results, on the other hand, though lacking the large (around a factor of
two) enhancement of the lower components seen in the fully relativistic calculation, are
based on spinors whose upper/lower components verify Eq. (5.5) but with a wider value
of momenta than in scattering from free nucleons. Thus, even projected (non relativistic)
results can have a certain degree of spinor distortion compared to the free case due to the

dispersion by the nuclear potentials.

We must keep in mind that both projected and EMA-noSV results still incorporate
the dynamical quenching of the upper components (Darwin term) and, if they are to be
compared with non relativistic calculations, care must be taken of the Darwin term in
the non relativistic result. Relativistic optical potentials normally give rise to increased
absorption and stronger spin-orbit potentials. Due to this, it is expected that they would

also lead to a stronger induced normal polarization.

We want to emphasize that the possible differences with the former EMA-noSV analy-
ses of Woo et al. [1] are not due to the use of a relativistic optical potential. In both
Refs. [1] and [18], results were presented with the same potential EDAI-C that we use in
the present work. The Darwin term (leading to increased absorption) was also included in
a similar way to us. Thus, if there are differences between our results and those of Ref. [1],

they must be due to relativistic effects additional to the Darwin term and different from
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the fact that the optical potential is relativistic or not.

5.2 Results

For the bound state wave functions we use the parameters of the set NL3 [33] that
reproduces adequately the known momentum distributions at low-p [34]. We have also
computed results with other bound state wave functions and found the effects in P, to
be very small up to p < 250 MeV/c. For the scattered proton wave function, we use
the energy-dependent A-independent potentials derived by Clark et al. for '2C (EDAI-C)
and O (EDAI-O) [35]. To study the sensitivity to different optical potentials, we also
compute results with the energy-dependent A-dependent parametrization 1 (EDAD-1) of
Ref. [35].

5.2.1 Comparison with former results from Bates

In Fig. 5.1, P, is presented against the momentum of the recoiling residual nucleus
or missing momentum pp,, related to the momentum of the nucleon inside the target
nucleus before being knocked-out [4]. The results are computed for the kinematics of
Ref. [1], namely beam energy of 580 MeV, kinetic energy of the final nucleon of 270 MeV,
|7] ~ 760 MeV/c, w ~ 290 MeV in g-w constant kinematics with Q% ~ 0.5 (GeV/c)%.
We use the Coulomb gauge in all the cases. We included the Coulomb distortion of the
electron wave function and found its effect in P, to be small. With solid (dotted) lines we
present the fully relativistic results obtained with the ccl (cc2) operator. We also show
results after projecting out the negative energy components (short-dashed lines for ccl,

long-dashed lines for cc2).

We see that for the fully relativistic results, the agreement with the data is excellent in
both shells, except perhaps for the highest p,, and missing energy data points in the s;/,
shell, where the contribution from continuum states not considered in the present work
begins to be important. Looking at the projected results, we see that the removal of the
negative energy components worsens the agreement with the data for both the ccl and
cc2 operators. In all cases P, is smaller (less positive or more negative) for the projected
calculations. We also see that the Gordon ambiguities, i.e., the differences between ccl and
cc2 results, are rather small. Compared to the theoretical results of Ref. [1], the agreement

with experiment is better for any of the curves presented in Fig. 5.1. This cannot be due
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Figura 5.1: P, from "C for the 1p3/» (upper panel) and 1si/> (lower panel) orbits, ver-
sus missing momentum p,, in MeV /c. Results shown correspond to a fully relativistic
calculation with the ccl (solid) and ec2 (dotted) operators. Also shown are the results af-
ter projecting the bound and scattered proton wave functions over positive-energy states

(short-dashed and long-dashed lines respectively). Data points are from Ref. [1].
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Figura 5.2: P, from '?C for the 1ps/> (upper panel) and 1s;/> (lower panel) orbits, versus
missing momentum p,, in MeV /c. Results shown correspond to a fully relativistic calcula-
tion with the ccl and the EDAI-C (solid), and the EDAD1 (dash-dotted) potentials. Also
shown are the EMA results (dotted line) for the EDAI-C case. Former EMA-EEI results
(dashed line) and data points are from Ref. [1].
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only to the negative energy components because the effect of projection is rather modest
as the results in Fig. 5.1 show. To disentangle the reasons for this difference in Fig. 5.2 we
show (dotted lines) a calculation obtained with the EDAI-C potential within the EMA-
noSV approach with the operator ccl (very similar results are obtained with the cc2
operator and are not shown here). As a guidance, the solid line in Fig. 5.2 corresponds to
the same one of Fig. 5.1. We see in Fig. 5.2 that for the EMA-noSV results the reduction
of P, is noticeable and the agreement with the data is worse. Our EMA-noSV results are
in the line of the ones obtained with the same optical potential EDAI-C in Ref. [1]. We
note that our ccl and cc2 results are not identical within EMA-noSV due to the different
off-shell prescription we use in each case for the values of the kinematical quantities that

enter in the evaluation of the current matrix element. Following Ref. [16] for cc2 we have

“ -O-MVQV
]502 = Flfyu + 2M

F, (5.10)

with ¢” = (w, §) at the electron vertex. For ccl we have

. F,
o b ! 7

with pm = (E, ), Pm = P' — §, E' = \/ P + M? (the final nucleon is asymptotically
on-shell) and E = \/py, 2 + M2. Thus, w used in Eq. (5.10) is different from @ = E' — E as
implied in Eq. (5.11). If we had used @ in cc2 instead of w, the results of our ccl and cc2
EMA-noSV calculations would be identical. At present, there is no definite prescription
for handling this off-shell kinematical ambiguity in w, @ and other kinematical variables
to be used in the current operator [23,24]. This ambiguity arises because, contrary to the
scattering of free nucleons, part of the energy and momentum of the exchanged photon is
transferred to the recoiling system instead of being completely absorbed by the detected
nucleon. We have chosen the original prescription of de Forest of using E in ccl but
w in cc2. We find that, in this way, off-shell kinematics ambiguity effects and Gordon
ambiguity ones reinforce each other so that the differences between the ccl and cc2 results
are enhanced by our choice. The EMA-noSV results are free from Gordon ambiguities.
This is the reason why ccl and cc2 results obtained in such approach are much closer
than the corresponding ones of the full RDWIA calculations. Kinematical ambiguities
will cause differences of up to 15% between our ccl and cc2 EMA-noSV unpolarized cross
sections results for all the cases considered in the present work. However, the effect of
these ambiguities in the P, predictions is almost negligible (typically less than 1%). We
have plotted only the ccl EMA-noSV result for P,. Our cc2 EMA-noSV result is almost

identical to this curve.
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Recently, Kelly has incorporated the effect of spinor distortion within his EMA ap-
proach by including the relativistic potentials in the lower component of the spinors as in
Eq. (5.7), while still substituting the &-p term by & - j,s. This is called EMA-SV approach
in Ref. [29] in contrast to EMA-noSV. This procedure reintroduces the dynamical en-
hancement of the lower components. For modest values of the momentum (up to around
275 MeV /c), where the role of the lower components is less relevant, this approximation
goes close [39] to the results obtained with the exact treatment that we do in the present
work. It tends, however, to minimize the effect of enhancement of the lower components
beyond the value of p,, mentioned above and, as the momentum of the ejected nucleon is
normally well above 275 MeV /¢, it underestimates the effect of spinor distortion for the
ejected nucleon. We conclude that an important reason for the differences of our full RD-
WIA results with those of [1], using the same optical potential EDAI-C, is the EMA-noSV
approach employed in Ref. [1].

For the purpose of comparison, we present (dash-dotted line in Fig. 5.2) results obtai-
ned with the same bound state wave functions as for the other curves, the full RDWIA
approach with the ccl operator but a different optical potential, namely the EDAD-1 of
ref. [35]. We emphasize that the EDAI-C potential should be a more suitable choice than
EDAD-1 for 2C because it describes better the elastic proton scattering data for this
particular nucleus. The effect of using EDAD-1 instead of EDAI-C is sizeable. EDAD-1
yields a larger P, for the ps/, shell, worsening the agreement with the data and a smaller
P, for the s1/; shell, with no significant worse (or better) agreement with the data in this
shell. We observed that both EDAI-C and EDAD-1 produce almost identical unpolarized
cross sections or unpolarized response. However, the P, values they produce are noticeably
different. This shows the sensitivity of P, to details of the FSI.

The comparison between the results of both potentials follows the same general trend
as shown in Ref. [18]. In Ref. [18], P, changes in the same relative direction in going
from EDAI-C to EDAD-1 as in our calculation but, contrary to our case, the differences
between the EDAI-C and EDAD-1 are larger for the 1s;/; shell than for the 1p3/; one and
in this latter shell, their results seem to agree better with experiment for the EDAD-1
potential than for the EDAI-C. We find, in general, that our results with EDAI-C agree
better with the data. These minor discrepancies with Ref. [18] should be traced back
to the different bound state wave functions and possibly other parts of the formalism

(current operator, Coulomb distortion) employed in both cases.

In Fig. 5.2 we also show the EMA-noSV results of Ref. [1] with the EEI potential
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(dashed line). In Ref. [1] a more positive P, for the ps/, shell and better agreement with
the data was obtained with the EEI potential than with the EDAI-C one. For the 1s;/,

shell, however, a more negative P, and worse agreement with the data was found.

The EMA-noSV-EEI calculation of Ref. [1| underestimated the data by about 10%.
The EEI is a non relativistic optical potential obtained after folding a density-dependent
empirical effective interaction with the nuclear density [37|. The interaction is fitted to
proton-nucleus elastic and inelastic scattering data for several states of several targets
simultaneously. The relativistic optical potentials, on the other hand, are fitted only to
elastic scattering data. It is well known that elastic data can only constrain the asymptotic
part of the potentials. Given the fact that the nucleus is almost transparent to electrons
(compared to nucleons), phase-shift equivalent potentials that differ only in the nuclear
interior would produce the same good fits to elastic proton scattering observables, leading
however to different electron scattering results. The EEI approach solves this ambiguity
by phenomenologically constraining the potentials in the nuclear interior by means of
simultaneous fits to inelastic data. In the relativistic case, on the other hand, the shape of
the potentials at the nuclear interior is assumed to be of simple Woods-Saxon -+ surface
terms, not very different from what one finds in the relativistic mean field approximation.
Thus, the fact that the relativistic model gives a very fair account of (e, e'p) observables
such as P, cannot be attributed merely to the incorporation of the right phenomenology,
as it could be the case with the EEI potentials, but to a merit of the model itself.

5.2.2 Predictions for Mainz and TJNAF in parallel kinematics

In a recent work [15,20, 38|, it has been shown that the dynamical enhancement of
the lower components shows up differently in the j =1 —1/2 and j = [ + 1/2 spin-orbit
partners, specially for the Rpy response and the Ar; asymmetry. We remind that for
12 the two shells studied correspond to j = [ + 1/2 spin-orbit partners. New sets of
induced polarization P, are being obtained at TINAF [2] in 'O at a more relativistic
kinematics, namely beam energy of 2450 MeV, kinetic energy of the ejected nucleon of
about 420 MeV, and Q? ~ 0.8 (GeV /c)?. There is also a proposal at Mainz [3] to do similar
measurements at a smaller value of the kinetic energy of the ejected nucleon, namely 200
MeV. In what follows, we analyze whether these experiments may provide signatures of

relativistic dynamics in P, similar to the ones found in Ry, and App.

In parallel kinematics only two responses, R; and Ry, contribute to the unpolarized
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Figura 5.3: P, from '°O for the 1p; /s (upper panel), 1ps/s (mid panel) and 1s;, (lower
panel) orbits, versus missing momentum p,, in MeV /c. Results shown correspond to a fully
relativistic calculation with the ccl (solid line) and cc2 (dotted line) operators. Also shown
are the projected results (short and long-dashed lines) and the EMA-ccl ones (dash-dotted
line). Results in parallel kinematics corresponding to ref. [3] and the EDAI-O potential is

used.
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cross section and just one, 7., to P,, so that for this kinematics the analyses are simpli-
fied. We present in Fig. 5.3 fully RDWIA results with ccl (solid line), cc2 (dotted line),
projected results (short-dashed lines for ccl and long-dashed lines for ¢c2) and EMA-noSV
results with the ccl operator (dash-dotted line) for the two p-shell spin-orbit partners of
160, plus the deep s-shell, in parallel kinematics and with beam energy and transfer energy
suitable for Mainz [3] (beam energy of 855 MeV, kinetic energy of the ejected nucleon of
200 MeV).

For the three shells we see the opposite pattern to the one depicted in Fig. 5.1: the
removal of the negative energy components drives here P, towards higher values, and even
more so does using the EMA-noSV approach. For the kinematics of Fig. 5.3, the effect of

projection and Gordon ambiguities is much larger than it was in Fig. 5.1.

A very characteristic feature is seen in the s, /5 shell for this case of parallel kinematics:
A zero value of P, is predicted within the EMA-noSV approach. A small value of P, is
obtained by the projected calculations, while the full RDWIA approach yields a relatively
large (in absolute value) P, due to spinor distortions. The choice ccl, that emphasizes
the effect of the enhancement of the lower components [30], yields the largest prediction
for P, in absolute value. Should the experiments at TJNAF or Mainz provide us with
P, values with equal or smaller uncertainty that the ones already measured at BATES,
it will undoubtedly disentangle the role played in P, by the enhancement of the lower

components.

The responses involved in the evaluation of P, for this case are displayed in Fig 5.4.
The only nonzero contribution to P, comes from R}, and the link between the responses
shown in the bottom panel of Fig. 5.4 and the results for P, of Fig. 5.3 is straightforward.
As it could be deduced from the values of P, displayed in Fig. 5.3, R for the s, /5 shell is
zero within EMA-noSV, it is very small for the projected results and reaches the largest
absolute value for the full RDWIA ccl calculation. The results for the p3/; shell follow
the same trend as shown for the s/, shell, only that here the more complex spin-orbit
structure of the bound state causes a nonzero value of P, even for the EMA-noSV results.
The projected and EMA-noSV results display small (in absolute value) predictions for
R}, . The cc2 RDWIA prediction exhibits larger R, while the full ccl result yields the
largest value of R}, . This gradation of R7, is similar to what one finds generally for
the unpolarized Ry, (in ¢-w constant kinematics): As the ccl operator enhances the role
of the negative energy components [30] with regards to other choices of the operator, it

produces the largest value of Rry. Thus, at least for the j = [+ 1/2 spin orbit partner, we
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observe the same behavior for R}, and Rry with regards to the effect of negative energy

components.

On the other hand, we find that projection and Gordon ambiguities effects show up
differently for the py/o shell. For this case Ry, Ry and R}, are shown in the leftermost
panel of Fig. 5.4 at the same kinematics of Fig. 5.3. While for R}, in the j =1+ 1/2
shells the larger was the role given to the negative energy components the larger (in
absolute value) R}, response was obtained, for the p;/, shell (j =1 —1/2) one sees the
opposite behavior: the full ccl calculation yields the smallest Rj.; while the EMA-noSV
prediction displays the largest one. This is at variance with the behavior observed for
the unpolarized Rry response 38| and indicates an interference between positive and
negative energy component contributions to R}, . This interference is constructive for the
j = 1+ 1/2 shells so that the calculations with large contribution from negative energy
components yield a large R}, while it is largely destructive for the j =1 — 1/2 shells for

which large effects of negative energy components translate into small values of R}, .

In Ref. [36] results were presented for the EMA-noSV case within the IA and also in a
calculation beyond IA that included channel coupling to several configurations in the final
state. Our EMA-noSV result of Fig. 5.4 and the one shown in Fig. 14 of Ref. [36] are very
similar, with small differences due to the different wave functions and optical potentials.
The most interesting outcome of this comparison is that the effect of spinor distortion
increases R7pp, in particular for the case of the s/, shell that would have a zero value
without spinor distortion within IA. Due to channel coupling (CC), a nonzero R}, for
this shell was obtained in Ref. [36]. The effect of spinor distortion, however, is at least twice
to four times (depending on whether one considers the RDWIA c¢e2 or ccl result) larger
than the one of CC shown in Ref. [36]. We conclude that coupled channel contributions
would not mask the large negative value of P, caused by spinor distortion. The R%;
response in this sy, shell is sensitive to Gordon ambiguities and overall constitutes a
very clear signature for the presence of negative energy components in the nucleon wave

function.

For the other shells, the effects of CC shown in Ref. [36] were small at moderate values
of p,, for the cases we studied in the present work and the IA results shown here should

not change much if CC effects were considered.

Still in parallel kinematics but with a larger value of Q? that is suitable at TINAF,
we have obtained very similar results to the ones just presented. We plot in Fig. 5.5 only
the results for P,.
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is used.
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5.2.3 g¢-w constant kinematics

TJNAF | MAMI | BATES

0, 23.4° | 48.8° | 118.8°

Q? (GeV/c)? 0.8 0.4 0.5
w (MeV) 445 215 292
%) 0.643 | 0.792 | 0.727

Vi 0.444 | 0.651 | 3.283
Vrr 0.737 | 0.932 | 1.642
Vrr 0.401 | 0.445 | 0.426

Tabla 5.1: Approximated values of the kinematical variables and the factors in Eq. (5.2)

for the g-w constant experimental setups discussed in the present work.

The experiment of Bates was performed in ¢-w constant kinematics and in the same
side of ¢ for the scattered proton, ¢’ = m, which corresponds to p,, > 0 in our figures. The
analysis of this case is more complicated because all the eight responses of Eq. (5.2), in
combination with the factors shown in Table 5.1, contribute to the cross section and P,.
In Figs. 5.6 and 5.7 we present the responses for the Bates results depicted in Fig. 5.1.
The effect of spinor distortion and Gordon ambiguities in the Ry, Ry, Rrr, and Rpr has
been studied previously in the context of RPWIA [30,38]. It was found there that for the
j = 1+1/2 partners, as it is the case of the two shells in '?C the differences are relatively

small, at least for the ’large’ responses Ry and Rr.

For the normal responses the situation is less clear. One must remember that unpo-
larized and normal responses share the same structure in terms of components of the
hadronic current, differing only in the signs with which the contribution for every value of
ejected nucleon spin projection upon the normal direction enters into the unpolarized or
normal responses |5,7]. Thus, large unpolarized responses usually come from constructive
interference of the two spin contributions and are associated with a correspondingly small
normal response coming from destructive interference. The converse is also true: small
unpolarized responses have a correspondingly large polarized normal response [7]. If there
were no FSI, both normal projection contributions (spin up and spin down) would be

identical, all the responses shown in Fig. 5.7 would vanish and no normal polarization
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would be observed.

Taking into account the value of the kinematical factors in front of each response
(see Table 5.1), the main contributions to P, for the sy, shell comes from R} and R
responses. In the case of the full RDWIA results, the R, response is responsible for most
of the net P,. Due to this, P, will change sign with p,, because of the cos ¢’ factor in
Eq. (5.2). We also see that R%.; is larger (in absolute value) for the calculation with larger
effect of the negative energy components, i.e., the full ccl result. In Fig. 5.6 we can see
the same feature in the unpolarized Rty response. This characteristic has been explained
before [20,30,38|. For the p shell, the largest contribution comes from R} that shows little
dependence on spinor distortion. This is why the effect of negative energy components is
small for this shell.

We plot also P, and responses (Figs. 5.8, 5.9 and 5.10) for a kinematics suitable at
TJINAF (namely |q] = 1000 MeV /c, w = 445 MeV and energy of the beam ¢ = 2445 MeV).
Apart from what has been already said, we find that for the ps/, shell and p,, < 0 there
are small Gordon ambiguities and a very clear separation of the fully RDWIA results
from the projected or EMA-noSV ones is seen. Therefore, this is a good region to look
for the effects of spinor distortion. We can explain this better by looking at the results
in the second column of Fig. 5.10: There, all calculations lie very close except for R}, .
In the p3/o shell the projected and EMA-noSV curves group together, while both fully
relativistic calculations clearly deviate from the others. Going back to P, in the second
panel of Fig. 5.8, we observe these differences only in the region p,, < 0, due to the different
sign with which the cos ¢’ R}, term contributes in the p,, < 0 and p,, > 0 regions. This
behavior is characteristic of the kinematics chosen at TJNAF. Indeed, as we can see in
Fig. 5.11, at different kinematics conditions such as the ones suitable at Mainz, (i.e., g-w
constant kinematics with |§] = 648 MeV /¢, w = 215 MeV and € = 855 MeV), there is not
such a clear separation of the fully relativistic curves from the others in the ps3/; shell for
pm < 0 as the one found for the TJNAF kinematics.

Another interesting feature that was already found in parallel kinematics is that, for
the j = + 1/2 shells, R}, has larger values when the calculation emphasizes the role of

negative energy components while the converse is seen for the p;/, (j =1 — 1/2) shell.

For the two p shells at the kinematics of TJNAF and Mainz, the largest contribution
to P, would come from VprR%7p. For the pso shell in the p,, < 0 region, however, this
contribution is canceled to a large extent by the Vpp R}, one. This explains why P, is

mainly negative for p,, < 0 for the p3/, shell. On the other hand, the vy 7. contribution
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fully relativistic calculation with the ccl (solid line) and cc2 (dotted line) operators. Also
shown are the projected results (short and long dashed lines) and the EMA(noSV)-ccl

ones (dash-dotted line). Results in g-w constant kinematics corresponding to ref. [2] and

the EDAI-O potential is used.
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is less important for the p; /5 shell and practically does not influence the total polarization.

Therefore P, for this shell is negative irrespectively of the sign of p,,.

A serious concern is the issue of current conservation. The use of an optical potential
breaks Gauge invariance in DWIA. We estimated the uncertainty associated to the choice
of Gauge by comparing the results we show in the present work with the ones obtained in
the Landau Gauge. We find that the fully relativistic results in perpendicular kinematics
at the highest value of Q? are the less sensitive ones to this procedure. On the other
hand, the unpolarized cross sections can differ by as much as 50% in parallel kinematics
for large values of |p,,|. However, P, is much less sensitive to the choice of Gauge than
unpolarized cross sections: For the fully RDWIA results of the present work, using the
Landau or Coulomb Gauge produces P, results within 5%. Gauge ambiguity is much less

important than the one due to the ccl or cc2 choice.

5.3 Conclusions

We have found that the relativistic dynamical effect mentioned in paragraph (ii), the
enhancement of the lower components, increases noticeably P, with respect to both the
projected and, more sizeably, the EMA-noSV results, driving the fully RDWIA results for
P, into excellent agreement with the data of Ref. [1]. For the kinematics of the TINAF
89-033 [2] and Mainz 3] experiments we find the differences between the RDWIA and

projected results to be important.

P, proves to be very sensitive to the choice of optical potential, allowing this observable
to be used to constrain the theoretical model for FSI so that these effects can be included
with confidence when making predictions for other observables much less sensitive to the

choice of FSI, such as the polarization transfer observables P, and P} [29].

Previous explorations of the role of meson exchange currents (MEC) for Bates, based
upon a non relativistic picture, showed very little effect in P, at moderate p,, [8]. MEC are
expected to play an even minor role for higher Q? at quasi-elastic kinematics (x ~ 1) [§]
and its inclusion will not modify substantially the predictions for P, presented in the
present work. The same can be said of coupled channel effects analyzed within the EMA-
noSV approach in Ref. [36]. However, Gordon and kinematical off-shellness ambiguities
are large for high Q? experiments. We have looked for kinematical regions where these

ambiguities are minimized. In parallel kinematics, we conclude that the p,, < 0 region
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(| > |P')) is optimal because it displays a minimum effect of Gordon ambiguities while
a high sensitivity of the calculations to the presence of negative energy components is
found. In ¢-w constant kinematics the same favorable situation is seen again for p,, < 0
(¢ = 0) but only for the p3/, shell at |¢] = 1 GeV /c, adequate to TINAF.

In parallel kinematics we found very clear signatures for negative energy components
in the wave functions, that cause P, to be driven towards more negative values with
respect to the non relativistic prediction, particularly for the sy, and ps/» (j =1+ 1/2)

shells. This feature should remain even in the presence of MEC and CC.

In g-w constant kinematics the effect of the negative components is manifested as an
increase (decrease) of P, for p,, > 0 (p,, < 0) of the relativistic predictions with regards

to the non relativistic ones.

Finally, we hope that future experiments will shed light on the theoretical uncertainties
that are still present in the calculations such as which current operator should be used
and will help to disentangle the role played by the negative energy components of the

wave functions.
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6.1 Introduction

A very topical issue in nuclear physics at present is the search for evidence of possible
modification of the nucleon form factors inside the nuclear medium. A number of dou-
ble polarized (€, e'p) experiments have been proposed or carried out recently to measure
polarization transfer asymmetries, motivated by the hope that such observables may pro-
vide valuable information that can shed some light on this issue. Importantly, transferred
polarization observables have been identified as being ideally suited for such studies: they
are believed to be the least sensitive to most standard nuclear structure uncertainties and
accordingly to provide the best opportunities for studying the nucleon form factors in the
nuclear medium. Polarization transfer data have been reported recently for the case of
160(¢€, e'p)!>N in [1] and for *He(€, 'p)*H in [2,3]. Although the experimental uncertain-
ties in both cases make it difficult to draw unambiguous conclusions on the nucleon form
factors inside the nuclei, the data in [3] do seem to favour such a possibility. Specifically,
this means that comparisons of measured polarization asymmetries with those computed
using the best currently available nuclear models for the states and operators involved in
the coincidence reaction in fact show disagreements, and that these can be removed by

modifying the nucleon form factors in a reasonable way.

Of course, what constitutes the “best currently available nuclear models"must be jud-
ged carefully. In particular, the kinematic regime where the measurements have been
undertaken is at relatively high energy — to make the reaction sufficiently impulsive to
be at all interpreted as a simple single-nucleon knockout reaction — and it is clear that
relativistic effects in wave functions and operators are essential. So, for instance, the data
in [2] disagree significantly with the standard non-relativistic calculations; however, this
cannot be taken as evidence for nucleon modifications, since one finds that the results are
(not unexpectedly) much more in accord with a fully relativistic approach. Also recent
data on induced polarization in 2C [4] strongly support an analysis based on the fully
relativistic formalism [5]. These results are not surprising since spin and relativity are
intrinsically related, and hence one may a priori consider the relativistic formalism to be

better suited to describe polarization observables.

Indeed, most electron scattering experiments performed in the last decade have in-
volved energies and momenta high enough to invalidate the non-relativistic approxima-
tions assumed within the standard non-relativistic distorted wave impulse approximation

(DWIA), i.e., bound and scattered wave functions given as solutions of the Schrédinger
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equation, and one-body current operator resulting from a non-relativistic reduction. In
the relativistic distorted wave impulse approximation (RDWIA), nucleon wave functions
are described by solutions of the Dirac equation with scalar and vector (S-V) potentials,

and the relativistic free nucleon current operator is used.

Relativistic effects can be classified into two basic categories according to their origin,
namely kinematical and dynamical effects. The former are due to the truncation of the
current operator within the non-relativistic approach, the latter, dynamical effects, come
from the difference between the relativistic and non-relativistic wave functions. Here one
may distinguish a dynamical depression of the upper component of the scattered nucleon
wave function in the nuclear interior (Darwin term) and a dynamical enhancement of the

lower components, mainly that corresponding to the bound nucleon wave function.

So far, RDWIA calculations for cross sections and response functions at low and high
missing momenta [6-10] have clearly improved the comparison with experimental da-
ta over the previous non-relativistic approaches. Moreover, RDWIA also predicts larger
spectroscopic factors which are more in accord with theoretical calculations which incor-

porate correlations |6, 10].

Concerning the current operators, in some recent studies [11-15] new so-called ‘semi-
relativistic’ approaches have been introduced to describe (e, ¢'p) reactions. Here the ‘semi-
relativistic’ current operators are obtained by expanding only in missing momentum over
the nucleon mass while treating the transferred energy and momentum exactly. This
new approach has been proven to retain important aspects of relativity, and hence its
predictions, compared with the standard DWIA, agree much better with the RDWIA

calculations.

Concerning dynamical effects, the enhancement of the lower components of bound
Dirac spinors |9, 10] (not present in the semi-relativistic approaches) has been shown
to play a crucial role in the description of the interference 7'L response and left-right
asymmetry App. Meson exchange currents and the A-isobar contribution have recently
been analyzed in [16,17] within the semi-relativistic approach, also showing very significant

effects, particularly due to the A, at large missing momentum p > 300 MeV /c.

In this paper we focus on the analysis of polarized A(€, e'p)B observables within the
framework of the RDWIA. Our aim is to study the role played by both kinematical and
dynamical relativistic effects in a consistent description of the polarized responses and

asymmetries. This work extends the previous analyses presented in [18,19] within the plane
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wave approach, now including a realistic description of the final-state interactions (FSI)
through relativistic optical potentials. The magnitude of relativistic effects on various
transfer polarization observables is carefully examined, disentangling the role played by the
various ingredients that enter in the fully relativistic formalism. In particular, we extend
the study of [18] where within RPWIA we demonstrated the importance of the negative-
energy components of the relativistic bound nucleon in the description of the polarized
responses and transferred polarization asymmetries. The RDWIA analysis performed here
allows one to examine also the dynamical enhancement of the lower components in the
scattered Dirac wave functions and moreover, makes it possible to carry out meaningful

comparisons with measured observables.

Returning to the issue of potential medium modifications of the nucleon form factors,
the current study has the following goal: we wish to explore a selected set of model “varia-
tions on a theme” of the type discussed above. In all cases we choose only modeling that
is, within the context of the general relativistic approach being adopted, consistent with
what we know about initial- and final-state wave functions and one-body electromagnetic
operators. Since equally acceptable relativistic potentials exist when obtaining the states
and since alternative descriptions of the current operators are likewise acceptable, it is
impossible at present to define what is “the best” model. Our goal is to explore these
acceptable models and where the resulting polarization observables differ with the choice
of model to ascribe these variations to a (minimal) theoretical uncertainty. Needless to
say, all of this is within the general context of relativistic mean-field modeling and so the
resulting uncertainties are minimal in the sense that effects that go beyond the scope of
the modeling might increase the uncertainties. In the final analysis, only if medium modi-
fication effects are larger than the uncertainties we find here, and only if the uncertainties
that arise from ingredients not in the present model can ultimately be shown to be small,
will a convincing case be made for the necessity of having such medium modification

effects.

The paper is organized as follows: in Sec. 6.2 we briefly introduce the general formalism
for A(€, €'p)B reactions focusing on the relativistic distorted wave impulse approximation.
Within this context, we also introduce the projected approach, the effective momentum
approximation (EMA-noSV) and the use of semi-relativistic current operators. By com-
paring them one may get a clear image of the importance of relativity in these processes.
In Sec. 6.3 we present and discuss the results, paying special attention to the polarized

responses and transferred polarization asymmetries. Finally, in Sec. 6.4 we summarize our
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conclusions.

6.2 Description of A(¢,e'p)B reactions

6.2.1 General formalism. RDWIA

In this section we briefly review the general formalism needed to describe coincidence
(€, e'p) reactions. We consider plane waves for the incoming and outgoing electron (trea-
ted in the extreme relativistic limit) and the Born approximation (one virtual photon
exchanged). When the incoming electron is polarized and the final nucleon polarization
is measured, the differential cross section can be written as [20—-24]

do o
9 _ %4, p. A+ P 1
Fedd, 2 N+P-o+h(A+ o)l, (6.1)

where the variables {e, €2} refer to the scattered electron and Q2 to the ejected nucleon.
The term oy is the unpolarized cross section, h is the incident electron helicity, A denotes
the electron analyzing power, and P (P') represents the induced (transferred) polariza-
tion. Note that both P and P’ depend on the outgoing nucleon polarization, but P’ only
becomes accessible when the incoming electron beam is polarized. The cross section in

Eq. (6.1) can also be written in terms of nuclear responses as follows:

dgedgﬁ Ko fre {vL (RL + Rﬁ@n) + vr (RT + Rgén)

vrr, [(R™ + R}"S,) cos ¢+ (RFES, + RI:S, ) sin ¢

vrr [(R™" + RLTS,) cos2¢ + (R[S, + RT3, ) sin 2¢]

h {UTL: [(RITL’ 5'1 + Rlegs) cos ¢ + (RTL' + RZL' §n) sin qb]

vr [RS8 + RIS, }} (6.2)

+ + 4+ o+

where ¢ is the azimuthal angle that determines the outgoing nucleon momentum. The
term K is a kinematical factor given by K = pp My Mp/M 4, with pr the outgoing nucleon
momentum, My the nucleon mass, and Mg (M 4) the mass of the residual nucleus (target),
respectively. The Mott cross section is represented by o/, frec is the recoil factor given by
free = 1+ (wpr — qEr cos0p) /M apr, where Ef is the outgoing nucleon energy and 0 is
the angle between pp and the transferred momentum, and the v, K = L, T, ... are the
standard electron scattering kinematical factors (see [24,25]). The indices [, s, n refer as

usual to the directions selected to specify the recoil nucleon polarization: I (parallel to the
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momentum py), n (perpendicular to the plane containing py and the transfer momentum
q), and s (determined by m x [). From this large number of possible response functions

some selection can be made to limit the focus:

e Assuming coplanar kinematics, i.e., ¢ = 0°,180°, from the total set of eighteen

responses in Eq. (6.2) only twelve survive.

e From these twelve responses, the four transferred polarization ones R{g only con-
tribute when the electron is polarized, while the four induced polarization ones R¥

only enter when FSI are taken into account.

Following the analysis presented in [18], in this work we limit our attention to those
observables that survive in the plane wave limit, i.e., transferred polarization responses
RTY ) RF', RTY | RT" and transferred asymmetries P/, P!. A detailed study of the induced
polarization observables within RDWIA has been presented in [5].

The response functions in Eq. (6.2) are constructed directly by taking the appropriate
components of the hadronic tensor W#” which, within the RDWIA, comes from bilinear

combinations of the nucleon current matrix elements

Iy(w, q) = /deF(pr q)J5Vs(p), (6.3)

where Up and U are relativistic wave functions describing the initial bound and final
outgoing nucleons, respectively, and J I is the relativistic one-body current operator. The
bound wave function Vg is a four-spinor with well-defined parity and angular momentum
quantum numbers k;, Uy, obtained within the framework of the relativistic independent
particle shell model. The mean field in the Dirac equation is determined through a Hartree
procedure from a phenomenological relativistic Lagrangian with scalar (S) and vector (V)

terms. It may be written

¥(p) = WH(P) = gy [ dre PTU() = (i) (S o )w() (6.4

with ®£(p) the usual spinor harmonics. The wave function for the ejected proton ¥p is a
scattering solution of a Dirac-like equation, which includes S-V global optical potentials
obtained by fitting elastic proton scattering data. This wave function, obtained as a partial

wave expansion, is given in momentum space by

Er + My

Y e Rt (tm- SF\J/D (Dr)VE(p), (6.5)

Kum
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where W#(p) are four-spinors of the same form as in Eq. (6.4), but the phase-shifts and

radial functions are complex because of the complex optical potential involved.

Finally, for the nucleon current operator we consider the two choices denoted as CC1
and CC2 [26]

jg‘m = (Fi+ )y - (P + Pp)! (6.6)
2M y
Jho, = Fiyb+ iz o Q (6.7)
cC?2 2MN Vs

where F; and F, are the Dirac and Pauli nucleon form factors related to the electric
and magnetic Sachs form factors in the usual form. The variable P* in Eq. (6.6) is the

four-momentum of the initial nucleon for on-shell kinematics, i.e., P = (E,p) (E =

\/P?> + M2 and p = pp — q).

6.2.2 Dynamical effects: projected approach and effective mo-

mentum approximation

In recent years a considerable effort has been devoted to the analysis of quasielastic
(e, €'p) reactions using a fully relativistic formalism. Within this framework, particular
emphasis has been placed on comparison between relativistic and non-relativistic approa-
ches, trying to identify and disentangle clearly the ingredients which lead to different
results in the two types of calculations. In some recent works [27] relativistic effects have
been analyzed by comparing directly results obtained from a standard non-relativistic
DWIA code (DWEEPY) with those provided by a relativistic calculation. These inves-
tigations were aimed at providing systematic and precise information on the magnitude
of the effects introduced by relativity when compared with the standard non-relativistic
description based on DWEEPY. The latter was widely used in the 1980s to analyze low-
energy experimental data. However, although interesting, this study did not allow one
to identify clearly the role played by the various ingredients entering into the relativis-
tic formalism. Note that apart from the four-spinor versus two-spinor structure involved
in relativistic and non-relativistic calculations, respectively, also the potentials used in
the Dirac and Schrédinger equations for the bound and scattered nucleon are different.
Moreover, the non-relativistic current operator results from an expansion in a basis of
free nucleon plane waves and a Pauli reduction with the operator expanded in powers

of p/My, q/My and/or w/My, p being the missing momentum, ¢ and w the transfer
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momentum and energy, respectively. In this work we focus on the separate analysis of the
various ingredients that enter in the general formalism, and evaluate their impact on the
transferred polarization observables. Hence, in order to minimize the mismatch coming
from the different assumptions involved in relativistic and non-relativistic approaches, all
of the results presented in this work have been evaluated using the same potentials and

code.

Dynamical effects arise from the differences between relativistic and non-relativistic
potentials and wave functions. A detailed study on this subject has been already presented
in |9,10,28|, so here we simply summarize the basic concepts needed for later discussion
of the results. As is well known, interacting Dirac wave functions have a non-zero overlap
with the Dirac sea [29]. The presence of the S-V potentials leads to a significant dynamical
enhancement of the lower components of the Dirac solution at the nuclear interior. This
fact is clearly illustrated by realizing that for a general solution of the Dirac equation with
scalar and vector potentials, its upper and lower components are related by

gdown _ g-P yup 6.8
E+My+5-V (6.8)

with S < 0 and V > 0. Note that these lower components are enhanced with respect to
the ones corresponding to free positive energy spinors where S = V' = (. This effect has
been referred to as dynamical enhancement of the lower components, and more recently

as spinor distortion [30].

The analysis of these dynamical effects can be done by constructing properly normali-
zed four-spinor wave functions where the negative-energy components have been projected
out. Thus, instead of the fully relativistic expression given in Eq. (6.3), the nucleon current

is evaluated as
I w,q) = [ ap¥ (p+ @) 405 (), (69)

where U (p), (U4 (p)) is the positive-energy projection of U5 (p), (¥r(p)), i.c.,

U5 (p) = Awy()Ts(p)
vp+q) = App+aTrp+a), (6.10)

where Ay (p) = (My + P)/2My is the positive energy projector. Then the effects due
to the dynamical enhancement of the lower components show up clearly by comparing
the results obtained using the fully relativistic amplitude given in Eq. (6.3) with those
evaluated by using Eq. (6.9).
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Notice that the relationship between lower and upper components in the projected
wave functions is similar to that corresponding to free nucleon wave functions, but with
the positive-energy projectors depending explicitly on the integration variable p. An addi-
tional approach, referred to as asymptotic projection, consists of introducing the asymp-
totic values of the momenta into the positive-energy projectors acting on the bound and
scattered wave functions. This asymptotic projection is very similar (although it is not
completely equivalent) to the effective momentum approximation (EMA-noSV) intro-
duced originally by Kelly [30]. Within the EMA-noSV approach, the four spinors used
have the same upper components as those of the Dirac equation solutions, but the lower
components are obtained by enforcing the “free” relationship between upper and lower
components and using the asymptotic momenta at the nucleon vertex. Note that these

wave functions also lack the dynamical enhancement of the lower components.

Finally, one also has the dynamical quenching of the upper component of the Dirac
wave function in the nuclear interior compared with the non-relativistic solution. This
effect, associated with the Darwin term, is implicitly included in all calculations presented
in this work. Hence the differences between the EMA-noSV approach (or equivalently the
asymptotic projection) and the fully relativistic calculation can be solely ascribed to the

negative-energy components.

6.2.3 Kinematical effects: semi-relativistic reductions

Another ingredient which leads to differences between the relativistic and non-relativistic
approaches concerns the specific form of the current operator used to evaluate Eq. (6.3).
Instead of the fully relativistic operator considered in RDWIA, truncated expressions up
to first or higher orders in p/My, w/My and/or q/My are employed in standard non-
relativistic DWIA calculations. These effects, here referred to as kinematical relativistic
effects [9,10, 19|, include not only the relativistic kinematics of the nucleon energies and
momenta [16,31] (which must be accounted for in order to describe properly the form
of the momentum distribution), but also the effects linked to the use of the relativistic

nucleon current operator.

Improved non-relativistic expansions of the nucleon current operator, denoted as semi-
relativistic approaches, which contain important aspects of relativity, have been derived
recently and are available in the literature [12-15]. In this paper we investigate the kine-

matical effects associated with these expansions in polarized (€, €'p) observables. To this
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end we have also incorporated the semi-relativistic expressions in the relativistic code, so
that a direct comparison between the fully relativistic calculation and the semi-relativistic
approach becomes more meaningful because the effects due to the choice of wave functions

and/or potentials are minimized.

To make the analysis clearer, in what follows we explain in some detail the procedure
used to get the semi-relativistic results. In the case in which spinor distortion is neglected
and asymptotic momenta are used, the relativistic (4 x 4) current matrix element can be
recast in an equivalent form that involves an effective (2 x 2) current operator 75f s that
occurs between the upper two component spin 3 spinors. The (2 x 2) operator 72} 7 is ob-
tained without any approximation concerning non-relativistic reductions; it corresponds
to an exact expression for the on-shell electromagnetic current operator [15]. This means
that the results obtained using 7§f 7 between bispinors corresponding to the upper compo-
nents of the relativistic wave functions should coincide exactly with those obtained using
the original relativistic (4 x 4) electromagnetic current operator within the EMA-noSV
approach [30]. Finally, a comparison between these results and those provided by making
use of the semi-relativistic expressions for the operator, leads to direct information on
the magnitude associated with the kinematical relativistic effects. It is important to point
out that the semi-relativistic reduction is done in the context of the effective momentum

approximation, ¢.e., using asymptotic momenta.

The semi-relativistic (SR) expression of the electromagnetic current operator relies
on the direct Pauli reduction method, by expanding only in the missing momentum (p)
over the nucleon mass. The transfer energy and momentum are treated exactly. Up to

first-order in p/My, the following results for the electromagnetic current operators are

obtained:
P et — (g, -G" .
J = \/7__GE+ i (GM 5 )(K, xn)-o, (6.11)
J ! {'G ( ><f<a)+<G +TG) + Gpk

= iGu(o o~
\/m M BT 50M n E

- GiM(m Kk — Gy (0 X K)K -
2(147) n 2(14+7) "
. Gg i(Gy — Gg)

- T (GM—7> (axn)-l—w(nxn)a'-n} : (6.12)

where we have introduced the usual dimensionless variables: 7 = |Q?|/4M3%, k = q/2My

and n = p/My. Obviously, when computing response functions, evaluated by taking
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bilinear combinations of the electromagnetic current matrix elements, terms of order n?

should be dismissed.

As shown, the spin-orbit part of the charge and the relativistic correction to the trans-
verse current, the first-order convective spin-orbit term, are included in Eqs. (6.11,6.12).
Although the above expressions have been already presented in the literature [12-15,31],
in most of these previous works the analysis of the observables has been performed adop-
ting additional approximations on the vector current, namely, J is simply taken as the
standard non-relativistic reduction except for a global kinematical factor (1 + 7)~/2 that
includes relativistic corrections coming from the Dirac spinors (see [12-15] for details).
Here we evaluate the recoil nucleon polarized observables by making use of the full SR cu-
rrents in Eqs. (6.11,6.12) taken between the upper components of the original relativistic

wave functions.

6.3 Results and discussion

In this section we analyze the recoil nucleon transferred polarization observables for
proton knockout from '°O. Although we focus on results for the 1p;/o shell, similar con-
clusions are reached for the 1ps/, and 1s;/, shells unless otherwise specified. Results are
computed for both CC1 and CC2 choices of the current operator in Egs. (6.6,6.7), and the
Coulomb gauge is assumed. A detailed study on gauge ambiguities in RPWIA has been
presented in Ref. [18] showing that the Coulomb and Landau gauges lead to very similar
results, differing significantly from the ones corresponding to the Weyl gauge. These re-
sults are proven to persist within the relativistic distorted approach. The bound nucleon
wave function is obtained using the parameters of the set NLSH [32]. Results compu-
ted with other parameterizations are found to be similar and do not change the general
conclusions. For the outgoing nucleon wave function, we use the energy-dependent, A-
independent potential derived by Clark et al. for 1°0 (EDAIO) [33] which describes fairly
well the existing elastic proton-'®0O scattering data. Although our main interest in this
work concerns the effects introduced by dynamical and kinematical relativistic effects, a
brief study of the sensitivity of the polarized observables to the description of final-state
interactions is also presented. Hence in next section, results evaluated with different rela-
tivistic optical potentials are shown and compared. Finally, the Coulomb distortion of the
electron wave functions is accounted for by using the effective momentum approximation
with the nuclear Coulomb potential equal to 3.5 MeV (see [6,7] for details). All the results
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shown throughout this work correspond to the nucleon form factor parameterization of

Gari and Krumplemann [34].

6.3.1 Final-State Interactions: relativistic optical potentials

We start our discussion with the analysis of the longitudinal and sideways transferred
polarization asymmetries and their dependence on FSI. In Fig. 6.1, P/ and P! are presented
as functions of the missing momentum p. The kinematics are chosen with (g, w) constant,
g =1GeV/cand w = 439 MeV, yielding |Q?| = 0.8 (GeV /c)?. This roughly corresponds to
the experimental conditions of experiments E89-003 and E89-033 performed at JLab |35
37|. Left panels correspond to the p,/, shell and right panels to ps/,. In each case, RDWIA
results obtained with the EDAIO optical potential parameterization [33| are compared
with the RPWIA results. Plane wave calculations after projecting out the negative-energy
components of the bound nucleon wave function, denoted as PWIA, are also shown. Note
that PWIA polarization transfer asymmetries coincides with what one would obtain using
free Dirac spinors wave functions for both nucleons in Eq. (6.3). The electron beam energy
has been fixed to €peqn, = 2.445 GeV which corresponds to an electron scattering angle

0. = 23.4° (forward scattering).

First note the difference between the RPWIA calculations (dot-dashed lines) and the
RDWIA results (solid lines). For low missing momentum values p <200 MeV /c, the ef-
fects of FSI do not modify substantially the behaviour of the polarization asymmetries,
particularly for P/. However, in the case of P!, the difference is of the order of 20-25%
for p ~ 100 MeV /c which corresponds to the momentum where the responses reach their
maxima for the p;/, shell. Similar comments also apply to the results obtained for the
p3/2 and sy/; shells, although in these cases a smaller effect of FSI is observed for P;.
It is important to point out that FSI lead to a significant reduction of the individual
response functions: ~50-60% (R]") and ~25% (R'" and R]") at p ~ 100 MeV /c. The
response R!' is very small and its contribution to the transferred polarization is hardly
visible. Hence, the results in Fig. 6.1 clearly indicate that for low p-values, FSI effects
are partially cancelled when constructing the transferred polarization asymmetries. Note
also that, for these low-p values, the PWIA approach is more in accord with the RDWTA.

This means that in RPWIA the role of dynamical relativity stands out more clearly.

For high missing momentum, p > 200 MeV /c, FSI strongly modify the behaviour of

the polarizations, which is in accord with the peculiar sensitivity to the interaction pre-
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Figura 6.1: Transferred polarization asymmetries for the py /o (left panels) and ps/, (right
panels) shells in (¢, w)-constant kinematics (see text). Top and bottom panels correspond
to the longitudinal and sideways components, respectively. RPWIA results (dot-dashed
lines) are compared with RDWIA calculations using EDAIO (solid lines), and with the
PWIA (dotted line) (see text for details). All calculations correspond to the CC2 current

operator.
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sented by each response function. When comparing RDWIA with RPWIA we see that
the main effect is a global displacement to lower momenta of the polarization profiles. Let
us recall that the oscillatory behaviour shown by P/ and P, within RPWIA is a direct
consequence of the dynamical enhancement of the lower components in the bound Dirac
wave functions [18|; thus disappearing within PWIA. The oscillations are also present in
the relativistic distorted wave calculations, although being very different from the RPWIA
results with the maxima and minima located at different p-values. Let us note that the
oscillatory behaviour of the polarization asymmetries persists even when non-relativistic
distorted wave approaches are assumed (see [17,27,38]). This outcome emerges due to
the fact that both FSI and dynamical relativistic effects cause a breakdown of factoriza-
tion. A study of the later is presently in progress and the results will be presented in a

forthcoming publication [39].

Let us next focus on the analysis of the uncertainties introduced by different relativistic
optical potentials. In Fig. 6.2 we present the transferred ratios P/ and P; for the p;/; shell
evaluated using three different relativistic optical potential parameterizations: EDAIO,
EDADI1 and EDAD2 [33]. Results with EDAD3 parameterization are practically identical
to those obtained with EDAD1 and therefore have not been plotted. The left panels refer
to calculations involving the CC1 current operator and right panels to CC2. As pointed
out in previous papers [17,21,27,30], transferred polarization asymmetries are expected
to be relatively insensitive to the choice of optical potential at low missing momenta. This
can be seen in Fig. 6.2, at least up to p = 150 MeV /c which is where the cross section
reaches its maximum value [37]. This trend is also followed in the other two shells, ps/,

and sy/5.

However, as shown in Fig. 6.2, P/ exhibits a strong dependence on the optical po-
tential parametrization, resulting in important differences for larger values of the missing
momentum: ~20% (CC1) and ~40% (CC2) for p ~ 250 MeV /c. Note that in this kinema-
tical region the cross section [37] has already decreased by almost two orders of magnitude
with regards to the maximum, making measurements of transferred polarization responses
very difficult. This result contrasts with non-relativistic (NR) and semirelativistic (SR)
approaches where the effects introduced by different non-relativistic optical potentials are
small [17]. Note also that the current operator choice, CC1 versus CC2, gives rise to very
significant differences in P/ within this p-region, being of the same order as those intro-
duced by the optical potentials. Only for high p-values, p > 350 MeV /¢, is the uncertainty

associated with FSI larger than that due to the choice of current operator. In the case of
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Figura 6.2: Transferred polarization asymmetries for the p; /5 shell in (¢, w)-constant kine-
matics. Top and bottom panels correspond to the longitudinal and sideways components,
respectively. Right panels refer to results obtained with the CC2 current operator and left
ones to the CC1 current. RDWIA calculations using EDAIO (solid lines), EDAD1 (dot-

dashed lines) and EDAD2 (dotted lines) optical potential parameterizations are compared.
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the sideways polarization P!, in general less dependence on the interaction model as well
as on the current is seen, which is more in accord with non-relativistic analyses. Finally,
notice that for very high momentum values p >400 MeV /¢, P/ and P! evaluated with

the EDAIO potential deviate from the results corresponding to the EDAD1 and EDAD2

parameterizations.

To end with this discussion, we conclude that both transferred polarization asymme-
tries at moderate p values (p ~ 100 MeV /c) are independent of the optical potential choice.
Increasing p from here, each optical potential starts to follow a different curve especially
in the case of P/. For very high p (p > 350 MeV /c), both transferred polarizations present
large sensitivity to the choice of optical potential. However, caution should be placed on
drawing general conclusions from the results given here in this kinematical region because
other ingredients beyond the impulse approximation, such as meson exchange currents

(MEC), A-isobar, short-range correlations, etc., may also play a crucial role.

6.3.2 Dynamical relativistic effects

This section, which constitutes the main focus of the present work, is devoted to
the analysis of dynamical relativistic effects for nucleon polarized observables within the
framework of the RDWIA. With this aim we present in Fig. 6.3 the longitudinal and
sideways transferred polarization asymmetries for the three shells involved in '6O: p, /25
p3/2 and s1/p. All of the results have been obtained using the EDAIO optical potential
parameterization [33], and the choice of kinematics is the same as in the previous figures.
To make explicit the effects introduced by spinor distortion, in each graph we compare
the fully relativistic calculations (solid lines) using both current operators, CC1 (thin
lines) and CC2 (thick lines), with the results after projecting out the negative-energy
components (see Egs. (6.9,6.10)) (dashed lines). Finally we also present for reference
the results corresponding to the EMA-noSV approach evaluated with the CC2 current
operator (dot-dashed line). Within EMA-noSV, the results provided by the two current
operators are very similar, differing only due to the off-shell kinematical quantities involved
in the operator [19,28|.

A detailed analysis of the transferred polarizations within the relativistic plane wave
approach was presented in [18]. In said reference, it is shown that the dynamical en-
hancement of the lower components in the bound nucleon wave function leads to strong

oscillations in P/, for high missing momentum values, p > 300 MeV /c. This behaviour
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Figura 6.3: Same observables as in Fig. 6.1. Right panels correspond to P, and left ones
to F. On top, middle and bottom panels, results for the 1p; 2, 1p3/2 and 1s;/y shells are
plotted, respectively. In each graph, RDWIA calculations evaluated with EDAIO (solid
line) are compared with positive-energy projection results (dashed line) and EMA-noSV
approach (dot-dashed line). Thick lines correspond to the CC2 current operator and thin
lines to CC1.
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disappears after projecting out the negative-energy components. From the results shown
in Fig. 6.3, it is clear that, within the relativistic distorted wave approximation, the osci-
llatory behaviour in the polarization asymmetries persists even after projecting the bound
and scattered proton wave functions over positive-energy states. The same comment ap-
plies to the EMA-noSV approach. On the contrary, this last fact is not applicable to the
behaviour shown by the left-right asymmetry A7y, [9,10], defined as the difference of unpo-
larized cross sections evaluated at ¢ = 0° and ¢ = 180° divided by their sum. These results
are connected with the interplay between polarization degrees of freedom and dynamical
relativistic effects. Whereas in RPWIA, projecting out the negative-energy components
of the bound nucleon wave function leads to factorization, hence destroying the oscilla-

tory behaviour in P}, in RDWIA factorization breaks down even after projection over

ER

positive-energy components.

From inspection of Fig. 6.3, and in accord with previous results for unpolarized obser-
vables [9, 10, 28| and polarized ones in RPWIA [18], we note that dynamical relativistic
effects are maximized for the CC1 current operator. This applies to both polarization
ratios and the three shells considered. Particularly noteworthy is the behaviour displayed
by P/ even at intermediate p-values in the case of the fully relativistic CC1 calculation.
This result deviates significantly from the others, modifying even the global shape of the
observable. This contrasts with the situation for P! where, apart from the specific discre-
pancies introduced by relativity, the five calculations follow the same general oscillatory
pattern. Hence it would be interesting to investigate further this intermediate p-region
where new high quality data on P/ could make it possible to constrain the theoretical

choices for current operator.

As shown in |9, 28], the contribution from the negative-energy components to the
current are of the same order as the positive-energy ones with the CC2 operator, whereas
with the CC1 choice the negative-energy terms may become much larger. This explains
the much wider spread shown by the CC1 results, particularly the large effects introduced
by the dynamical enhancement of the lower components in P/. As we will show later,
this emerges from the polarized responses that enter in the longitudinal polarization in
contrast with the sideways case. Note also that the CC1 projected calculations get closer
to the CC2 ones and to the EMA-noSV approach. This may indicate that the CC1 current
emphasizes the role played by the lower components in the wave functions, agreeing with
the findings for unpolarized responses [10]. Precise comparisons with data would yield

definite conclusions on the reliability of the various approximations.
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Finally, it is also interesting to compare the effects arising from dynamical relativity
with those due to FSI models. As shown in Figs. 6.1- 6.3, P/ presents the strongest
sensitivity to both kinds of effects for intermediate p-values, 200 < p < 350 MeV /c. This
can make it difficult to isolate the role played by each ingredient when compared with
data; however, note that the important deviation between the results obtained with the
two currents tends to persist, no matter which optical potential is used. Hence, precise
measurements of P/ in this p-region, in conjunction with P, data, may give us important

clues to constrain final-state interactions and the choice of current operator.

To complete the analysis of dynamical relativistic effects, we focus on the four separate
responses that contribute when the polarization of the outgoing nucleon is measured
and the electron beam is polarized: R}, RFY', RT" and RTY (RTL does not enter for
coplanar kinematics). Results are shown in Fig. 6.4 for proton knockout in 'O from
the pi/o shell. Let us recall that Coulomb distortion of the electron waves breaks the
simplicity of Eq. (6.2), leading to responses which also depend on the electron kinematic
variables. However, the effective momentum approximation for the electrons adopted in
this work makes Eq. (6.2) reliable when analyzing the response functions. For *O we
have proven [10] that Coulomb distortion effects, and consequently the dependence of the

responses with 6., are very small.

As a general rule we observe that R and RYY show the highest sensitivity to relati-
vistic dynamics, while the uncertainties in R} and RTL" are much smaller. This coincides
with the analysis already performed in RPWIA (18| and, although not shown here for
simplicity, applies also to the ps/; and s;/; shells. In addition, Gordon ambiguities are
also significantly enhanced for Rf’ and R;-FL'. Finally, note that the largest spread due to
relativistic dynamical effects arises for the CC1 current operator, which is in accord with
RPWIA results [18], and can be traced back to the strong influence of the negative-energy

projections of the wave functions in this case.

Let us study in more detail each individual response. As shown in Fig. 6.4, the con-
tributions of R} and RTY are rather similar, and moreover, the EMA-noSV predictions
almost coincide (evaluated at the maxima) with the fully relativistic calculations, the
largest difference being of the order of 3.6% for the CC1 current in RfL'. Positive-energy
projected results also follow the RDWIA curves closely, although sizeable differences are

observed for the CC1 current, particularly in the case of R} (~11% at the maximum).

Concerning RlTL', we observe that the projected calculations differ substantially from

the RDWIA results, especially for the CC1 current operator. This resembles the large
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Figura 6.4: Transferred polarized responses for the 1p;/; shell. Same kinematics as in

previous figures, and the labelling as in Fig. 6.2.
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relativistic dynamical effects shown by this response in RPWIA [18]. On the contrary, it
is interesting to note that different choices of the current operator within RDWIA lead to
very similar results, which is somewhat opposed to the situation observed in the plane wave
limit [18]. Finally, the EMA-noSV approach provides a description of Rf* that basically
coincides with the two RDWIA calculations, the largest difference being observed at very
low-p values. In fact, this result is proven to be valid only at ¢ = 1 GeV/c, where the
effective momentum approach (EMA) applied to the bound wave function, leads to effects
which cancel almost exactly those coming from the ejected nucleon. For lower values of ¢
this cancellation does not occur, and so an important discrepancy between the EMA-noSV

prediction and the RDWIA calculations emerges.

The smallest RST' response presents a large dependence on the current operator choice.
This applies to the full RDWIA calculation as well as to the positive-energy projected
approach. Note, however, that the difference between RDWIA and projected results is tiny,
almost negligible for the CC2 current. Contrary to R’ case, the EMA-noSV approach for
R;‘,F' deviates significantly from the fully relativistic and projected results, the uncertainty
spread (significantly enhanced for the CC1 current) being even larger than that obtained
in RPWIA [18]. We should also recall that R is strongly affected by the choice of the
optical potential (results corresponding to the parameterizations EDAIO and EDAD2 are
very different from those for EDAD1 and EDAD3). Although not shown in the figure,
it is also important to point out that at low ¢ (¢ < 350 MeV/c), the projection over
positive-energies in the bound nucleon wave function clearly dominates, while at higher
q, the reverse occurs. This result contrasts with the behaviour seen for the unpolarized
observables and also with the other three polarized responses, where for high enough
transfer momentum projecting out the negative-energy components in the ejected nucleon

wave function is proven not to alter the fully relativistic predictions.

The behaviours presented by the four polarized responses, their relative contributions
and their sensitivity to dynamical relativistic effects, give us important clues to unders-
tanding the results obtained for the longitudinal and sideways transferred polarization
asymmetries. The large effects introduced by relativity in P/, particularly when compa-
ring full relativistic and projected calculations for CC1, can be traced back to the similar
contributions given by the two responses, R} and R}, that enter in P/. Although rela-
tivistic dynamics affect R} more, their effect on R} is also sizeable. The case of P! is
clearly different. Here the two polarized responses involved contribute very differently, RST'

being much smaller (more than one order of magnitude). Therefore, the asymmetry P!
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is almost given uniquely by RT™'| whose uncertainty due to dynamical relativistic effects
presents the lowest spread. Although results for ps/; and s;/, show basically similar beha-
viour to those of the p;/; shell, off-shell and dynamical relativity play a less significant
role for the py/, shell in RT" and RT*'.

As already mentioned, in RDWIA spinor distortion affects both the bound and ejected
nucleon wave functions. Hence in what follows, we analyze the role of dynamical relativity,
isolating the spinor distortion contribution in each nucleon wave function separately. We
show results for the ratios P/, and the left-right asymmetry Arp, focusing on the CC2
current, which minimizes dynamical effects, and the p;/, shell. Results for p3/; and s;/;
follow the same general trends, but with a significant reduction of the effects due to
relativistic dynamics. In Fig. 6.5 we show the observables for three values of the momentum
transfer ¢. In each case, quasiperpendicular kinematics (¢, w constant) have been selected,
and RDWIA and projected calculations are compared. Within the projected results, we
distinguish the EMA-noSV approach, where negative-energy components of the bound
and scattered nucleon wave functions have been projected out, from the results where the

projection over positive-energy components affects only one of the nucleon wave functions:
bound (referred to as EMAD) and ejected (EMAT).

From inspection of Fig. 6.5, a clear difference emerges in the behaviour observed for
A, and the polarized ratios Pl’, ;- The asymmetry Ay, presents a well established pattern:
for low-medium p-values the largest effect shows up when projection over positive-energy
states in the bound nucleon wave function is assumed (a consequence of the dominance
of the direct term in the reaction mechanism for low-p). On the contrary, for high-p
(p > 250,300 MeV /c), the separate influence of each nucleon wave function depends very
much on ¢. At very low-q the most sizeable effects correspond to projection of the ejectile
wave function state. However, as ¢ increases so does the ejected nucleon momentum pg;
thus FSI effects are expected to be smaller and consequently the contributions of the
negative-energy states in the ejected nucleon play a minor role. As noted, the results for
P/, do not match this general behaviour, and it is hard to state which nucleon wave

function plays the major role concerning relativistic dynamical effects.

Finally, a basic difference between A7, and Pl’, s connects with the oscillatory behaviour
shown by these observables. While it remains in P/, for all g-values and all approaches,
in the case of Ary, the oscillations disappear when projection is assumed. This effect,

connected with factorization breakdown, is analyzed in [39).
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Figura 6.5: Left-right asymmetry Ary (top panels) and transferred polarized ratios, P/
(middle panels) and P, (bottom panels) for proton knockout from '°O for the p;/, shell.
Results correspond to (g, w)-constant kinematics with ¢ = 0.35 GeV /c (right panels), ¢ =
0.5 GeV/c (middle panels) and ¢ = 1 GeV /c (left panels). In each case the transfer energy
w is fixed to the quasielastic peak value. RDWIA calculations (solid line) are compared
with the EMA-noSV approach (dashed line) and with the results after projecting over
positive-energy states for the bound nucleon wave function only (short-dashed line) and

for the ejected nucleon only (dotted line).
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6.3.3 Semirelativistic reductions

In this section we focus on the kinematical relativistic effects, i.e., effects associated
with the non-relativistic reduction of the nucleon current operator. In Fig. 6.6 we pre-
sent the polarization ratios and T'L asymmetry for the p;/; shell and same kinematics
as in Fig. 6.1. We compare the RDWIA results (solid line) with the EMA-noSV (dot-
ted line) and semi-relativistic approaches. For the latter we distinguish the following: SR,
(dot-dashed line), corresponding to the expressions in Eqs. (6.11,6.12), and Nonrel (das-
hed line) where additional approximations on the vector current have been assumed (see
Sec. 6.2.3 and Refs. [14,31] for details). As shown, the semi-relativistic curves follow the
shape of the EMA-noSV ones, particularly for Ar;, where oscillations are largely supressed
within EMA-noSV and semi-relativistic approaches. Kinematical effects are observed by
comparing EMA-noSV and SR calculations. As expected, they are very small in the low-p
region, increasing for high missing momenta. This same general pattern emerges for other

transfer momentum values and similar conclusions hold for the p3/, and s,/ shells.

To complete the analysis of kinematical effects we study the individual responses. First,
let us consider the unpolarized ones, which are presented in Fig. 6.7 (top panels) for the
p1/2 shell and CC2 current operator. The labelling of the curves is as in previous figure.
We observe that the pure longitudinal and transverse responses, R and RT, hardly show
any dependence on either kinematical or dynamical relativistic effects. This coincides
with some previous findings [9, 10], but clearly disagrees with the results obtained by
Meucci and collaborators [27], who found very different results for R using relativistic
and non-relativistic approximations. Concerning RT”, it shows a significant dependence
with relativistic nucleon dynamics. This is in accord with our previous analyses [9,28], and
also with the results of the Pavia group [27], although in this latter case, the behaviour
found for RT* within the RDWIA calculation, clearly differs from ours for very low missing
momentum. Moreover, notice that the difference between EMA-noSV, SR and Nonrel is
negligible. Finally, the response R1? also shows a high sensitivity to both dynamical and
kinematical relativistic ingredients, though its smallness makes it difficult to isolate from
cross section measurements. Let us also recall that our results do not match those obtained

by the Pavia group, particularly for high g-values.

Focusing on the transferred polarized responses (bottom panels of Fig. 6.7), we obser-
ve that relativistic ingredients play a very minor role in RZ’L' and RlT'. On the contrary,
dynamical relativitic effects are sizeable for R7Y" and especially for R!", while the kine-

matical relativistic effects are strongly cancelled. Notice that the EMA-noSV and semi-
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Figura 6.6: Transferred polarizations P/ (top panel) and P! (middle panel), and Ay, asym-
metry (bottom panel) for proton knockout from the p; /o shell in 160. Results correspond
to the RDWIA calculation with the CC2 current operator (solid line), the EMA-noSV
approach (dotted line), the semi-relativistic (SR) current given in Egs. (6.11,6.12) (dot-
dashed line) and the Nonrel approach (dashed line) (see text for details). All curves have
been obtained using the EDAIO optical potential.
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Figura 6.7: Unpolarized (top panels) and recoil nucleon polarized (bottom panels) res-

ponses for proton knockout from the p; /5 shell in '°O. Kinematics as in Fig. 6.1 and the

same labelling as in Fig. 6.6.
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relativistic approaches give rise to almost identical results. Additional restrictions on the
non-relativistic procedure to get the current operator [12-14,31] (Nonrel approach) leads

to more visible effects which increase when the transferred energy goes up.

6.3.4 Comparison with experimental data

We proceed to compare our calculations with the experimental data recently measured
at JLab [1]. The kinematics of the experiment was the same as used in previous figures
except that the azimuthal angle was ¢ = 180° instead of ¢ = 0°. As shown later, this
makes an important difference concerning the effects introduced by relativistic dynamics
and/or optical potentials. Fig. 6.8 shows P/ (top panels), P/ (middle panels) and the
ratio P//P] (bottom panels) for proton knockout in 'O from the 1p;/» (left panels),
1ps/2 (middle panels) and 1s;/, (right panels) shells. Note the change of notation for the
transverse polarization transfer observable. In reference [1], and only for ¢ = 180°, the
vector perpendicular to the plane containing p, and the transfer momentum g, is chosen
in the opposite direction that we have made in this paper. Consequently there is also a
change of sign in the transverse vector. In order to present the experimental data taken
in [1] in the same form as in the original paper, we have prefered to show our curves for P/
polarization in Fig. 6.8. P/ is equal to P, for ¢ = 0° and differs only in a sign with P] when
¢ = 180°. Curves corresponding to RDWIA, positive-energy projected and EMA-noSV
calculations are presented. The labelling is as in Fig. 6.3, and all of the results have been

obtained using the EDAIO potential.

To make explicit the differences between ¢ = 0° (kinematics assumed in the previous
figures) and ¢ = 180° (kinematics of the experiment), in each graph we present the
polarized observables as functions of the missing momentum, whose range goes from —300
MeV /¢ to +300 MeV /c. Positive p-values refer to ¢ = 180°, where the two experimental

data are located, and negative ones to ¢ = 0°.

As shown in Fig. 6.8, all theoretical calculations satisfactorily reproduce the data,
improving somehow the general agreement compared with previous SR analyses [17].
However, it is hard to draw specific conclusions concerning the reliability of the various
approaches within this low-p region. For higher p, relativistic dynamics, off-shell effects
and FSI start to play an important role. In this sense, from inspection of Fig. 6.8, it
is interesting to point out that choosing ¢ = 0° clearly enhances dynamical relativistic

effects for P/ at intermediate p-values, p ~ 200 — 300 MeV /c. The same comment applies
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to off-shell and FSI effects. Hence, high quality P, data measured for coplanar, ¢ =
0° kinematics at intermediate p-values can provide precise information to constrain the
theoretical models. In the case of P}, dynamical uncertainties (also off-shell and FSI

effects) are shown to be rather similar for both coplanar ¢ = 0° and 180° kinematics.

6.3.5 Effects of medium modified form factors

To finish, we present a brief analysis of the effects introduced by possible changes
in the nucleon form factors in the nuclear medium. We limit our attention to the same
kinematics as in previous sections. A more exhaustive analysis ranging over different
Q? values, where the models predict different sensitivity to in-medium effects, will be

presented in a forthcoming publication.

The procedure we have used to include these effects in our calculations is as follows.
We have taken density-dependent form factors as predicted by the quark-meson coupling
model (QMC) [40], computed for a bag radius of 0.8 fm. In order to get well behaved
modified form factors in the free case, we have scaled the ones parametrized by Gari and
Krumplemann [34] (labelled as GK) with the ratio between the QMC form factors at a

given density and those predicted for free conditions,

G (@2 p(r))
Giar (Q%,0)

where GQMC(Q2 p(r)) are the density-dependent Sachs form factors of the proton immer-

Gem(Q? p(r)) = GEM(Q?)

(6.13)

sed in nuclear matter with local baryon density p(r). By analogy with the free case, we
define density-dependent Dirac and Pauli form factors related to Gz a(Q?, p(r)). Finally,
we compute the current matrix elements in coordinate space by introducing these modi-
fied form factors into Eqs. (6.6) and (6.7), evaluated for the corresponding local density
in 160.

The results obtained for the ratio of transferred polarization asymmetries are presen-
ted in Fig. 6.9 for both current operators. Only the ¢ = 180° region, where data have been
measured, is analysed. As in the previous section, we plot P;/P/ instead of P!/P/. The
upper, middle and bottom panels correspond to 1p; 2, 1p3/2 and 1s;/ knockout, respec-
tively. For completeness, in the right panels of Fig. 6.9 we also present the uncertainties
due to the choice of the optical potential parametrization. As shown, for the p shells our
model dependence due to the description of FSI is very small in the region 75 < p < 175
MeV/c (p < 100 — 125 MeV/c for 1s1/9), starting to increase for higher p. Within this
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“safe” region, medium modification effects for the p;/, amount to ~ 9% (~ 7%) for the
CC1 (CC2) operator at p ~ 100 MeV /c. Note however that even when these effects are
sizeable, the uncertainties introduced by the current operator choice can also be noticea-
ble. The situation worsens for the 1ps/, shell, for which the free and QMC calculations get
mixed due to the off-shell uncertainties. The precision of the actual experimental data [1]
does not allow one to state which specific calculation is preferred. However, more precise
data, particularly in the region 100 < p < 175 MeV /c for p;/,, could help to constrain the
theoretical model. In this sense, note that the QMC results differ more clearly from the

free calculations in this shell.

For the 1s;/,, the effects of the medium are larger in the vecinity of p = 100 MeV /c
(~ 18% for CC2 and ~ 15% for CC1). Indeed, medium effects are expected to be more
important for the inner orbits, due to their higher average densities. The QMC calculations
differ substantially from the calculations with free form factors in the p region from 40 to
100 MeV /¢, where off-shell ambiguities are very small. In this region it can be possible
to disentangle density dependence effects if the error bars of the data are of the order of
10% or less. At larger p values, off-shell ambiguities can make it difficult to contrast our
predictions including density-dependence of the form factors versus the free ones, as was
the case for the p-shells. Moreover, other effects beyond the impulse approximation, not
considered in this work, could also play an important role in order to provide a precise
description of experimental data for the s shell. We have also computed results with other
form factor parametrizations (different from the dipole one), and they change the P;/P/
ratio by about 2 — 3% for both the free and modified case, keeping the relative differences

almost unchanged.

In view of these results we conclude that inferring medium modifications from transfer
polarization in O at this Q? value seems not to be free from ambiguities because of the
off-shell effects. However, more precise data and an analysis of other kinematical situations

and /or for different nuclei could surely help to draw more definite conclusions.

6.4 Summary and conclusions

The analysis of recoil nucleon polarized (€, €'p) observables presented in [18] within
RPWIA has been extended here to include FSI described through relativistic optical
potentials. The study is restricted to proton knockout from the p; /2, p3/2 and si/o shells
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in %0 and quasi-perpendicular kinematics with ¢ = 1 GeV /¢, which roughly corresponds

to the experimental setting. A comparison with data is provided.

The main focus of this paper is to study the role played by the dynamical enhance-
ment of the lower components in the bound and scattered nucleon wave functions; along
this line, a systematic investigation on the effects linked to FSI and off-shell descriptions
is also done. We show results evaluated with the two usual choices of the nucleon cu-
rrent operator, CC1 and CC2, and three different relativistic parameterizations of the
optical potential, EDAIO, EDAD1 and EDAD2. Finally, kinematical relativistic effects,
associated with the non-relativistic truncation of the current operator, are also investiga-
ted in detail. Additional ingredients, such as the different relativistic models to describe
the bound nucleon wave function and nucleon form factors, are seen not to modify our

conclusions.

From the results shown in previous sections, we may summarize our basic findings as

follows:

e F'SI constitutes a basic ingredient in order to get reliable results to be compared
with data. Transferred polarization ratios as well as polarized responses do modify
very significantly their structure when FSI are taken into account. However, a kind
of cancellation of the FSI effects is observed to occur in P/ and P, for low missing
momenta, p < 100 MeV /c. Concerning the role of the optical potential, a clear diffe-
rence emerges for the two asymmetries at very high p-values, p > 400 MeV /¢, when
comparing results for the EDAIO and EDAD-type potentials. This is due to the
different reduction of the scattered wave function in the nuclear interior produced
by the two kinds of optical potentials. Finally, at intermediate p-values (p ~ 250
MeV/c), P/ shows a strong dependence on the interaction model, whereas the un-

certainty in P is tinier. A similar comment applies also to the off-shell ambiguities.

e Dynamical relativistic effects are shown to be very important, being enhanced for
the CC1 current operator. Concerning the responses, RST' and RZTL' present, the
highest dependence with dynamical effects, as also found in the RPWIA studies.
However, contrary to the plane wave limit, where the dynamical enhancement of
the lower components of the bound nucleon completely modifies the shape of the
transferred asymmetries, in the case of the distorted wave approach the general osci-
llatory behaviour of P/ and P persists even after projecting-out the negative-energy

components. This differs also with the behaviour of the unpolarized observable A7r.
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This effect is linked to the breakdown of factorization. At intermediate p-values, P,

shows a stronger sensitivity to relativistic dynamics.

e Results corresponding to SR reductions are proven to be very similar (depending
on the truncation) to the EMA-noSV approach, differing more from the RDWIA
calculations. As expected, the difference between the three approaches increases as p
goes up. The SR approaches also lead to a significant cancellation of the oscillatory
behaviour in A7y, while maintaning the general shape of P/ and P]. This is again

connected with the factorization property and its possible breakdown.

From the comparison with experimental data, we show the reliability of our general des-
cription of (€, €'p) reactions, and conclude that new high quality data measured at in-
termediate p-values (150 — 200 MeV /c) may help to constrain the various theoretical

approximations involved in our calculations.

As pointed out in [17], other ingredients that go beyond the impulse approximation,
such as those arising from meson exchange currents and the A-isobar contribution, may
also play a very important role in properly describing the transferred polarization asym-
metries. These remain to be investigated in a relativistic context, although, in on-going
work, the inclusion of two-body currents within the fully relativistic formalism is pre-
sently in progress. In the final analysis, any interpretation in terms of medium modified
nucleon form factors requires having excellent control of all of these model dependences,
both those discussed in the present work and those that go beyond the impulse approxi-
mation. Within our model we have found that for the kinematical conditions of E89003
and E89033 [35,36] it is difficult to separate effects introduced by density-dependent form
factors from off-shell ambiguities due to the choice of current operator. However, for the
5172 and py /o shells there is a region in between 40 and 100 MeV /c that is relatively free
from off-shell uncertainties and where the effect of medium modifications would be easier
to assess. In a future publication we will present the results of a more extensive study
in the context of the nuclear model uncertainties and will assess the impact of including

medium modifications of the form factors at different values of Q2.

Acknowledgements

This work was partially supported by funds provided by DGI (Spain) and FEDER
funds, under Contracts Nos BFM2002-03315, BFM2002-03562, FPA2002-04181-C04-04



6.4. Summary and conclusions 177

and BFM2000-0600 and by the Junta de Andalucia (Spain) and in part by the U.S.
Department of Energy under Cooperative Research Agreement No. DE-FC02-94ER40818.
M.C.M. and J.R.V. acknowledge financial support from the Fundaciéon Camara (University

of Sevilla) and the Consejeria de Educacion de la Comunidad de Madrid, respectively.



178 Capitulo 6. Polarizaciones transferidas




Bibliografia

[1] S. Malov et al., Phys. Rev. C62 (2000) 057302. S. Malov, PhD thesis, New Brunswick,
New Jersey, (1999), unpublished.

[2] S. Dieterich et al., Phys. Lett. B500 (2001) 47.

[3] S. Strauch et al., Phys. Rev. Lett. 91 (2003) 052301

[4] R.J. Woo et al., Phys. Rev. Lett. 80 (1998) 456.

[6] J.M. Udias, J.R. Vignote. Phys. Rev. C62 (2000) 034302.

[6] J.M Udias, P. Sarriguren, E. Moya de Guerra, E. Garrido, J.A. Caballero, Phys. Rev.
C48 (1993) 2731.

[7] J.M Udias, P. Sarriguren, E. Moya de Guerra, E. Garrido, J.A. Caballero, Phys. Rev.
C51 (1995) 3246.

[8] J.M. Udias, P. Sarriguren, E. Moya de Guerra, J.A. Caballero, Phys. Rev. C53 (1996)
R1488.

[9] J.M. Udias, J.A. Caballero, E. Moya de Guerra, J.E. Amaro, T.W. Donnelly, Phys.
Rev. Lett. 83 (1999) 5451.

[10] J.M. Udias, J.A. Caballero, E. Moya de Guerra, J.R. Vignote, A. Escuderos, Phys.
Rev. C64 (2001) 024614.

[11] J.M. Udias, J.R. Vignote, E. Moya de Guerra, A. Escuderos, J.A. Caballero, nucl-
th/0109077. Proceedings of the 5th Workshop on "e.-m. induced two-hadron emis-
sion", Lund, 2001.

[12] J.E. Amaro, J.A. Caballero, T.W. Donnelly, A.M. Lallena, E. Moya de Guerra, J.M.
Udias, Nucl. Phys. A 602 (1996) 263.

179



180 BIBLIOGRAFIA

[13] J.E. Amaro, J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, Nucl. Phys. A 611
(1996) 163.

[14] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Nucl. Phys.
A643 (1998) 349.

[15] S. Jeschonnek, T.W. Donnelly, Phys. Rev. C57 (1998) 2438.

[16] J.E. Amaro, M.B. Barbaro, J.A. Caballero, F. Kazemi Tabatabei, Phys. Rev. C68
(2003) 014604.

[17] F. Kazemi Tabatabei, J.E. Amaro, J.A. Caballero, Phys. Rev. C68 (2003) 034611.
[18] M.C. Martinez, J.A. Caballero, T.W. Donnelly, Nucl. Phys. A707 (2002) 83.
[19] M.C. Martinez, J.A. Caballero, T.W. Donnelly, Nucl. Phys. A707 (2002) 121.

[20] S. Boffi, C. Giusti, F.D. Pacati, M. Radici, “Electromagnetic Response of Atomic
Nuclei”, (Oxford University Press, Oxford, 1996); Phys. Rep. 226 (1993) 1.

[21] J.J. Kelly, Adv. Nucl. Phys. 23 (1996) 75.

[22] A. Picklesimer and J.W. Van Orden, Phys. Rev. C35 (1987) 266.
[23] A. Picklesimer and J.W. Van Orden, Phys. Rev. C40 (1989) 290.
[24] A.S. Raskin, T.W. Donnelly, Ann. of Phys. 191 (1989) 78.

[25] T.W. Donnelly, A.S. Raskin, Ann. of Phys. 169 (1986) 247.

[26] T. de Forest, Nucl. Phys. A392 (1983) 232.

[27] A. Meucci, C. Giusti, and F.D. Pacati, Phys. Rev. C64 (2001) 014604; nucl-
th/0211023.

[28] J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, J.M. Udias, Nucl. Phys. A632
(1998) 323; A643 (1998) 189.

[29] B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16 (1986) 1.
[30] J.J. Kelly, Phys. Rev. C56 (1997) 2672; 59 (1999) 3256.

[31] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Phys. Rep.
368 (2002) 317.



BIBLIOGRAFIA 181

[32] M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B312 (1993) 377.
[33] E.D.Cooper, S. Hama, B.C. Clark, R.L. Mercer, Phys. Rev. C47 (1993) 297.
[34] Manfred Gari, W. Krumpelmann, Z. Phys. A322 (1985) 689.

[35] JLab Experiment E89-003, Spokespersons: W. Bertozzi, K. Fissum, A. Saha, L.
Weinstein, unpublished.

[36] JLab Experiment E89-033, Spokespersons: C.C. Chang, C. Glashausser, S. Nanda,
P. Rutt, unpublished.

[37] J. Gao et al., Phys. Rev. Lett. 84 (2000) 3265

[38] J. Ryckebusch, D. Debruyne, W. Van Nespen, S. Janssen, Phys. Rev. C60 (1999)
034604; C64 (2001) 044606.

[39] J.R. Vignote, M.C. Martinez, J.A. Caballero, E. Moya de Guerra, J.M. Udias, nucl-
th /0312076.

[40] D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams and K. Saito, Phys. Lett. B417
(1998) 217 and Phys. Rev. C60 (1999) 068201.



182 BIBLIOGRAFIA




Capitulo 7

Cociente de polarizaciones transferidas
en *He(e,e'p) (1)

183



184 Capitulo 7. Cociente de polarizaciones transferidas en *He(€,e'p’) (I)

Physics Letters B 500 (2001) 47-52

Polarization transfer in the ‘He(¢, ¢'p)>H reaction

S. Dieterich,! P. Bartsch,? D. Baumann,? J. Bermuth,® K. Bohinc,>* R. Bohm,?
D. Bosnar,>? S. Derber,2 M. Ding,2 M. Distler,? I. Ewald,? J. Friedrich,?
J.M. Friedrich,2® R. Gilman,"® C. Glashausser,! M. Hauger,® P. Jennewein,? J. Jourdan,®
J.J. Kelly,” M. Kohl,® A. Kozlov?, K.W. Krygier,? G. Kumbartzki,' J. Lac,!*
A. Liesenfeld,? H. Merkel,2 U. Miiller,2 R.Neuhausen,> Th. Pospischil,2 R. D. Ransome,!
D. Rohe,’ G. Rosner,>? H. Schmieden,> M. Seimetz,? I. Sick,® S. Strauch,! J.M. Udias,’
J.R. Vignote,® A. Wagner,? Th. Walcher,2 G. Warren,® M. Weis?

LRutgers, The State University of New Jersey, Piscataway, New Jersey, USA
2Institut fiir Kernphysik, Universitit Mainz, Mainz, Germany
3 Institut fiir Physik, Universitit Mainz, Mainz, Germany
4 Institut Jozef Stefan, Ljubljana, Slovenia
5Thomas Jefferson National Accelerator Facility
6 Universitéit Basel, Basel, Switzerland
"University of Maryland, College Park, Maryland, USA
8Institut fiir Kernphysik, Technische Universitit Darmstadt,Darmstadt, Germany

9 Universidad Complutense de Madrid, Madrid, Spain

Polarization transfer in the ‘He(€, €/p)*H reaction at a Q2 of 0.4 (GeV /c)? was measured at the

Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components
of the ejected protons was compared with the same ratio for elastic ep scattering. The results
are consistent with a recent fully relativistic calculation which includes a predicted medium

modification of the proton form factor based on a quark-meson coupling model.
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A long standing question in nuclear physics is the effect of the nuclear medium on the
properties of the nucleon. The close proximity of nucleons in the nucleus would lead one to
expect effects on the spatial distribution of the nucleon’s constituent particles. However,
experimentally distinguishing changes of the nucleon structure from other conventional
nucleus-related effects, such as meson-exchange currents (MEC), isobar configurations
(IC), and final state interactions (FSI) has proven difficult. The form factor of a bound
nucleon is not directly observable; it must be inferred from calculations which predict how
a modification of the form factor will affect measurable quantities such as cross sections

or polarizations.

In this Letter we report on the first measurement of polarization transfer in the
*He(€, ¢'p)*H reaction in quasielastic parallel kinematics. Polarization provides a sensi-
tive test of any model and should be more sensitive to changes in the form factor than

cross section measurements.

Several recent calculations [1-3] have demonstrated the importance of dynamic enhan-
cement of lower components of Dirac spinors (spinor distortions) for the (e, ¢'p) reaction.
The Rpr response function is sensitive to distortion of the bound-state spinor while recoil
polarization is more sensitive to distortion of the ejectile spinor. The relativistic calcu-
lations of Udias et al. provide excellent descriptions of Ary in '%O(e,€'p) [4] and the
induced polarization for *C(e, €'p) [5]. The sensitivity of recoil polarization to possible
density dependence of nucleon form factors was investigated first by Kelly [6] using a
local density approximation for the current operator and an effective momentum approxi-
mation (EMA) for spinor distortion. Udias then performed a fully relativistic calculation
which shows that the accuracy of the EMA for the recoil polarization is better than 1% for
missing momentum p,, < 100 MeV /c. Both groups have shown that recoil polarization for
modest p,, is relatively insensitive to gauge and Gordon ambiguities and to variations of
the optical potential and have concluded that polarization transfer provides a promising

probe of density-dependent modifications of nucleon electromagnetic form factors.

Polarization transfer was first used to study nuclear medium effects in deuterium [7-9].
Within statistical uncertainties, no evidence of medium modifications was found. Malov
et al. [10] made the first measurement of polarization transfer in a complex nucleus, °O.
Their results were consistent with predictions of relativistic calculations, with limited

statistical precision.

Cross section data indicate only upper limits on possible modifications of the form

factors in the nucleus. The limits come primarily from quasielastic electron scattering
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with separation of the longitudinal and transverse response functions [11-14] and from
y-scaling [15-17] of inclusive electron scattering. In the Q? range of 0.1 to 0.5 (GeV/c)?
L/T separations limit modifications to 3% for the magnetic and 5-10% for the electric
form factor. The limits from y-scaling at higher @2, in the range of 1 to 5 (GeV/c)?, are

about the same.

While the data exclude substantial form factor modification, especially of the magnetic
form factor, recent theoretical work predicts modifications within the experimental limits
[18-21]. Lu et al. [18], using a quark-meson coupling model (QMC), and Frank et al. [19],
using a light front constituent quark model, both predicted changes of a few percent in the
form factors. Lu calculated the change for both *O and *He and found little difference in
the size of the modification. We shall later examine the effect on the predicted polarization
of the QMC modification.

In the case of electron-nucleon scattering, there is a direct relationship between the

form factors and the polarization transfer components [22]:

Ge P, E+F

Gu P 2my

tan(0/2) (7.1)

where E and E' are the energies of the incident and scattered electron, € is the electron
scattering angle, my is the nucleon mass, and the longitudinal and transverse polarization
transfer observables are P/ and P., respectively. The relation in Eq. (7.1) was recently
used to extract Gg/G)s for the proton [8,23]. This relationship is only approximately
correct for electron scattering from a bound nucleon; one must calculate the expected

polarization ratio in the context of some model.

We use the coordinate system with unit vectors pointing in the direction of the three
momentum transfer z = ¢, normal to the electron scattering plane § = (k; x ky)/|k: x ky|,
and transverse & = ¢ X Z, where the initial and final electron momenta are /EZ and k 7. The
results are presented in terms of P, and P}, the projections of the transferred polarizations

on these axes.

The advantage of using polarization is that the polarizations do not depend on the
target thickness or total current; the beam polarization and analyzing power both cancel in
the ratio of polarizations. The difference between the asymmetries measured with positive
and negative beam helicity cancels instrumental asymmetries to first order. The only
significant experimental systematic uncertainty is the determination of the spin precession

in the spectrometer.
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This experiment was done at MAMI at the Johannes Gutenberg-Universitit, Mainz,
Germany, using the spectrometer facilities of the A1 collaboration Ref. [24]. A proton focal
plane polarimeter (FPP) was installed in Spect. A [25]. The beam energy was 854.5 MeV.
The nominal settings were 625 MeV /¢ central momentum at 50.24° for the electron arm
(Spect. B) and 660 MeV /c and 46.56° for the proton arm (Spect. A). The data covered the
Q? range of 0.35 to 0.42 (GeV/c)?. To measure the polarization ratio for the free proton
and to study systematic effects, ép elastic scattering data were taken at the same nominal
settings as for the *He measurement except that the central angle for the proton arm was

set to 48.16° in order to better match the kinematic acceptance.

The FPP includes a graphite analyzer with a thickness of 11.9 g/cm? (7 cm). The
spectrometer vertical drift chambers serve as the tracking detectors before the analyzer
and two horizontal drift chambers track scattered protons after the analyzer. The basic

design of the FPP is similar to several used previously [26]. For further details, see Ref. [25].

The helium target consisted of a gas cell 8 cm long, at a temperature of 19 K and
pressure of 19 bar. The target thickness was about 250 mg/cm?. The same cell was used
for liquid hydrogen, with a thickness of about 560 mg/cm?, in order to minimize any
systematic differences. The beam current used for hydrogen was typically 0.5 pA, set by
the data acquisition rate, and for helium 14 gA. The beam polarization was approximately
75%, as determined from the recoil polarization measured for hydrogen using the analyzing
power from Ref. [27]. The invariant mass resolution was approximately 0.8 MeV, which

allowed clear separation of the 3Hp final state from the 2Hpn and ppnn final states.

In the data analysis the criteria for selected events included, among others, tests on
spectrometer acceptance, target geometry, missing mass, and FPP polar scattering angle
(7° < 6, < 35°). The physical quantities of interest, P, and P!, were determined by means
of the maximum likelihood technique, utilizing the azimuthal distribution of the protons

scattered from the graphite analyzer

I =1Iy[1+ e, cos(¢.) + € sin(g.)]. (7.2)

The asymmetries €, and ¢, are proportional to the analyzing power and to the proton’s
polarizations perpendicular to its momentum as it enters the analyzer and are linear
functions of the proton’s polarization components at the target. The relationship is given
by a rotation which takes into account the change of coordinate system and the proton

spin precession [25] in the spectrometer’s magnetic fields and is calculated on an event by
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Target P /P; Ref.

“He -0.862 £ 0.020 £ 0.03 this work
'H -0.978 £+ 0.044 £ 0.03 this work
'H -0.952 = 0.008 8,23,29]

Tabla 7.1: Polarization ratios with statistical and estimated systematic uncertainties. The

world average, last row, is derived from measurements of Gg and G-

event basis.

The systematic uncertainty in the determination of P./P) can be estimated by in-
troducing artificial shifts in various parameters and finding the effect on the ratio. The
total systematic uncertainty was estimated to be £0.03 on the ratio, for both helium and

hydrogen.

Table 7.1 lists the extracted polarization ratios for “He and 'H. No radiative corrections
have been applied; they are expected to have an effect which is of order 1% [28]. The
hydrogen ratio is found to be in agreement with the polarization ratio derived from the
world average of G/Gy [8,23,29] for data between Q% of 0.3 and 0.5 (GeV/c)2.

Since systematic effects on the polarization ratio for hydrogen and helium were nearly
the same in both size and sign, the effect of systematic uncertainties on the ratio of helium

to hydrogen data

R = (P,/P)ue | (Py/P))u (7.3)

nearly canceled. This “super-ratio” is estimated to have a systematic uncertainty of less
than 0.01. The uncertainty on R is then limited by the statistical uncertainty, mainly of
the hydrogen ratio measured in this experiment. Using the ratio of Gz /G, derived from
the world average for hydrogen would give a smaller statistical uncertainty but larger
systematic uncertainty. Table 7.2 lists the super-ratio, using the hydrogen ratio from this
experiment, as a function of p,,, along with the value averaged over the entire data set.
Negative values of p,, correspond to the recoiling nucleus having a momentum component

along the direction of .

A meaningful interpretation of the polarization ratio measured for *He with that of

hydrogen can only be made by utilizing theoretical calculations which include the effects
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pm (MeV/c) (Pp/P)ue [ (Pr/P))n

-93 0.88 £+ 0.05 £ 0.01
95 0.89 £+ 0.05 £ 0.01
mean 0.88 £ 0.04 £+ 0.01

Tabla 7.2: R as a function of missing momentum.

of FSI, the off-shell current operator, relativistic effects, MEC, and IC on the ratio. In

addition, any calculation must be averaged over the spectrometer acceptance.

We now proceed as follows. The polarization transfer is predicted using a model which
includes the free form factors and the best phenomenologically determined optical poten-
tials and bound state wave functions (BSWF), and FSI. MEC and IC are included in one
nonrelativistic model. If the value predicted using the free form factor does not describe
the measured value well, within the theoretical uncertainties, the effect of a modified form
factor will be considered. If the new value predicted provides a better description of the
data, we can take it as evidence that the proton form factors inside “*He differ from those

of a free proton.

Figure 7.1 shows a comparison of the experimental result R, the “He polarization
ratio normalized to the hydrogen ratio, with the acceptance-averaged calculations. The
hydrogen calculation made use of the same form factor parameterization as does the

corresponding *He calculation.

We first examined the effect of MEC and IC using the non-relativistic calculations of
Laget [30]. The result of the full Laget calculation was found to be nearly identical to the
PWIA result, points 2 and 1, respectively, in Fig. 7.1, indicating that MEC and IC do
not contribute significantly in our kinematics. There is a discrepancy of over two standard

deviations between the observed value and both calculations of Laget.

We next use the model of Udias et al. to determine the magnitude of relativistic
effects. Udias solves the Dirac equation and uses relativistic optical potentials, but does
not include MEC or IC. For each case, we give the result for two different de Forest [31]
off-shell current operators, ccl and cc2. The PWIA calculation of Udias (points 3 and 4)
includes positive and negative energy components for the bound state, but only positive
energy components for the ejected nucleon. It gives nearly the same results as that of
Laget, indicating that R is insensitive to the negative energy components of the bound

state. The calculations are insensitive to differences between the two forms of the current
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Figura 7.1: Comparison of measured R (Exp.) with theoretical calculations. Laget - PWIA
(1); full calculation (2). Udias - PWIA, ccl (3), cc2 (4); positive energy projection, ccl
(5), cc2(6); no spinor distortions, ccl (7), ec2 (8); fully relativistic, ccl (9), ec2 (10); fully
relativistic, and QMC, ccl (11), cc2 (12).
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operator.

The optical potential for p+3H was obtained by folding a density-dependent empirical
effective p/N interaction (EEI) with the measured charge density for tritium. Kelly and Wa-
llace [32]| derived an effective interaction for nucleon-nucleus scattering for 9 < A < 208,
designated TA2, in which spinor distortion is represented by density-dependent modifica-
tions that are very similar to those of the EEI model fitted to proton elastic and inelastic
scattering data. Some parameters were adjusted to fit p*He data yielding a better fit to the
proton elastic scattering data than any previous optical potential. Furthermore, the do-
minant source of density dependence is consistent with the spinor distortion employed by
relativistic (e, €'p) calculations. We investigated the sensitivity to final-state interactions
by using several other optical models and found variations of +0.02 in the polarization

ratio.

In principle, the result should not depend on the gauge used. However, the calculations
do show a small gauge dependence. We show the result using the Coulomb gauge, which

gives nearly the same ratio as the Landau gauge; the Weyl gauge gives a larger ratio by
0.04.

The results of the Udias relativistic calculation projecting out the negative energy
sector (points 5 and 6) and with no spinor distortion (points 7 and 8), called EMA-
noSV in Ref. [3], are also nearly the same as the PWIA calculation (points 3 and 4),
demonstrating the small influence of relativistic effects, other than the negative energy
components of the outgoing nucleon wave function, which are not included in any of the
calculations 1 to 8, and of FSI, on R. The fully relativistic calculations are shown as points
9 and 10. The ratio decreases noticeably, in particular with ccl, but it remains slightly
larger than the observed ratio. Both results are between one and two standard deviations

from the observed value.

Finally, we include the density dependent form factor modifications predicted by the
QMC model of Lu et al. [18], using a bag constant of 0.8 fm (points 11 and 12). These
decrease the ratio further by about 4%. The difference between the ccl and cc2 results
are about the same as for points 9 and 10. The effect on the ratio is less than the 10%
effect discussed in Ref. [18]. However, the calculations of Ref. [18] averaged over the bound
state wavefunction. As discussed in Ref. [10], an integration over the final state, including
the effects of absorption and non-locality corrections, reduces the effect. The addition of

QMC brings the calculation into good agreement with the observed value.
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Figura 7.2: R as a function of missing momentum. Using the labels of Fig. 7.1, the curves
are dotted (3), dashed (9), and solid (11).
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Calculations using Kelly’s EMA for similar conditions give very similar results. The
variations in the result due to choice of the BSWEF and the effect of Coulomb distortions

were negligible in both models.

The dependence of R on the missing momentum was found to be small, as shown in
Fig. 7.2. A sample of the calculations given in Fig. 7.1 are shown in Fig. 7.2. The other
calculations give curves nearly parallel to those shown, with separations about the same

as the separations of the averages shown in Fig. 7.1.

In conclusion, we have measured polarization transfer in the reaction *He(¢, ¢'p)*H for
the first time. The P!/P] ratio is in clear disagreement with PWIA and non-relativistic
calculations. A full relativistic calculation agrees at the two standard deviation level. The
variation in the result for different choices of the bound-state wave function, optical model,
and current operator, added in quadrature, is less than one standard deviation. These
measurements give the first evidence that a fully relativistic calculation that includes
negative energy components giving rise to spinor distortions, is required for a correct
description of spin transfer in (€, ¢'p) for “He, even at low missing momentum. The addition
of a modified proton form factor to the calculation, predicted by the QMC model, brings
the result into good agreement with the data. Although the data do favor the models with
a modified form factor, the statistical significance is not sufficient to exclude calculations

without form factor modification.
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We have measured the proton recoil polarization in the *He(€,e's)H reaction at Q2 —
0.5, 1.0, 1.6, and 2.6 (GeV/c)2. The measured ratio of polarization transfer coefficients differs
from a fully relativistic calculation, favoring the inclusion of a predicted medium modification
of the proton form factors based on a quark-meson coupling model. In contrast, the measured
induced polarizations agree reasonably well with the fully relativistic calculation indicating that

the treatment of final-state interactions is under control.

PACS number(s): 13.40.Gp, 13.88.+¢, 25.30.Dh, 27.10.+h
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The underlying theory of strong interactions is Quantum ChromoDynamics (QCD),
yet there are no ab-initio calculations of nuclei available. Nuclei are effectively and well
described as clusters of protons and neutrons held together by a strong, long-range force
mediated by meson exchange, whereas the saturation properties of nuclear matter arise
from the short-range, repulsive part of the strong interaction [1|. Whether the nucleon
bound in the nuclear medium changes structure has been a long-standing issue in nuclear
physics. At nuclear densities of about 0.17 fm 3 nucleon wave functions have significant
overlap. In the chiral limit, one expects nucleons to lose their identity altogether and

nuclei to make a transition to a quark-gluon plasma.

Unfortunately, distinguishing possible changes in the structure of nucleons embedded
in a nucleus from more conventional many-body effects is only possible within the context
of a model. Nucleon modifications can be described in terms of coupling to excited states,
and such changes are intrinsically intertwined with many-body effects, such as meson-
exchange currents (MEC) and isobar configurations (IC). Therefore, interpretation of
an experimental signature as an indication of modifications of the nucleon form factors
only makes sense if this results in a more economical effective description of the bound,

quantum, nuclear many-body system.

The quark-meson coupling (QMC) model of Lu et al. [2] suggests a measurable de-
viation of the ratio of the proton’s electric (Gg) and magnetic (Gy) form factors from
its free space value over the (Q? range accessible by experiment. This calculation is con-
sistent with present constraints on possible medium modifications for both Gg (from the
Coulomb Sum Rule, with Q? < 0.5 (GeV /c)? [3-5]), G (from a y-scaling analysis [6], for
Q? > 1 (GeV/c)?), and limits on the scaling of nucleon magnetic moments in nuclei [7].
Similar effects have been calculated in the light-front constituent quark model of Frank
et al. [8] and in the modified Skyrme model of Yakhshiev et al. [9].

In unpolarized A(e, €'p) experiments involving light- and medium-heavy nuclei, de-
viations were observed in the longitudinal /transverse character of the nuclear response
compared to the free proton case [10-12]. Below the two-nucleon emission threshold, these
deviations were originally interpreted as changes in the nucleon form factors within the
nuclear medium. However, strong interaction effects on the ejected proton (final state in-
teractions [F'SI|) later also succeeded in explaining the observed effect [13]. This illustrates
that any interpretation in terms of medium modifications to nucleon form factors requires

having excellent control of FSI effects.
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For free electron-nucleon scattering, the ratio of the electric to magnetic Sachs form
factors, (Gr/Gu), is directly proportional to the ratio of the transverse and longitudinal
transferred polarizations, (P./P]) [14,15]. This relationship was recently used to extract
Gg/Gu for the proton [16-19]. Polarization transfer in quasielastic nucleon knockout
remains sensitive to this ratio of form factors (possibly modified by the nuclear medium).
A variety of calculations for the A(€,e'p’) reaction indicate that FSI and MEC effects
on polarization transfer observables are small, amounting to only a < 10% correction
[20-22]. In addition, these nuclear interaction effects tend to largely cancel in the ratio of

polarization transfer coefficients P./P).

Recently, polarization transfer for the *He(e, e'p’) ®*H reaction at Q? = 0.4 (GeV /c)?
was studied [23]|. The addition of medium-modified proton form factors, as predicted by
the QMC model, to a state-of-the-art fully relativistic model [21] gave a good description
of the data. The authors concluded that, within the model space examined, the data
favor models with medium-modified form factors over those with free form factors, but
the latter could not be excluded. Examination of this finding over a larger range in Q?

seems an obvious step for further investigation.

The experiment reported here includes measurements of the polarization transfer coef-
ficients over the range of @* from 0.5 to 2.6 (GeV/c)?, and as a function of missing mo-
mentum in the range 0 to 240 MeV /c, in order to maximize sensitivity to the electric to
magnetic form factor ratio for protons bound in the *He nucleus. This nucleus was selec-
ted for study because its relative simplicity allows realistic microscopic calculations and
its high density enhances any possible medium effects. As the experiment was designed
to detect differences between the in-medium polarizations and the free values, both *He
and 'H targets were employed (except at @ = 2.6 (GeV/c)?, where only *He data were

acquired due to beam time constraints).

Kinematics settings for the present experiment in Hall A at Jefferson Lab (JLab)
are given in Table 8.1. The experiment used beam currents of 40 uA for the lower Q2
values and up to 70 pA for the highest Q? value, combined with beam polarizations
of 66% for the lowest @Q? value and ~ 77% for the other Q? values. The beam helicity
was flipped pseudorandomly to reduce systematic errors of the extracted polarization
transfer observables. The proton spectrometer was equipped with a focal plane polarimeter
(FPP) |24, 25]. Polarized protons lead to azimuthal asymmetries after scattering in the
carbon analyzer of the FPP. These distributions, in combination with information on the

beam helicity, were analyzed by means of a maximum likelihood method to obtain the
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Beam Q? Electron Electron Proton Proton

Energy Momentum 01,48 Momentum 01,48
(MeV) | (GeV/c)? | (MeV/c) (degrees) (MeV /c) (degrees)
3400 0.5 3102 12.47(12.50) 766 61.43(63.12)
4239 1.0 3667 14.56 1150 54.55(54.82)
4237 1.6 3340 19.35 1549 45.75(46.77)
4237 2.6 2796 27.10 2161 36.20

Tabla 8.1: Kinematics for the present experiment. For the electron and proton angles we
indicate between parentheses the angles for the 'H(e, e'p’) reaction, if different from the

*He(e, e'p) H reaction.

induced and transferred polarization components. More details on the analysis can be
found in Refs. [16,26,27].

Our results are shown in Fig. 8.1 as R/Rpwra for all four values of Q?. Rpw4 is the
prediction based on the relativistic plane-wave impulse approximation (RPWIA) calcula-

tion. Here, R is defined as
5 (PP
(Pé/Pé)lﬂ

for the data, whereas Rpy 14 is the same ratio based on the relativistic plane-wave impulse

(8.1)

approximation (RPWIA) calculation. The helium polarization ratio is normalized to the
hydrogen polarization ratio measured at the same setting. Such a polarization double
ratio nearly cancels all systematic uncertainties. As a cross check, the hydrogen results
were also used to extract the free proton form factor ratio Gg/Gjys and found to be
in excellent agreement with previous data [16,17]. In addition, our result at @* = 0.5
(GeV/c)? closely coincides with the recent results at Q* = 0.4 (GeV/c)? of Mainz [23],
also shown in Fig. 8.1. Our experimental results for helium and hydrogen separately, in
terms of (P,/P]), are tabulated in Table 8.2. Systematic uncertainties are mainly due to
possible minor misalignments of the magnetic elements of the proton spectrometer and
uncertainties in the spin transport through these magnetic elements. They are estimated
to contribute less than 1.7% to R.

The theoretical calculations by the Madrid group [21] are averaged over the experi-
mental acceptance. We note that these relativistic calculations provide good descriptions
of, e.g., the induced polarizations measured at Bates in the >C(e, e'p’) reaction [30] and

of Ary, in '®O(e, €'p) as previously measured at JLab [31].
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Figura 8.1: Superratio R/Rpwra as a function of Q2. R is defined as the double ratio
(P/P)pe/(Pi/P)g. In PWIA (short-dashed curve) this superratio is identically unity,

barring acceptance-averaging effects. The dashed curve shows the results of the full rela-

tivistic calculation of Udias et al. [21]|. The dot-dashed curve shows the results of Laget’s
full calculation, including two-body currents [20]. The solid curve indicates the full relati-
vistic calculation of Udias including medium modifications as predicted by a quark-meson
coupling model [2]. For Q? > 1.8 (GeV/c)? the Udias calculations maintain a constant
relativistic optical potential and are indicated as short-dashed curves. Lines connect the

acceptance-averaged theory calculations and are to guide the eye only.
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Q° (Pr/P;) e (P/P)n R
0.5 | -0.80440.035+0.006 | -0.898+0.029+0.011 | 0.895+0.048+0.015
1.0 | -0.502£0.01840.005 | -0.57840.01440.005 | 0.868+0.038+0.011
1.6 | -0.393£0.014+0.011 | -0.39540.01040.009 | 0.992+0.043£0.007
2.6 | -0.2314+0.02240.016 (-0.265+0.024) 0.869£0.081£0.099

Tabla 8.2: Polarization ratios with statistical and estimated systematic uncertainties. The
polarization ratio value for 'H(€,e'p) at Q* = 2.6 (GeV/c)? is from the fit of Ref. [16]. The
uncertainty in this ratio and in R reflects the typical systematic uncertainty of the data
of Ref. [16] at this Q2.

At Q? = 0.5 and 1.0 (GeV/c)? the RPWIA calculation overestimates the data by
~ 10%. The relativistic distorted-wave impulse approximation (RDWIA) calculation gi-
ves a slightly smaller (= 3%) value of R but still overpredicts the data. After including
the (density-dependent) medium-modified form factors as predicted by Lu et al. [2] in
the RDWIA calculation, excellent agreement is obtained at both settings. All calculations
shown use the Coulomb gauge, the ccl current operator as defined in [32], and the MRW
optical potential of [33]. The cc2 current operator gives slightly higher values of R, wor-
sening agreement with the data. In general, various choices for, e.g., spinor distortions,
current operators, and relativistic corrections, affect the theoretical predictions by <3%,
and can presently not explain the disagreement between the data and the RDWIA cal-
culations. In contrast, the datum at @? = 1.6 (GeV /c)? is well described by the RPWIA
and RDWIA calculations, whereas all calculations are consistent with the datum at Q?
= 2.6 (GeV/c)2

A statistical analysis of the measured double ratios, including the result of the Mainz
experiment [23|, and various theoretical predictions was performed. The model space we
examined encompassed the RPWIA and RDWIA calculations of Udias et al. [21], the latter
with and without medium modifications as predicted by a quark-meson coupling model
[2], the full nonrelativistic model of Debruyne et al. |28,29], and the full nonrelativistic
calculation of Laget including two-body currents [20]. For the latter calculation only data
up to Q? = 0.5 (GeV /c)? are taken into account. A significantly better description is given

by the RDWIA calculation when medium modifications are included.

Figure 8.2 shows the polarization double ratio R as a function of missing momentum for
the lower three Q? kinematics (the statistics at the Q% = 2.6 (GeV /c)? kinematics are not

sufficient to make a meaningful comparison with calculations). Negative values of missing
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Figura 8.2: Measured values of the polarization double ratio R for ‘He(€, ¢'p’)*H at Q?
= 0.5 (GeV/c)? (top), @* = 1.0 (GeV/c)? (middle), and Q? = 1.6 (GeV/c)? (bottom).
The shaded bands represent RPWIA calculations (solid), relativistic DWIA calculations

(horizontal dashes) and relativistic DWIA calculations including QMC medium-modified

form factors [2| by Udias et al. |21] (vertical dashes). The bands reflect variations due

to choice of current operator, optical potential, and bound-state wave function (see also

Ref. [23]).
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momentum correspond to the recoiling nuclei having a momentum component antiparallel
to the direction of the three-momentum transfer. Both the RPWIA and the RDWIA give a
reasonable, but not perfect, description of the missing momentum dependence of the data.
As already seen in Fig. 8.1, the difference in magnitude between the RDWIA calculation
and the data at @? = 0.5 and 1.0 (GeV/c)? can be largely eliminated by including the
QMC medium modifications, whereas at Q% = 1.6 (GeV/c)? the calculation without QMC
medium modifications already gives a satisfactory description. More precise data could
unambiguously settle whether this is just a statistical fluctuation, and would constitute a

demanding test of modern nucleon-meson descriptions of nuclear physics.

Lastly, we show in Fig. 8.3 the induced polarization, P, obtained by properly averaging
over the two beam helicities, and corrected for (small) false asymmetries, as a function
of Q2. P, is identically zero in the absence of FSI effects (in the one-photon exchange
approximation) and constitutes a stringent test of the validity of the inclusion of FSI
effects in the calculations. For example, an underestimate of reaction mechanism effects
in the present calculation may be due to the neglect of the charge exchange (€,e'7 ) (7, )
reaction in the RDWIA calculations. However, the measured induced polarizations agree
well with the RDWIA calculations. In addition, the 2C(¢, e'p’) and ®O(€, €'p) reactions

were calculated to be insensitive to this effect [22].

One sees in Fig. 8.3 that the induced polarizations are small for all measured Q? va-
lues. The dashed and dot-dashed curves represent RDWIA calculations by Udias et al. [21]
with the MRW [33] and RLF [34] relativistic optical potentials. For the induced polari-
zation case, the RDWIA curves with and without medium modifications are identical: as
mentioned earlier the QMC model incorporates modifications only to the one-body form
factors. For a rigorous calculation of the *He(e, ¢'p)*H results presented here, one would
need to take into account possible medium modifications to both one-body form factors
and many-body FSI effects. Figure 8.3 confirms the expected small values of the induced

polarizations, and indicates reasonable agreement with the RDWIA calculations.

In summary, we have measured recoil polarization in the *He(¢, ¢'p’) ®H reaction in the
range from Q% = 0.5 to 2.6 (GeV/c)?. The datum at the lowest Q? agrees well with the
results of a recently reported Mainz measurement [23|. Such polarization transfer data are
calculated to be only slightly dependent (< 10% effect) on nuclear structure effects and fine
details of the reaction mechanism. Furthermore, these effects tend to cancel in the P./P!
polarization transfer ratio. Within our model assumptions we find strong evidence for a

medium modification; a calculation incorporating a predicted medium modification based
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Figura 8.3: Measured values of the induced polarizations for the ‘He(e, e'p’) *H reaction.
The inner uncertainty is statistical only; the total uncertainty includes a systematic un-
certainty of +0.02, due to imperfect knowledge of the false asymmetries. The solid and
dashed curves show the results for the full relativistic RDWIA calculations of Udias et
al. |21], using differing relativistic optical potentials [33,34]. For the dashed curves, varia-
tion within the chosen optical potential parameters is indicated by the shaded area. The
short-dashed lines indicate the Q? regions beyond the validity of the relativistic optical

potentials used.



208 Capitulo 8. Cociente de polarizaciones transferidas en *He(€, ¢/’ (I)

on the quark-meson coupling model [2] gives a good description of our data. Moreover, the
calculated induced polarizations agree well with our data, giving credibility to the validity
of the treatment of FSI effects in the model. These data provide the most stringent test

to date of the applicability of conventional meson-nucleon calculations.
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Capitulo 9
Discusion

En esta tesis hemos revisado en su formulacién actual, la aproximacién de impul-
so relativista al proceso (e, e'p) asi como la comparaciéon con los datos experimentales

disponibles y la confrontacién con los anélisis no relativistas.

En el primer capitulo se ha introducido el proceso (€, €'p’) y definido las condiciones de
cinemaética exclusiva en las que nos hemos centrado en esta tesis. También se ha revisado
brevemente el formalismo y se resume la derivacién de la seccion eficaz que aparece de

forma méas completa en el apéndice.

En el capitulo 2 se ha revisado en detalle la aproximacion factorizada al proceso (e, €'p’)
en la aproximacién de ondas distorsionadas para el proton. La aproximacién de factori-
zacion ha sido ampliamente utilizada para interpretar los datos experimentales. Dicha
aproximacion habia sido analizada con cierto detalle en el formalismo no relativista, pero
no en el relativista. Existen diferencias notables entre ambos casos, en particular, en el
caso relativista, no hay factorizacién ni siquiera en ondas planas para el nucleén final,
contrariamente al caso no relativista [1]. También se demuestran de forma muy general
varios resultados conocidos en el caso no relativista, como el hecho de que puede haber
factorizacion de la seccion eficaz (en el caso no relativista y bajo hipotesis adicionales)
si no se considera interaccién de espin-orbita o bien en el estado inicial (es decir, para
ser realistas, solo en onda s, resultado nuevo no conocido) o bien en el estado final, éste
tiltimo resultado si que era ya conocido [2], o bien si no hay interaccion de espin-6rbita ni
en el estado inicial ni en el final. De forma importante, se han definido y aclarado algunas
de las condiciones adicionales que se solian imponer a la derivacion de la seccion eficaz
factorizada en el caso no relativista [2] y se ha encontrado el adecuado significado fisico,

que no es otro que el imponer que la relacion entre las componentes inferiores y superiores
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del cuadriespinor que describe, en el caso relativista, a los nucleones, venga dada por la
misma relacién que para nucleones libres, es decir, venga mediada por la ecuaciéon de Dirac
libre. Esta condiciéon estd implicita en la mayoria de los tratamientos no relativistas de
la corriente electromagnética, que por tanto factorizan en mayor medida que en el caso
relativista. En dicho capitulo 2 se ha extendido el anélisis de la validez de la aproximaciéon
de factorizacién més alla de las secciones eficaces, para incluir todos los demas observables
que se pueden determinar en experimentos de (€, e'p) sin medir polarizaciones del nicleo
blanco. Més interesante atin, se ha encontrado una légica correlacién entre observables que
son “robustos”, dado que factorizan con menos hip6tesis, y cuyas predicciones se alejan en
menor medida de las predicciones para nucleones libres. Dicho observables son adecuados
para estudiar posibles modificaciones del comportamiento de los nucleones en los niicleos.
Por otro lado, otros observables menos “robustos” son aquéllos que no factorizan en nin-
glin caso, ya que son nulos para nucleones libres. Estos observables dependen en mucha
mayor medida de los ingredientes del modelo y son ttiles para restringir el rango de los
parametros de éste, como el operador de corriente adecuado, la interaccion de estados
finales, el modelo utilizado para los nucleones iniciales, etc. En definitiva, en este capitulo
se exponen todos los aspectos més novedosos del andlisis del proceso de (€,€'p) en la
aproximacion de impulso relativista y se identifica un observable relativamente moderno,
la asimetria A7y, como una medida muy robusta que da informacién sobre la estructura

cuadriespinorial de los nucleones.

En el capitulo 3 se aplica el formalismo RDWIA al anélisis de datos experimentales de
secciones eficaces y observables A;, en oxigeno. Para este niicleo, existia una controversia
muy antigua [3] por la aparente discrepancia entre los datos experimentales obtenidos en
Saclay y en NIKHEF, en condiciones cuasielasticas relativamente similares (Q* = 0.3 y
0.2 (GeV/c)? respectivamente). Dicha discrepancia se reflejaba especialmente en la res-
puesta RTL, que se puede separar experimentalmente realizando medidas con los protones
salientes “a la derecha” y “a la izquierda” del momento transferido ¢. La discrepancia entre
ambos conjuntos de datos se explica debido a las contribuciones relativistas a la estructura
de los nucleones, especialmente de los nucleones ligados. Mientras que en un analisis no
relativista que mantenga la relacién entre componentes inferiores y superiores de los es-
pinores nucleénicos similar a la relaciéon para espinores libres, el observable A7y, se desvia
moderadamente de la prediccion para nucleones libres, en los modelos de campo medio
relativista, en los que se produce de forma automatica un incremento de la contribucién

de las componentes inferiores para nucleones ligados y del continuo, el observable Ay au-
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menta considerablemente en magnitud con respecto a la prediccion libre. La comparaciéon
de la teoria relativista con los datos de Saclay y de NIKHEF no muestra ninguna discre-
pancia ni inconsistencia entre ambos conjuntos de datos y si unos valores de Ay, en buen
acuerdo con las predicciones relativistas [4]. También se analiz6 la posible variacion con
Q? del factor espectroscopico, medido a través del factor de escala necesario para ajustar
las predicciones de campo medio a los datos experimentales, incluyendo todos los datos
en %0 desde Q? 0.2 hasta 0.8 (GeV/c)?. Se encontro, contrariamente a lo que habian
sugerido algunos estudios no relativistas [5|, que no hay evidencia de una dependencia de

dicho factor de escala con el momento transferido.

En el capitulo 4 se realiza un estudio de datos obtenidos en el ciclotron MAMI de
Mainz para la reaccion *He(e, e'p)®H a momentos transferidos moderados. La particu-
laridad de este experimento radica en la amplia aceptancia de los espectrometros. La
comparacion de la teoria con los datos requiere de la incorporacion de los efectos de los
detectores en la respuesta experimental. Para esto, se introducen los resultados teoéricos
en una simulacion MonteCarlo que incluyen, entre otras, las propiedades de los detecto-
res, energia y caracteristicas especificas del haz de electrones incidente, tipo del blanco y
disposicion geométrica del mismo, con el fin de generar pseudodatos experimentales que
posteriormente son analizados con los mismos procedimientos que los datos reales. Esta
simulacién de Monte Carlo se realizo en este estudio con los calculos PWIA. Los célculos
RDWTA fueron evaluados simplemente para la cineméatica correspondiente a los valores
centrales de las aceptancias experimentales. En la figura 9.1 se puede ver ya el estudio
completo, para otro experimento y condiciones cinemaéticas, promediando también sobre
las aceptancias de los espectrometros los calculos RDWIA mediante el uso del codigo
MCEEP |[6]. Los datos experimentales presentados en la figura 9.1 fueron medidos en

Mainz por Florizone et al. [7].

En particular, el objetivo del experimento presentado en el capitulo 4, era comprobar
si la relacion T /L en *He era distinta de la de nucleones libres, como sugerfan experimen-
tos anteriores en Saclay. Para ello, se tomaron datos a tres valores diferentes de la energia
del electron todos correspondientes a un momento transferido similar, por lo tanto con
una contribucién relativa de la parte transversal y longitudinal de la corriente distinta. La
comparacion con la teoria no mostro diferencia con el cociente T /L experimental respecto
de las predicciones relativistas, una vez incluidos los efectos de la interaccién de estados
finales. Las simulaciones demostraron que los experimentos serian sensibles a modifica-

ciones del cociente T /L superiores al 10% y que, por tanto, se deberia haber observado el
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Figura 9.1: Seccion eficaz de la reaccion * He(e, e'p)® H para tres energias del haz incidente
medidas por Florizone et al. [7]. Las curvas rojas y verdes muestran el calculo RDWIA,
promediado sobre las aceptancias de los espectrometros, con dos diferentes parametriza-
ciones para la interaccion de estados finales [8,9]. También se muestran la aproximacion
EMA-noSV [10] (curva azul) y una aproximacion factorizada (curva gris). En el panel
superior (inferior) se muestran los célculos con el operador de corriente CC'1 (CC2) res-

pectivamente.
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efecto si fuese tan grande como el observado en Saclay. Posibles explicaciones pasan por la
dificultad de realizar correcciones radiativas en el caso de que la resoluciéon en energia de-
saparecida es pequena. En el caso del experimento de Mainz, en lugar de corregir los datos
experimentales para ’deradiarlos’, lo que se hizo fue 'radiar’ la teoria, un proceso que tiene
menos ambigiiedades. Como contrapartida, el analisis realizado en esta forma, resulta me-
nos sensible a las modificaciones del cociente T /L, La conclusion, por el momento, es que
parte de los efectos observados en Saclay pueden ser debidos a un sesgo introducido por
el procedimiento de deconvolucionar las correcciones radiativas [7], lo cual ha dado lugar
a varios estudios independientes para revisar las aproximaciones tradicionales al proceso
de deradiacion de los datos experimentales en dispersiéon de electrones. En cuanto a otras
conclusiones de este estudio, se ha observado que el efecto de la interaccion de estados
finales para un nucleo relativamente ligero como es el *He y a energias relativamente altas
en condiciones cuasielésticas, es poco importante, de forma que incluso una simple apro-
ximacion en ondas planas o factorizada, describe los datos razonablemente. No obstante,
el mejor ajuste con los datos se obtiene en el caso del calculo relativista completo y no
factorizado. Este experimento permitio, entre otras cosas, establecer que las aproximacio-
nes utilizadas reproducian adecuadamente el proceso *He(e, ¢'p) a energias moderadas, al

menos en lo que respecta a las secciones eficaces.

En los capitulos siguientes, se introducen los grados de libertad de polarizaciéon del
nucleén saliente en los anédlisis. Los experimentos son més dificiles, ya que es necesario
introducir anélisis magnético para el nucledn final, lo cual tipicamente reduce en un factor
diez las tasas de conteo. Por tanto, los experimentos de medida de polarizaciones inducidas

(o transferidas) requieren mayor tiempo de medida o més luminosidad.

En el capitulo 5 se analizan las polarizaciones inducidas en el proceso (e,e'p). Es
bien conocido, desde los primeros andlisis de dispersion de protones por niicleos, que
la interaccién entre el nucléon final y el nicleo residual, induce un polarizacién en el
proton saliente, en particular debido, por ejemplo, a la interaccion de espin-6rbita. De
forma analoga, este mismo efecto se produce en el caso (e, €'p’). Dado que la aproximacion
relativista en general tiene mucho mas éxito que la no relativista a la hora de reproducir
observables relacionados con la interacciéon de espin-érbita [11], es interesante realizar un
analisis relativista de la polarizacién inducida y compararla con los pocos datos disponibles
por el momento. Se observa que la polarizacion inducida es muy sensible a los detalles de la
interaccion de estados finales. La medida de P, puede ser de gran utilidad para determinar

los valores o modelos adecuados de la interacciéon en el estado final. La comparaciéon con
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los datos revela que el célculo relativista reproduce los datos mejor que el no relativista.

En el capitulo 6 se introducen de nuevo observables adicionales, en este caso las polari-
zaciones transferidas, cuya determinacion experimental requiere, ademés del polarimetro
magnético de los protones emitidos, la utilizacién de electrones polarizados [12-14]. De
nuevo se incrementa el grado de dificultad requerido a los experimentos. En cuanto al
formalismo, en este capitulo se derivan los observables en la aproximacién relativista, se
compara con varias aproximaciones no relativistas o semi-relativistas y se contrastan los
resultados con los escasos datos disponibles en %0. La precisiéon obtenida hasta el mo-
mento en experimentos con °0 no permite distinguir entre las predicciones de diferentes
modelos, en particular porque las polarizaciones transferidas son un tipo de observables
de los que se han denominado “robustos” en el capitulo 2, es decir, cuyo valor depende s6lo
moderadamente de las aproximaciones utilizadas en su calculo. Esto hace que el cociente
entre polarizaciones transferidas P!/P/, proporcional al cociente Gr/G s de los factores
de forma eléctrico y magnético del nucleén, se haya propuesto como el observable més
indicado para estudiar posibles modificaciones de los factores de forma del nucléon en el
seno nuclear. Los datos en '®0O disponibles hasta la fecha no tienen precisiéon suficiente
como para concluir de ellos que se obtiene un cociente distinto al predicho por los diver-
sos modelos teéricos existentes. En cambio, en el caso del *He, la precisién de los datos
experimentales y el gran niimero de experimentos que se han realizado es mucho mayor
y, como se ha visto en los capitulos 7 y 8, suficiente como para extraer conclusiones sobre

el cociente Gg/G) en nicleos.

En los capitulos 7 y 8 se analizan experimentos de medida de polarizaciones normales,
polarizaciones transferidas y cocientes de éstas, en * He. Como se explicd en los capitulos
anteriores, la medida combinada del cociente P,/P] junto con P,, consigue dos objetivos
complementarios: por un lado, P, es muy sensible a la interaccién de estados finales. Una
buena reproduccién de P, indicara, por tanto, que esta parte del modelo est4 bajo control.
El cociente de polarizaciones transferidas, por otro lado, es una medida muy directa de los
factores de forma del nucleén que muestra muy poca sensibilidad a los efectos habituales
en este tipo de procesos, como interaccion de estados finales, tipo de corriente nuclear,
ambigiiedades off-shell o Gauge, y otras. Por tanto, los experimentos de (&, €'p’) en condi-
ciones exclusivas han sido propuestos con el fin de determinar la posible modificacién de
los factores de forma de los nucleones al estar ligados en el medio nuclear. Es cierto que,
por definicién, los factores de forma de los nucleones ligados en nicleos, como cualquier

otra cantidad off-shell, no puede ser medida experimentalmente y realizar experimen-
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tos para determinar dichos factores parece un contrasentido. Sin embargo, recordemos
que las corrientes de intercambio mesoénicas (MEC) [15-18] son también una cantidad
off-shell y por tanto no medible, pese a lo cual numerosos experimentos han concluido
que se ha determinado o medido el efecto de las MEC a la respuesta electromagnética
de los nucleos [15]. Para entender esta aparente paradoja, hay que tener en cuenta que
los experimentos, como cualquier otro fenémeno en fisica nuclear, se analizan en térmi-
nos de modelos y es dentro de un modelo en el que cabe denominar, discernir o atribuir
contribuciones a las observaciones experimentales de los diferentes efectos off-shell, como
pueden ser la interaccién de estados finales olas corrientes de intercambio mesoénicas. Si en
los mismos modelos que a menudo han servido para justificar la necesidad de introducir
MEC, después de incluir dichas corrientes, efectos relativistas, FSI y todos los ingredientes
habituales, atin no se pueden explicar los datos experimentales, cabe entonces probar con
factores de forma modificados de acuerdo a algunos modelos [19] y si, como en el caso de
estos experimentos, se encuentra que el acuerdo mejora hasta el punto de hacerlo perfecta-
mente compatible con los experimentos, se ha de concluir que, al menos en el contexto de
este modelo, hay una evidencia palpable y sustancial sobre la modificacion de los factores
de forma de los nucleones en el ntcleo. En estos dos capitulos se analizan los experimentos
realizados en MAMI-Mainz y Jefferson Lab, en condiciones cuasielasticas en *He y en un
amplio rango de momento transferido, con el fin de determinar las polarizaciones normales
y las polarizaciones transferidas. Para el correcto anélisis del experimento, las respuestas
obtenidas en el modelo relativista basado en la aproximacion de impulso se introducen en
un complejo programa de Monte Carlo que promedia en las aceptancias angulares [6]. La

comparacion con los datos revela:

1. Los efectos relativistas, sobre todo debidos a la interacciéon de estados finales, acer-
can la teoria a los datos, de forma que la diferencia entre las predicciones de la
aproximacion de impulso relativista para el cociente y los datos se reducen a la

mitad con respecto al caso no relativista [20].

2. Pese a la mejora, se mantiene una diferencia con los datos experimentales que es
estadisticamente significativa. Dicha diferencia se reduce hasta hacer la teoria com-
patible con los datos experimentales, si se incluyen modificaciones de los factores de

forma dentro de los niicleos similares a las predichas por varios modelos [19].

3. Se ha comprobado que FSI y otros efectos més alla de la aproximacion de impulso,

tal como MEC, apenas modifican el cociente de respuestas transferidas [20,21].
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4. Las polarizaciones normales estdn bien descritas en el modelo relativista |22, 23|,

con el tratamiento estandar del proceso. No asi en el caso no relativista [24].

Hasta el momento, s6lo hay un tipo de procesos que pueden contemplarse como expli-
cacién alternativa a las modificaciones de los factores de forma en el medio nuclear: una
combinacién de MEC tensoriales en conjuncién con canales acoplados p-n en el estado
final, es decir, que el fotéon transferido interacciona con un neutrén que, tras la interac-
ci6én de estados finales se convierte en un protoén que es el detectado en coincidencia [24].
Normalmente este proceso no contribuye de forma significativa, apenas un 1-2% [25], a la
seccion eficaz. Sin embargo no hay que perder de vista que el efecto experimentalmente
observado es muy pequenio: Un 8% de desviacion respecto de la prediccion para el cociente
libre, 4% del cual se explica por los efectos de interaccion de estados finales relativistas y
el 4% adicional puede explicarse por modificaciones de los factores de forma, o bien, en la
otra alternativa [24|, 4% se debe a las MEC tensoriales y otro 4% a los canales acoplados.

Sin embargo, de momento esta explicacion alternativa presenta varios inconvenientes:

e La interaccién p-n se introduce de forma ad-hoc sin contrastar con otros procesos o

resultados experimentales en los que también podria influir.

e La polarizaciéon inducida que se obtiene con el valor de interaccién p-n necesario
para explicar los datos de cociente P./P] es muy grande, apenas compatible con la

cota superior de los valores maximos medidos.

e Los resultados se han obtenido para cineméaticas centrales, sin promediar con las

aceptancias experimentales, lo cual podria modificar los datos de forma significativa.

Ya que los datos experimentales son cada vez més precisos al continuarse acumulando
estadistica en sucesivos experimentos, lo cual restringe cada vez méas los parametros de
los modelos teodricos utilizados, esperamos que en los proximos meses todos estos puntos

puedan ser aclarados.
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Capitulo 10
Conclusiones

De los resultados presentados en los distintos capitulos de esta tesis doctoral podemos

extraer las siguientes conclusiones:

e La aproximacion de impulso relativista ha tenido mucho éxito prediciendo un ampli-
simo abanico de resultados experimentales en condiciones cuasielésticas exclusivas.
Una muestra de esta afirmacién se puede observar al comparar los célculos rela-
tivistas, con las secciones eficaces reducidas y las respuestas hadrénicas medidas
por diferentes grupos experimentales en Saclay y NIKHEF [1-3|. En general, estos
datos se reproducen muy bien mediante un tratamiento completamente relativista,
mejorando sensiblemente el acuerdo con el experimento respecto a los calculos no
relativistas existentes hasta ahora. Asimismo, los calculos relativistas son capaces
de explicar los datos de la respuesta R'* medida a bajo momento transferido Q?

por ambos grupos, algo que hasta ahora no era posible.

e Nuevos observables han podido ser medidos gracias a los avances efectuados en el
campo experimental. Entre ellos destacan las polarizaciones inducidas y transferidas,
accesibles gracias a la posibilidad de polarizar el haz de electrones incidente y/o
medir la polarizacion del protén saliente, la asimetria de helicidad A que implica
medidas de secciones eficaces fuera del plano [4] y la asimetria A7, nunca medida
con anterioridad [5]. Todos estos nuevos observables ponen a prueba de forma mucho
més exigente los modelos tedricos. Hasta el momento, el modelo relativista compara
bien con los experimentos. Como ejemplo podemos citar los datos de la polarizacion

inducida normal P, medidos por Woo et al. en '2C [6] y reproducidos en el capitulo
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4 de esta tesis o los datos de la asimetria A7z, en ®O medidos por Gao et al. [5] y

comparados con nuestro modelo RDWIA en los articulos |7, 8].

El conocimiento preciso de las polarizaciones inducida P, y transferidas P} ; permite
estudiar el comportamiento de los nucleones en el seno nuclear. La polarizacién in-
ducida P, es uno de los observables mas indicados para discernir entre los diferentes
modelos teoricos que describen la interaccion entre el nucleén detectado y el niicleo
residual. Los ultimos experimentos y el anélisis relativista [9,10], son evidencia po-
derosa a favor de la modificacion de las propiedades de los nucleones en el ntcleo
con respecto a los nucleones libres. Nuevos experimentos en curso determinaran con
més precision el cociente P!/P/ y permitirdn determinar de forma concluyente la
hipotesis de modificacion de las propiedades electromagnéticas de los nucleones en

el nucleo.

Como conclusion final de esta tesis doctoral podriamos decir que el calculo basado

en la aproximacion relativista de ondas distorsionadas (RDWIA), es en la actualidad la

mejor herramienta teorica para el analisis de los experimentos de A(€,e'p)B a energias

intermedias.
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Apéndice A
Seccibn eficaz A(€,e'p)B

En este apéndice calcularemos la seccion eficaz para el proceso A(€,e'5)B en la apro-
ximacién de impulso y con intercambio de un foton. En este trabajo se utilizan unidades
naturales h = ¢ = 1, asi como los convenios para la métrica del espacio tiempo y las
matrices de Dirac de las referencias [1-3]. Los vectores espaciales (tres componentes) se

representan por letras en negrilla (e.g. p) y los cuadrivectores con subindice o superindice
griego.

A primer orden en teoria de perturbaciones, la amplitud de transiciéon de esta reaccion
viene dada por la siguiente expresion [3]:

eld' (z—y)

(2):_-2/ 4/ 4 3#(2) Dy I ( / A1l
S e devdyj VD J” (y Z 027T )+ze (A1)

donde 7# y J" son las corrientes electromagnéticas lepténicas y hadronicas respectivamente

y D, es un operador definido como sigue:

Duu = 0u — p (A2)

Si suponemos que los estados iniciales y finales son estados de energia bien definida,
es decir, j#(z) = e’i(si’sf)woj“(a:) y una expresion analoga para J¥(y), la integral de
la dependencia temporal de las corrientes da como resultado una delta de Dirac cuyo
argumento es la suma de las energias iniciales menos las finales y por tanto implica que la
energia total se conserva durante el proceso. Llegamos entonces a la siguiente expresion
para la amplitud de transicion
1 i@ x-Y)
VR @D

S = —ieZé(energia) /V de /V dyj*(x) Dy J" (y) (A-3)
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con § = (w,q') y w=¢; —ey. Si ademés consideramos que las funciones de onda de los
electrones vienen descritas por una onda plana, o dicho con otras palabras, trabajamos

bajo la aproximacion PWBA, resulta que:

1 .
() = ——— @ (kiky) (A.4)

upyHu,
2givzgfv( )

siendo u;, uy cuadriespinores de Dirac para particulas libres [1, 2]

X1
u(k,s) =ve+me| o1 , (A.5)
X1i
e+ 3

y por tanto podemos realizar la integral en @ obteniendo el siguiente resultado:
S® = j(2r)é(energia)ly , (A.6)
donde hemos definido I, como sigue:

P ay )
2V . JeiEf
e?(ugytu;) 1
—D,,J" AT

2V, /Eié"f Q2 H (q) ( )

siendo ¢* = (w, q) = (w, ki —ky) ; Q% = ¢* —w? y hemos expresado la corriente hadrénica

1 1 a’
Iy = /d —E Ve y————D,, JY q-y
v v yV 7 ki-k;q (G-G)+ie " (y)e

en el espacio de momentos,

J"(q) = /V dyJ* (y)e'dY. (A.8)

Ahora, obviamente, el tensor D,,, es:

quq
D = g — 62" (A.9)
Como la corriente se conserva (g,usy*u; = 0) es usual no considerar el término g¢,g,

en el tensor D,,. Alternativamente, es conveniente introducir la expansion [4]:

uy 1\ Ay ux Y
D= 3 (-Vee (A.10)
Ay=£1,0
donde los eﬁy son los llamados vectores de polarizacion del foton virtual que se intercambia
en la reaccion. El caso A, = 0 se corresponde con la polarizacién longitudinal y los casos
Ay = £1 con las dos polarizaciones transversales. En el sistema de referencia en el que

el nucleo blanco esta en reposo (LAB), eligiendo el eje z a lo largo de la direccion del
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momento transferido g, las coordenadas de los vectores de polarizacion del fotén son las

siguientes:
1

v .

e, =———=(0,1,4,0), (A.11)
V2
1

Glil = %(0, ]_, —7;, 0) y (A]_2)
q w

Es sencillo comprobar que satisfacen la siguiente propiedad bajo el cambio de signo de A:
()" = (—1)e,. (A.14)

Podemos espresar por tanto la amplitud de transicién como sigue,

2

Iy = m ¥ [armat] [0 &

Es interesante recalcar que las dos cantidades entre corchetes en la Eq. (A.15) son escalares

(A.15)

Lorentz y por lo tanto pueden ser evaluados en cualquier sistema de referencia.

A partir de la amplitud de transicion antes calculada podemos hallar la seccion eficaz

de la reaccion:

1 5(2)‘
VV B Lk, PrPs
Empleando la sustitucién habitual
v Ve (A.17)
P (2m)?

la seccién eficaz diferencial también puede escribirse:
1
do = Z Z ——d(energia) \IV|2 Vsdkf dpp . (A.18)
B Dy (2m)®

Ahora, dk; = £%de; dS), , donde hemos usado la aproximacion ultrarrelativista para los
i) Feer

electrones (m, = 0), y dpp = EpprdEr dS2,, entonces

do . 2
= ——§(energia)et ErprV? | Iv|” (A.19)
de d. dEp dSQ, ;%(2 ) f
4
I = e i B P (T@)-00) (7@ ) (0 ao
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siendo L,y el tensor léptonico:

= * — v* = * = A* T
Ly = (@uwel’) @pnwesh)' = (@5 fus) (a4 w)
o 1+ hys 1+h75
= Uy fyuitly fyup =Tr { Fify—s— %f 3

= 2((ki - €3) (hy o) + (ki ex> (ky - €5) — (ki k) (6 o)
+ 2ih GNVa’B (6)\); (6)\1)” (ki)a (k‘f)/j s (A21)

con €,,,44 tensor antisimétrico definido por €45 = 1 cuando (u,v,«,) es una permutacion
par de (0,1,2,3), —1 para una permutaciéon impar [2] y & = £1 denota la helicidad del
electron incidente. Notese que llamar tensor a L,y no es debido a sus propiedades de
transformaciéon bajo el grupo de Lorentz ya que, como se puede observar, bajo ese grupo

se comporta como un escalar.

Teniendo en cuenta que e* = 4(27)2a?, la seccion eficaz resulta:

do _ A 5f
de;dQ, dEp dQ, (27r )3 MX;, T P FQ‘*LM W, (A-22)
siendo W el tensor hadroénico,
W = VI Y d(energia) (J(g) - &) (1 (q) - ). (A.23)

Notese que si el blanco A estd completamente despolarizado, como es el caso, tenemos
que anadir un sumatorio Y 5 en Wyy. También es interesante recalcar de nuevo que el
llamarlo “tensor” no esté justificado por sus propiedades de transformacion Lorentz si no
por su doble dependendencia en los indices caracteristicos de los vectores de polarizacion
del foton.

Supongamos que podamos factorizar una exponencial con los momentos de las parti-

culas intervinientes en la corriente hadronica como sigue |5, 6]:

1
VNAV NV NpV

JH (y) — ei(pA_pB_pF)'y<BpF‘ju|A> , (A24)

siendo N4, Ng y Np cierto factores de normalizacién de las funciones de onda de las
particulas implicadas en la Eq.( A.24). Entonces, en espacio de momentos, la corriente

hadrénica viene dada por:

1

J4(q) =
@)= FvvaovT

<BpF|ju|A>V5q+pA,pF+pB . (A25)
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Si a partir de ahora utilizamos la notacion: J# = (Bpp|J*|A), resulta que la contraccion
de la corriente hadrénica con los vectores de polarizacion del foton puede escribirse como:

(J(q) ) 6A)(‘]T(q) ) 6)\’) = NAVNBVNFV (J ) 6)\) <JT : €A’) 5q+pA7pF+pB Y (A'26)

lo que implica que el tensor hadronico de la Eq. (A.23) es

Wi = ZZZ— (J - €)) (J ej,) 0q+p,.pp+p,0(energia) (A.27)
A B Pp

donde Nagr = NasNgNpg. Pero como,
> opp = / dp&°(p — p') (A.28)
b

resulta:

/de (J - €x) (JT : ef\,) §*(momentum) (A.29)

Wiw =),
A,

con §*(momentum) = §*(P4 + q¢ — Pp — Pg). Usando la 6*(momentum) en el sistema
LAB, podemos realizar la integral en el momento del nicleo residual quedando:

1
Wiy = Z

(J-e)(J -e)6(My+w— Ep — Ep) (A.30)
A,B NABF

Yy Pg = q — pp una vez efectuada la integral, manifestdndose la conservaciéon de momento

en el vértice hadroénico.

En la expresion para la seccion eficaz del proceso que estamos teniendo en cuenta
podemos extraer un término correspondiente a la seccion eficaz de Mott [1], o/, definiendo

un nuevo tensor leptonico £y como sigue:
5 (O
L)V\I = 45i5f COS 5 g,\)\l . (A31)
Como se cumple que el cuadrimomento transferido Q? es igual a

Q° = —(ki — ky)u(ki — kp)"* = 2(k; - ky) = 256 4(1 — cos0,) = de;e sin® <%) , (A.32)

entonces
4e;epcos? (e o? cos? (&
€ € f
e 44515]«(305 < e) =g <9) = , 4(:) =oum, (A.33)
& Q 2 € 16efes sin (56) 4e? sin (7")
y la seccion eficaz puede escribirse de forma méas compacta como:
do EFpF '
Z )"’—H"Y Z)w)\ny)w)\fy . (A34)

dey dQ, dEpdQ, — (2m)P " 5,
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Si las condiciones cinematicas son tales que garantizan que el nicleo residual no se ha

fragmentado y se encuentra en un estado de energia bien definida, entonces > g solo da un

valor y por tanto 0(Ma+w — Er — Eg) puede ser usada para integrar en Er, obteniéndose

el factor de recoil [7]:

frec:/dEF5(MA+w—EF—EB):‘1__ 2

Lo que implica que la seccién eficaz diferencial es

do _ Erpr

Ay+AL
dey dQ)e dEp dS2, — (2m)3 O free Z (=1)™ 7€,\7,\17WA7,\17,

Ay,

con

1
W =)

J-e)(J-€5).
N6

Debido a que los tensores Lyy v Wiy son hermiticos y por tanto satisfacen que

y ademés también se cumple que

& = (-1Pey

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

podemos efectuar una serie de reducciones adicionales en la Eq. (A.36). Para ello sepa-

ramos en dos sumandos el término L,y . El primero independiente de la helicidad del

electron y el segundo dependiente de ella,
Ly = L%, + hLby,,
siendo sus expresiones explicitas:
v = 2[(ki - €3) (kyp - ex) + (ki - ex) (kr - €3) = (ki - kp) (€3 - ex)]

Ly =20 (e3);, (ex), (Ki)y (kp) g

Se puede ver que estos tensores satisfacen las siguientes propiedades:
u _ A+ 1 ux
Ly v =(-1) AN

L}i,\, N = (—1)/\+/\1L§f\' :

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)
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Tenemos por tanto solo seis independientes, de los cuales nos quedamos con: Lg,, Lg;,
Ly, LY |, Lk, L*. Es sencillo ver que todos ellos son reales y que el resto de los términos

LY 0 son cero o pueden obtenerse a partir de éstos.

Explicitamente, en el sistema LAB, usando los €} definidos en las Egs. (A.11-A.13)

y teniendo en cuenta que los momentos del electrén incidente y dispersado vienen dados

por:
k; = ﬁ(<€f sinf,,0,e; — ey cosb,), (A.46)
q
Ef .
kr= Z(sZ siné,,0,e;cos 0, —ey), (A.47)
resultan las siguientes expresiones para las seis componentes antes elegidas para el tensor
leptonico:
v _ @
b = —5 (A.48)
q
%
= " A.49
01 = \/iq e + tan® 2 ( )
u Q2 96
v Q?
61_1 - _2—q2 (A51)
o= tan 0— (A.52)
f 2q
QQ

Por tanto, usando que solo hay seis £,y independientes y que los W,y son hermiticos,

resulta

S (D)MW = G Woo + €4 Wiy +W_i_1) + £4_2Re (W1 _,)

AN

— 6‘12Re (W01 — W()fl) + hg?l (W11 — Wflfl)
hggl2R€ (W01 + Wofl) (A54)

y la seccion eficaz diferencial de la reaccion A(€, €'p’) B podemos escribirla:

do _ Erpr STL
d&fdQede = (27‘(‘) UMfrec [’ULR +UTR +UTTR +U R

-+ h (’UTIéTI + ’UTLIRTL’)] (A55)
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donde hemos utilizado los factores cinemaéticos v, « = L,T,TT,TL,T', T L' relacionados

h .
con los £y}, como sigue:

vy = f_j U = 22_; (A.56)

vp =01 = éQ—qZQ + tan? % (A.57)

vpr =47 | = —% (A.58)

vrp = %egl = \/222,/?—2 + tan 5 (A.59)
vy = 8 = tan 5 ?—2 + tan 2 (A.60)
v = ;Egl = \g; tan%. (A.61)

Las funciones de respuesta hadrénicas se obtienen a partir del tensor Wy, del siguiente

modo:
Rt = Q—ZWOO (A.62)
R =Wy +W_ (A.63)
R™ = 2Re (W;_1) (A.64)
BTL = —%QRe (Wor — Wo_1) (A.65)
RY =Wy —W_i_, (A.66)
RTL = —%QRe (Wor + Wo_1) (A.67)

Se puede observar que las funciones de respuesta hadroénicas arriba definidas dependen
del angulo azimutal ¢r. Es méas usual expresar explicitamente esta dependencia en ¢r de
la seccién eficaz, extrayéndola de las funciones de respuesta. Para ello elegimos un nuevo

. : ! ! ! 1 .
sistema de ejes {u, u,,u,} definidos como:

! QXPF

u, = q % Pl = —sin ¢p uy + COS Pp Uy (A.68)
F

=, (A.69)

u,

Uy, = Uy, X U, = COS P Uy + 5iN P Uy (A.70)
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Como se puede ver una rotacion relaciona ambos sistema de ejes. Ir de un sistema de ejes
a otro s6lo implica un cambio en las componentes transversales. En particular, es sencillo

comprobar que los vectores de polarizacion del fotéon cumplen:
€\ = ey (A.71)

donde hemos denotado €\ a los vectores de polarizacion del foton referidos respecto al

nuevo sistema de ejes de coordenadas. Sabemos que:

Wiy = Z

— N
= VABF

(J EAJ 6)\1 EZ R,\)\I (A72)

_N
= {VABF

obsérvese que R,y es un escalar Lorentz lo cual implica que tiene el mismo valor en

cualquier sistema de referencia. En particular, se satisface la siguiente propiedad:
Row =(J-ex) (J-ex) = (J - &) (J - €y) =0V (J e ) (J -en) . (AT3)

Hemos factorizado la dependencia en ¢z de los R,y . Denotando con mintsculas las res-

puestas independientes de ¢, se pueden establecer las siguientes relaciones:

Rt =L (A.74)

RT = (A.75)

RTT = ¢TT) o5 20 + pTTUD gin 205 (A.76)
RTL = ¢TL D cos o 4 rTLED sin ¢ (A.7T7)
RT =T (A.78)

RTV = TV (D) o O + pTPUD) gin Or (A.79)

teniendo en cuenta que tanto las R® como las r* dependen del espin del nucleén saliente.
Asimismo, también vamos a poder separar por un lado la contribuciéon de las funciones de
respuestas independientes de la polarizacion del protén final, de las que si dependen de
ésta. Dado que el proton tiene espin % y por tanto la dependencia en la seccion eficaz del
espin del proton saliente ha de ser lineal, se puede demostrar que podemos descomponer

las funciones de respuesta independientes de ¢ como sigue [4,8,9]:

=~ (R + RLS,) (A.80)

l\DI*—‘ l\DIF—‘

=~ (R" + RLS,) (A.81)
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1 .
TT(1) _ 1 (RIT 4 RIT
r 5 (R +R! Sn) (A.82)
1 ~ ~
ATT (D) — 5 (RlTTSz +RSTTSS) (A.83)
D _ L (R™™ + RI'S,) (A.84)
2
1 ~ .
L(IT) _ == (RTLSI+RZ’LSS) (A.85)
1 ,
AT (RT S, +R” 5) (A.86)
2
P = (R;.rygs n RZ’Lgs) (A.87)
FTL (D) ( R™Y 4 RV gn) (A.88)

donde las R® son las funciones de respuesta independientes de ¢ y de la polarizacion
del proton final y las Rj son las funciones de respuesta polarizadas a lo largo de las tres

direcciones determinadas por los vectores unitarios:

X
l:&, n— q X Pr

, s=nxl. (A.89)
Pr |q X pr|

§k denota la componente a lo largo de la direccion k del espin (sp)g del nucleon final, en

el sistema de referencia en el que dicho nucleén esta en reposo.
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