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ABSTRACT

The goal of the G0 experiment is to determine the contribution of the strange quarks in the

quark-antiquark sea to the structure of the nucleon. To this end, the experiment measured parity-

violating asymmetries from elastic electron-proton scattering from 0.12 ≤ Q2 ≤ 1.0 (GeV/c)2

at Thomas Jefferson National Accelerator Facility. These asymmetries come from the interfer-

ence of the electromagnetic and neutral weak interactions, and are sensitive to the strange quark

contributions in the proton. The results from the forward-angle measurement, the linear combi-

nation of the strange electric and magnetic form factors Gs
E + ηGs

M , suggest possible non-zero, Q2

dependent, strange quark contributions and provide new information to understand the magni-

tude of the contributions. This dissertation presents the analysis and results of the forward-angle

measurement.

In addition, the G0 experiment measured the beam-normal single-spin asymmetry in the elas-

tic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q2 = 0.15, 0.25

(GeV/c)2 as part of the forward-angle measurement. The transverse asymmetry provides a direct

probe of the imaginary component of the two-photon exchange amplitude, the complete description

of which is important in the interpretation of data from precision electron-scattering experiments.

The results of the measurement indicate that calculations using solely the elastic nucleon interme-

diate state are insufficient and generally agree with calculations that include significant inelastic

hadronic intermediate state contributions. This dissertation presents the analysis and results of

this measurement.
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MEASUREMENT OF THE STRANGE QUARK CONTRIBUTION TO THE VECTOR

STRUCTURE OF THE PROTON



CHAPTER 1

Introduction

Much of the study of modern physics is focused on achieving two basic goals: an understanding

of the fundamental constituents of matter and the interactions that take place between them. Most

of the matter that makes up the visible universe is made of nucleons, which are the protons and

neutrons that bind together, forming the nuclei of the atoms around us. However, despite the fact

that protons and neutrons have been carefully studied since their discovery in the beginning of the

twentieth century [1–4], there is a surprising lack of understanding of the fundamental structure

of the two nucleons.

Ever since the first evidence that the proton had internal structure, when Frisch and Stern’s

measurement [5] of the proton’s magnetic moment showed a value of µp ∼ 2.5µN (instead of

the 1 µN expected of a point-like Dirac particle), and Alvarez and Bloch’s measurement of the

neutron’s magnetic moment to be µn ∼ −1.93µN [6], the internal structure of the nucleon has been

investigated. Experiments at SLAC in the early 1970’s using deep inelastic scattering (DIS) [7]

showed that nucleons are comprised of point-like Dirac particles, which became known as quarks.

This led the way for the development of the Standard Model and Quantum Chromodynamics,

which are the theories used to describe composite particles such as nucleons in terms of their

constituent elementary particles (such as quarks) and the carriers of the strong force that binds

1
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them together (the gluons). The Standard Model (SM) of elementary particle physics attempts to

describe the enormous number of fundamental and composite particles that have been observed

and the laws that govern their interactions. In this model there are six different flavors of quarks

(listed by increasing mass): u up, d down, s strange, c charm, b bottom (beauty), and t top (truth).

All hadrons, which are strongly interacting composite particles, are composed of quarks.

The theory of quantum chromodynamics (QCD) is considered to be the correct microscopic

picture for descriptions of hadrons, and it successfully describes hadronic phenomena at very short

distance scales (high momentum transfer), where the bound systems of quarks have relatively

simple properties. The short distance scale physics that has been calculated from QCD agrees

well with deep-inelastic scattering data [7] and e+e− annihilation data [8] that have been collected

over the past 30 years. QCD attempts to describe these phenomena by describing the interaction

between quarks through the exchange of color gauge fields, or gluons. Within the hadrons there

is a quark-gluon sea, where quarks and anti-quarks can fluctuate in and out of existence by pair-

producing from the gluon fields. Using this theory, the interactions of the quarks at short distance

scales (high energy) can be described using a converging perturbation expansion. This is not

very successful at large distance scales (low energy) of order of the size of a nucleon, however, as

the strong coupling constant αs becomes too large for the perturbation expansion to converge.

Because of this lack of understanding of the non-perturbative nature of the interaction of quarks

and gluons, many of the fundamental properties of the internal structure of the nucleon are still a

mystery.

At long distance scales, about the size of the hadron itself, the picture is quite incomplete.

Models exist that employ effective degrees of freedom and are more or less motivated directly by

observation or by QCD. They are the present standard in this regime, although lattice QCD is able

to calculate some low energy observables and will be able to calculated more in the near future.

The descriptions of hadron structure that will develop from lattice results and models will require

careful measurements of low energy properties to guide this development. Although constituent
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quark models are successful in the description of low-energy phenomena such as the hadronic mass

spectra, charges and magnetic moments, these models should fit into the more fundamental theory

of QCD.

This raises one of the great questions of nuclear physics: how can the gap between QCD

and our current description of nuclei and nuclear forces in terms of hadrons be bridged? This

dissertation discusses two measurements designed to further the knowledge of the nucleon. The

first measurement investigates the contribution of strange quarks to the properties of the nucleon,

and the second measurement studies the imaginary part of the two-photon exchange amplitude

and the contributions of hadronic inelastic intermediate states to this amplitude.

1.1 Strange Quarks in the Nucleon

In QCD, the nucleon is described as primarily being composed of three valence quarks, which

are surrounded by a quark-gluon sea filled with ever increasing numbers of sea quarks, anti-quarks

and gluons, in what is known as the QCD vacuum. In the sea, quark-antiquark pairs can be

created and annihilated through pair production in the gluon field. The proton is made of three

valence quarks, two u quarks and one d quark, surrounded by a sea of gluons and quark-antiquark

(qq̄) pairs (uū, dd̄, ss̄, ...). The neutron shares the same description other than the three valence

quarks are two d quarks and an u quark.

This sea plays an important role at these distance scales. These gluons carry about half of the

the overall nucleon momentum. The overall spin of the nucleon appears to only come partially from

the spin carried by quark degrees of freedom; the rest comes from quark orbital angular momentum

and gluon spin [9]. Although the strange quarks only exist in the nucleon in the quark sea, they

could have significant contributions to nucleon structure. The sea u and d quark contributions

are indistinguishable from their valence counterparts, but as there are no valence s quarks, their

contribution could be observed. The overall strangeness of the proton is zero, but the distribution

of the strange quarks within the nucleon could be non-uniform, similar to the charge distribution
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within the neutron. To develop a complete understanding of nucleon structure, the contribution of

strange quarks is important, as they are exclusively part of the quark-antiquark sea. Furthermore,

the antiquark pairs partly reflect the gluon contributions that undoubtedly play an important role,

just as they do at smaller distance scales.

There are suggestions that the strange quark-antiquark pairs in the sea could make a significant

contribution to nucleon structure. Experimental constraints can be placed on ∆u, ∆d, and ∆s

(the helicity of a quark flavor in the nucleon) by studying the strange quark’s spin contribution

using the polarized deep-inelastic scattering of electrons or muons from nucleons, where the cross

section is characterized by two polarization structure functions g1(x, Q2) and g2(x, Q2). In the

simplest analysis, by defining the quark helicity content as ∆qiσµ = 〈p, ~σ|q̄iγµγ5qi|p, ~σ〉, the g1

sum rule can be expressed as to first order

1
∑

0

g1(x)dx =
1

2

(

4

9
∆u +

1

9
∆d +

1

9
∆s

)

, (1.1)

where the contributions of the quark and anti-quark contributions from a particular flavor are

combined together. Using the Bjorken sum rule [10, 11] and its SU(3) generalization, a solution

can then be found. Several experiments at CERN [12, 13], SLAC [14, 15], and DESY [16] have

made measurements to determine g1 over a large kinematic range. As an example, the results of

the measurement by the European Muon Collaboration (EMC) [12] for the spin contribution of

constituent quarks to the overall spin of the proton, combined with earlier results from SLAC [17],

found the value of the spin-dependent structure function, gp
1 , of the proton to be [12]

∫ 1

0

gp
1dx = 0.126± 0.010 ± 0.015. (1.2)

This is in contradiction with the calculated value of 0.189±0.005 from the Ellis-Jaffe sum rule [18],

which neglects contributions from the strange quark. The combined analysis yielded

∆u = 0.391 ± 0.016± 0.023

∆d = −0.236± 0.016 ± 0.023

∆s = −0.095± 0.016 ± 0.023
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which shows that the strange sea quarks are polarized anti-parallel to the proton spin, and have a

contribution of 19% to the overall proton spin (of 1
2 ). However, more recent measurements have

suggested a smaller contribution for ∆s [19–21].

The momentum distribution of strange quarks in the nucleon can be determined from mea-

surements of oppositely signed muons (dimuons) from muon neutrino νµ deep inelastic scattering.

The muons come from charmed particle production from a charged current interaction with a

strange or down quark. Charm production from the down quark is Cabbibo-suppressed, so the

dimuons are most sensitive to the strange sea. The charmed hadrons decay semi-muonically into a

final state with two oppositely charged muons, with one from the weak vertex, the other from the

charm decay. The momentum distributions of s and s̄ quarks in the nucleon were studied by the

measurement of charm production in deep-inelastic neutrino scattering through the detection of

dimuons by the NuTeV experiment at Fermilab [22–24]. The NuTeV collaboration at Fermilab re-

ported a non-zero result for the strangeness contribution to the nucleon’s longitudinal momentum

at Q2 = 16 (GeV/c)2, reporting that the fraction of the nucleon momentum carried by strange sea

quarks (s and s̄) to that by the non-strange sea was [25, 26]:

2
∫ 1

0 dx(s + s̄)
∫ 1

0
dx(u + ū + d + d̄)

= 0.42 ± 0.07 ± 0.06. (1.3)

It is expected that the light sea quarks (u, d, and s) carry about 5% of the proton momentum in the

parton model [27]. However, although this points to the existence of the strange sea, it is difficult

to interpret the momentum fraction in the parton model in terms of more familiar observables. The

NuTeV analysis also reported that the asymmetry in the s(x) and s̄(x) momentum distributions

is
∫

x[s(x) − s̄(x)]dx = −0.0009± 0.0014, consistent with zero [22].

Neutral current elastic neutrino-nucleon scattering can also be used to probe for strange sea

quark effects. The standard model axial current is purely isovector in the case that the strange

matrix element vanishes; this current can be predicted exactly from the known charged current

axial matrix element. Deviations can be interpreted as contributions from heavier quarks. Cross

section data was taken at Brookhaven National Lab (BNL) and fitted using nucleon electromagnetic
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form factors, yielding a result of ∆s = −0.15± 0.09 [28]. This is consistent with the deep inelastic

data, but has large uncertainties because of the limited precision of the cross section data [29].

Another method used to investigate strange quark effects is to study the sigma term in pion-

nucleon scattering in order to determine the strange-quark contribution to the mass of the nucleon

[30–32]. This method is actually one of the original motivations for investigating the strange sea.

In this analysis, it is expected that in the limit of vanishing quark masses, the nucleon mass should

approach some non-zero value M0 associated with the gluon quark mass and the qq̄ condensate. In

reality, with nonzero quark mass, the nucleon mass is modified and has several additional terms.

The analysis involves separating the nucleon mass into each of its valence and non-valence quark

components :

MN = M0 + σs + σ, (1.4)

where MN is the nucleon mass, M0 is the mass of the gluon sea and the qq̄ condensate, σs =

1
2MN

〈N |msss̄|N〉, and σ = 1
2MN

〈N |mu+md

2 (uū + dd̄)|N〉, where mu, md, and ms are the u, d,

and s quark masses, with σs and σ representing the contributions from the strange sea and the

non-strange sea, respectively. To provide the needed constraints, the value of σ is obtained from

πN scattering data, with another constraint coming from utilizing hyperon mass relations to give

insight into the contributions from the quark masses. In the simple quark picture, 〈N |ss̄|N〉 = 0,

which would imply that the value from πN scattering should agree with the value from the hyperon

mass limit. However, the two values do not agree, which can be explained by postulating the

existence of the ss̄ contribution to nucleon structure, with an overall strange quark contribution

of 〈N |ss̄|N〉
〈N |(uū+dd̄)|N〉 ≃ 0.1, implying that M0 ≃ 765 MeV and σ ≃ 130 MeV. However, more recent

analyses [33,34] suggest somewhat larger values for the sigma term, which leads to f ≃ 0.2, M0 ≃

500 MeV, and σs ≃ 375 MeV. Work on refining this analysis is ongoing [31, 35, 36].

These measurements all give hints that strange quarks may provide a significant contribution

to the properties of the proton, but it is clear that other measurements are required to fully

determine the role of the strange sea quarks.
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In addition to the above methods, strange contributions can be probed in another way. Con-

tributions of the strange sea quarks to the static charge and magnetization distributions (e.g.

magnetic moment) of the nucleon can be determined from experiments measuring the neutral

weak scattering of electrons from protons and neutrons.

The electroweak probe is a well-understood way of measuring observables at low energies as

well as high energies. Experiments have been using electron scattering for the last fifty years

to study the electromagnetic structure of the nucleon. The functions that describe the nucleon

electromagnetic structure contain the information about the underlying nucleon charge and mag-

netism distributions, providing fundamental information about the underlying quark distributions.

Hofstadter et al. [37, 38] used electron-proton scattering to use the electromagnetic interaction to

determine the internal structure of the proton by measuring the proton charge and magnetic form

factors in the 1950’s. The electromagnetic form factors describe the charge and magnetization

distributions within the nucleon, and are now well-measured over a wide range of kinematics.

After the unification of descriptions of the electromagnetic and weak interactions (which de-

scribes the electromagnetic and weak interactions of fundamental and composite particles) in the

early 1970’s, it became possible to consider comparing the electromagnetic and weak observables to

extract information [39,40]. The photon and weak gauge bosons have precisely related couplings to

the point-like quarks of the QCD Lagrangian, making it possible to extract structure information

according to quark flavor.

Kaplan and Manohar, in 1988, put forth the idea that the form factors that describe the

charge and magnetization distributions due to the strange quarks, known as the strange electric

and magnetic form factors Gs
E and Gs

M , could be determined by measuring the neutral weak

electromagnetic form factor of the nucleon G
Z,p(n)
E,M [40]. Shortly thereafter, McKeown and Beck

proposed that the neutral weak electromagnetic form factor could be investigated using parity-

violating elastic electron-proton scattering [41,42]. Since then, there have been many experimental

efforts to make these measurements and determine the strange quark contributions to the nucleon
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using this technique, including the G0 experiment.

Unlike the axial and scalar matrix elements, the s-quark contributions to the vector currents

of the nucleon (ordinary charge and magnetization currents) can be determined more directly.

By comparing measurements of neutral weak and electromagnetic elastic scattering, the s-quark

contributions can be extracted. [40–42]. The only assumptions that need to be made are that

the proton and neutron both obey charge symmetry [43] (under an isospin rotation the proton’s

u quarks become d quarks in the neutron and vice versa) and that the quarks are all point-like,

spin 1
2 Dirac particles. Because of this, the measurements can provide a clean basis from which to

describe low energy hadron structure.

The primary goal of the G0 experimental program is to provide information on the structure

of the nucleon through measurements of the role of strange quarks in the charge and magnetization

distribution of the proton. The information gained from these measurements yields direct insight

into the properties of the quark-gluon sea. This dissertation reports on the first phase of this

experiment, the forward-angle parity-violation measurement of the G0 experiment.

1.2 Beyond the Born Approximation

Elastic electron-nucleon scattering has been very successfully used as a tool to access infor-

mation on hadron structure for the past several decades. The development of new technology and

more advanced techniques have enabled electron-nucleon scattering experiments to achieve un-

precedented and ever improving precision, which is still improving. These advances have allowed

researchers to measure previously unattainable quantities of hadron structure, such as electroweak

form factors, parity-violating effects, transition form factors, spin-dependent structure functions,

nucleon polarizabilities, and so forth.

Experiments utilizing elastic electron-nucleon scattering are usually treated in the single-

photon exchange approximation, called the Born approximation. Higher-order processes, such

as two-photon exchange, are generally treated as small radiative corrections. The validity of
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this approximation was investigated by experimental and theoretical work done to establish the

magnitude of any corrections for higher-order processes in the 1960’s and 1970’s, when electron-

nucleon scattering was measured systematically at the Stanford Linear Accelerator Center (SLAC)

in order to study nucleon electromagnetic form factors. Experimentally, the validity of the one-

photon exchange approximation (and the magnitude of two or multi-photon exchange effects) could

be tested by comparing the difference between electron-nucleon and positron-nucleon cross sections,

because the one-photon exchange cross section depends quadratically on the lepton charge. The

comparisons of the electron-nucleon and the positron-nucleon scattering cross sections revealed

that they were consistent with equal cross sections [44, 45]. However, the precision attainable in

these investigations in the 1960’s and 1970’s was insufficient to measure two-photon effects at the

few percent level of the cross section, a likely magnitude for two-photon exchange contributions

due to a suppression factor α = e2

(4π) ≃ 1
137 .

Recognizing the limitations of the one-photon approximation, theorists have been calculating

corrections to elastic electron-nucleon scattering of order e2 relative to the Born approximation

for a long time [46,47]. The calculations with one photon being “soft” (having a vanishingly small

four-momentum) were done, as the infrared divergences associated with the soft photon cancel

against infrared divergences from soft bremsstrahlung. However, the contributions arising from

both photons being “hard”, that is when the momentum transfer of both of the individual photons

is large, were not calculated because of a lack of sufficient knowledge of the intermediate hadronic

state.

Early estimates of the two-photon exchange contribution with two hard photons were done by

Drell and collaborators in the late 1950’s, where a non-relativistic model including the nucleon and

the lowest nucleon resonance contribution, the ∆(1232) was used to find that the cross sections

were affected at the ∼ 1% level by the resonance contribution to the two-photon exchange diagram

[48,49]. As the calculation was non-relativistic in nature, this result was limited to an electron beam

energy of <∼ 1 GeV. Later works calculated two-photon exchange effects at higher energies [50,51],
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with Greenhut [51] calculating the contribution of higher nucleon resonance intermediate states

with masses up to 1.7 GeV. The calculations showed that the real (or dispersive) part of the two-

photon exchange amplitude gave an electron-to-positron cross section ratio that deviated from

unity at the 1–2% level in the region of a few GeV.

Significant interest was recently renewed in two-photon exchange, when it was argued that

contributions from the real part of this amplitude play a role in the discrepancy between the Rosen-

bluth separation and the polarization transfer measurements of the ratio of the proton’s elastic

form factors Gp
E/Gp

M [52]. The elastic electromagnetic form factors of the nucleon characterize its

internal structure, describing the charge and current distributions within it. The elastic cross sec-

tion for electron-proton scattering can be written in terms of the electric (GEp
(Q2)) and magnetic

(GMp
(Q2)) Sachs form factors as

dσ

dΩ
=

α2E′
e cos2 θe

2

4E3
e sin4 θe

2

[

G2
Ep

+
τ

ǫ
G2

Mp

]

(

1

1 + τ

)

, (1.5)

where E′
e and θe are the scattered electron’s energy and angle, Ee is the incident electron’s beam

energy, τ = Q2/4M2, M is the proton mass, and ǫ is the virtual photon longitudinal polarization,

given by

1

ǫ
≡ 1 + 2(1 + τ) tan2 θ

2
. (1.6)

The ratio of GE/GM has been measured by several collaborations [53–56] with unpolarized

measurements using the Rosenbluth separation technique [57]. In this method, the separation

of G2
Ep

and G2
Mp

is done by measuring the elastic electron-nucleon cross section at a fixed Q2

over a range of ǫ values. These varying ǫ values are obtained by changing the beam energy and

the scattered electron angle. Measurements of the proton form factors using this method yield

uncertainties of only a few percent on both GEp
and GMp

for Q2 < 1 (GeV/c)2, with results

indicating that GEp
/GMp

≃ 1. Above Q2 = 1, the uncertainties for GEp
become larger because as

Q2 increases, the cross section becomes dominated by GMp
, making the extraction of GEp

more

difficult.

Advances in the technology to produce high-quality polarized electron beams have enabled
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experiments [58–60] to measure the ratio of the nucleon electromagnetic form factors using, instead,

the polarization transfer technique. In this method, the form factors are measured by scattering

longitudinally polarized electrons from a proton (hydrogen) target, which results in a transfer of

polarization to the recoil proton. The transferred polarization has only two non-zero components,

Pt perpendicular to, and Pl parallel to the proton momentum in the scattering plane, given by

[61, 62]

I0Pt = −2
√

τ(1 + τ)GEp
GMp

tan
θe

2
, (1.7)

I0Pl =
1

M
(Ee + Ee′)

√

τ(1 + τ)G2
Mp

tan2 θ2

2
, (1.8)

where I0 = G2
Ep

+ τ
ǫ
G2

Mp
. Combining the above two equations yields the ratio

GEp

GMp

= −Pt

Pl

(Ee + Ee′ )

2M
tan

(

θe

2

)

. (1.9)

The two recoil polarization components are measured simultaneously in the polarimeter, and

as neither the beam polarization nor the polarimeter analyzing power needs to be known, the

systematic uncertainties are small. Surprisingly, the results of these measurements are quite in-

consistent with the results of the Rosenbluth experiments. The polarization transfer data feature

a sharp decline in the ratio µpGEp
/GMp

with increasing Q2, which indicates that GEp
falls faster

then GMp
. A global Rosenbluth analysis of the cross section measurements [53] is shown with

Jefferson Lab polarization transfer measurements from References [58, 59] in Figure 1.1, which

clearly shows the large discrepancy between the two techniques [63]. The extraction of GEp
/GMp

from these measurements assumes that there is only the exchange of a single photon between the

electron and the nucleon. Given this intriguing problem, a precise measurement of two-photon

exchange processes could be quite enlightening.

In order to reach greater precision with electron scattering experiments, it is important to

understand two-photon exchange effects and their contributions to different observables. Although

the two-photon exchange contribution is small, it is comparable to the parity-violating elastic

electron-nucleon scattering asymmetry [64], and recent parity-violation measurements have had

to consider possible systematic corrections due to this effect. In addition, a good understanding



12

FIG. 1.1: The ratio of the electric to magnetic form factor from Rosenbluth separation measurements (hollow
squares) and from Jefferson Lab measurements of recoil polarization (solid circles). Figure from [63] of data
from [53], [58], and [59].

of two-photon exchange contributions can be extended to calculations of diagrams that appear

in other processes, such as γZ and W+W− box diagrams, which are important corrections in

precision electroweak experiments [65]. Thus, empirical verification of the theoretical framework

for this effect is beneficial.

These issues have spurred a significant amount of theoretical activity and provided motivation

for a precise evaluation. A precise measurement of the imaginary (absorptive) part of the two-

photon exchange amplitude can be done by measuring the single-spin asymmetry in elastic electron-

nucleon scattering, where either the beam spin or the target spin is polarized normal (transversely)

to the scattering plane, as discussed in [66, 67]. Although challenging, due to the small size of

the asymmetry, this was measured by the G0 collaboration as part of the systematic studies.

Although the primary goal of the G0 experiment is to measure the asymmetry from the elastic

scattering of longitudinally polarized electrons off an unpolarized hydrogen target (protons) in

order to determine the contribution of the strange sea quarks to the charge and magnetization of

the proton, the experiment also performed a measurement of transverse beam spin asymmetries, in

order to determine the possible contribution of any systematic false asymmetry in the longitudinal

measurement that would arise from any residual transversely-polarized beam component. As noted
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above, these data are a measurement of the imaginary part of the two photon exchange amplitude,

providing valuable information on this contribution to the electron-scattering amplitude. This

dissertation also reports how this measurement was performed and how these data were analyzed

to obtain this important information on this higher-order process.

1.3 The G0 Experiment

The goal of the G0 experiment is to determine the strange quark contribution to electric and

magnetic properties of the nucleon, that is, to determine the values of the strange electric and

magnetic form factors Gs
E and Gs

M . The experiment will achieve this ambitious goal by measuring

the neutral weak form factor via parity-violating elastic electron scattering, a very precise yet

challenging technique. To accomplish this, several phases of measurements must be taken and

many experimental techniques and methods had to be developed or refined to meet the challenges

of this experiment. This dissertation discusses the first part of the G0 experiment, the forward-

angle measurement, and the challenges that were overcome to make that measurement successful.

In addition, this dissertation reports a second measurement performed by the G0 collaboration

of the imaginary part of the two-photon exchange amplitude through the transverse asymmetry

in the scattering of transversely polarized electrons from unpolarized protons. Both of these

measurements will be described in detail in the following chapters, and will conclude with the

results of the experiment and some thoughts about the future directions of these experiments.



CHAPTER 2

Theory

The goal of the G0 experiment is to determine the strange electric and strange magnetic form

factors Gs
E and Gs

M by measuring the neutral weak form factor GZ
E,M , which is accessed through

parity-violating elastic electron-proton scattering [27, 68–70]. The form factors of the nucleon

characterize its internal structure, describing the charge and current distributions within it, and

thus, the contributions of the quarks to that structure. The first part of this chapter describes the

physics behind that measurement. The second half of the chapter is devoted to a discussion of

two-photon exchange in electron scattering and the investigation of this effect by the measurement

of transverse asymmetries.

2.1 Nucleon Vector Form Factors and Strangeness

On the simplest level (to first order) the interaction of an electron with a nucleon in elastic

electron scattering can be described by two processes represented by the two Feynman diagrams

in Figure 2.1: the electromagnetic interaction, with the exchange of a single photon (γ), and the

neutral weak interaction, with the exchange of the single vector boson (Z0).

There is an invariant amplitude that is associated with each process represented in these

14
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γ(a)  − exchange

γ p’

p

k’

k

−e

−e N

N

(b) Z

Z

− exchange

p’

p

k’

k

−e

−e N

N

FIG. 2.1: The Feynman diagrams describing the first-order interaction processes for the elastic scat-
tering of an electron from a nucleon. The incoming and outgoing four-momentum for the electron and
the nucleon are given by k and k′ and p and p′. The four-momentum of the exchanged boson is defined
as q ≡ p′ − p = k − k′ and Q2

≡ −q2 > 0.

diagrams, that sum together to the overall invariant amplitude for the interaction: M = Mγ +

MZ + ..., with higher-order processes denoted by the ellipses. These amplitudes for the scattering

of a lepton from a hadronic electromagnetic current and a weak neutral current, as shown in Figure

2.1, can be expressed using the underlying fundamental electroweak interactions between quarks

and leptons. The couplings of the fundamental fermions to the γ and the Z0 are written as [68]

iαefγµ, (2.1)

i gMZ

4MW
γµ(gf

V + gf
Aγ5), (2.2)

where α is the electromagnetic coupling strength, g is the weak coupling strength, MZ is the mass

of the Z boson, MW is the mass of the W boson, ef is the fermion’s electromagnetic charge, gf
V is

the fermion’s vector weak charge, and gf
A is the fermion’s axial weak charge, where the values to

all these charges can be found listed in Table 2.1.

From here, it is simple to write the invariant amplitudes of the leptonic currents l and hadronic
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Fermion ef gf
V gf

A

νe, νµ, ντ 0 1 −1
e−, µ−, τ− -1 −1 + 4 sin2 θW 1

u, c, t 2
3 1 − 8

3 sin2 θW −1
d, s, b − 1

3 −1 + 4
3 sin2 θW 1

TABLE 2.1: The electromagnetic and weak charges of the fundamental fermions, from [68]

currents J of the nucleon, using the electromagnetic and weak couplings listed in Table 2.1:

Mγ =
4πα

q2
ell

µJγµ (2.3)

MZ = − GF

2
√

2
(gl

V lµ + gl
Alµ5)(JZµ + JZµ5), (2.4)

where q ≡ p′−p = k−k′, k is the four-momentum of the incident electron, k′ is the four-momentum

of the scattered electron, p and p′ are the four-momentum of the target and recoil nucleon, and

GF = g2

4
√

2M2
W

is the Fermi coupling constant (the combination of the weak coupling constant and

the W boson mass into one constant) [68]. Note that this is in the set of units where ~c = 1. The

Q2 dependence in MZ due to the Z propagator has been neglected, as these invariant amplitudes

are derived in a kinematic regime where Q2 ≪ MZ [68].

As the lepton currents only involve point-like fundamental Dirac particles, the form of lµ and

lµ5 are uncomplicated and can be expressed as [68]

lµ ≡ ūlγ
µul (2.5)

lµ5 ≡ ūlγ
µγ5ul (2.6)

where ul represents the lepton spinor, which depends on the four-momentum of the lepton, k or

k′, and on the spin state s or s′.

However, because of the hadron’s internal structure (being a composite particle made of

quarks), hadronic currents are much more complicated than the leptonic currents. Since they are

made of point-like quarks, the nucleon current can be expressed as a sum of the quark current oper-

ators. The currents JEM
µ , JNC

µ , and JNC
µ5 are the hadronic matrix elements of the electromagnetic,
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vector, and axial-vector quark current operators [68]:

JEM
µ ≡ 〈N |ĴEM

µ |N〉 (2.7)

JNC
µ ≡ 〈N |ĴNC

µ |N〉 (2.8)

JNC
µ5 ≡ 〈N |ĴNC

µ5 |N〉 (2.9)

where |N〉 represents our nucleon (either a proton or a neutron). We will return to these shortly.

The nucleon has extended structure, and so form factors are defined to parameterize this

structure. Assuming Lorentz invariance, the electromagnetic vector current for a spin-1
2 particle

like the nucleon can be expressed as [71]

Jγ
µ = ŪN

(

F1(q
2)γµ + i

F2(q
2)

2M
σµνqν

)

UN , (2.10)

where UN represents the nuclear spinors, N is the hadron (p or n), and F1 and F2 are the Dirac

and Pauli form factors. The Dirac and Pauli form factors are often expressed in the form of the

Sachs charge (electric) and magnetic form factors, which are defined as linear combination of the

former [71]

GE(Q2) = F1(Q
2) − τF2(Q

2), (2.11)

GM (Q2) = F1(Q
2) + F2(Q

2), (2.12)

τ =
−q2

4M2
N

=
Q2

4M2
N

. (2.13)

At Q2 = 0, the electric and magnetic form factors are the charge and magnetic moments of

the respective nucleon:

Gp,γ
E (0) = 1 Gp,γ

M (0) = +2.793; (2.14)

Gn,γ
E (0) = 0 Gn,γ

M (0) = −1.913; (2.15)

where the proton magnetic moment is defined as one nuclear magneton (µN ). The neutral weak

electric and magnetic form factors GZ
E and GZ

M also reduce to the weak charge eZ and the weak

magnetic moment µZ for each nucleon. A simplistic way to think about these form factors goes
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thusly: in the Breit frame (where p′ = p), the Sachs form factors are the Fourier transforms of

the nucleon charge and magnetic moment distributions [71].

The axial current of the nucleon can be expressed in terms of the neutral weak axial form

factor GeN
A :

JZ
A,µ = ŪNGeN

A (q2)γµγ5UN , (2.16)

which allows us to express the total hadronic neutral weak current (the sum of the neutral weak

vector and axial currents) as

Jµ
Z = N̄

(

FZN
1 (q2)γµ + i

FZN
2 (q2)

2M
σµνqν + GeN

A γµγ5

)

N. (2.17)

2.2 Quark Decomposition of the Form Factors

As mentioned earlier (Equations 2.7, 2.8, and 2.8), the overall electromagnetic and neutral

weak hadronic currents may be expressed in terms of the currents of the quarks in the nucleon.

The quark currents may be written as (assuming the quarks are point-like Dirac particles) [68]:

Ĵγ
µ =

∑

q

eqūqγµuq, (2.18)

Ĵγ
Z =

∑

q

gq
V ūqγµuq, (2.19)

Ĵγ5
Z =

∑

q

gq
Aūqγµγ5uq, (2.20)

where eq, gq
V and gq

A represent the electromagnetic or neutral weak currents, q denotes the quark

flavor, and uq is the spinor for the quark flavor q. The sum is for all six quark flavors, but because

of suppression due to the mass of the heavier quark flavors, it is sufficient to only sum the three

lightest quark flavors: u, d, and s, as they would have the most significant contribution [40]. The

nucleon current can then be expressed in terms of the quark currents as [68]

Jµ
γ = 〈N |Ĵµ

γ |N〉 (2.21)

=

〈

N |
∑

q

eqūqγµuq|N
〉

. (2.22)
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That is

Jµ
γ =

∑

f

ef ŪN

[

F fN
1 γµ + F fN

2

iσµνqν

2M

]

UN (2.23)

Jµ
Z =

∑

f

gf
V ŪN

[

F fN
1 γµ + F fN

2

iσµνqν

2M

]

UN (2.24)

Jµ5
Z =

∑

f

gf
AŪNGfN

A γµγ5UN , (2.25)

where f is a quark flavor and qν represents one component of the four-momentum transferred by the

exchanged boson. By equating the quark form factors and the equations for the electromagnetic

and neutral weak currents, we find that the form factors F1 and F2 can be written as linear

combinations of the currents of the six different quark flavors (or in our case, the three lightest):

F γ
1,2 =

∑

q

eqF
q
1,2 (2.26)

FZ
1,2 =

∑

q

gq
V F q

1,2 (2.27)

Ge
A =

∑

q

gq
AGq

A. (2.28)

These can be expressed in the form of the Sachs form factors as

Gγ
E,M =

∑

q

eqG
q
E,M (2.29)

GZ
E,M =

∑

q

gq
V Gq

E,M (2.30)

Ge
A =

∑

q

gq
AGq

A (2.31)

which results in five equations for the nucleon form factors written in terms of six unknown quark

form factors. By factoring out the quark charges, the proton’s electromagnetic and neutral weak

vector form factors can then be expressed as

Gγ,p
E,M =

2

3
Gu

E,M − 1

3
Gd

E,M − 1

3
Gs

E,M (2.32)

GZ,p
E,M =

(

1 − 8

3
sin2 θW

)

Gu
E,M −

(

1 − 4

3
sin2 θW

)

(

Gd
E,M + Gs

E,M

)

(2.33)

with the neutral weak axial currents of the quarks giving the axial current

Gp
A = Gu

A − (Gd
A + Gs

A). (2.34)
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The contributions of the antiquarks in the sea are included above. The quarks and antiquarks

contribute to the matrix elements Gf
E,M,A with opposite signs because of their opposite signs;

thus, if the spatial distributions of the s and s̄ quarks were the same, their charges would cancel,

forcing Gs
E to vanish as well [27].

By assuming charge symmetry, one can write the electromagnetic neutron form factors in

terms of the proton matrix elements. This assumption asserts that the distribution of the u and ū

quarks in the proton is the same as the distribution of the d and d̄ quarks in the neutron and vice

versa (that is, by exchanging u and d quarks and ū and d̄ quarks and vice versa, a proton becomes

a neutron). By isospin symmetry, this means:

Gu,p
E,M = Gd,n

E,M ≡ Gu
E,M , Gd,p

E,M = Gu,n
E,M ≡ Gd

E,M , Gs,N
E,M ≡ Gs

E,M , (2.35)

Gu,p
A = Gd,n

A ≡ Gu
A, Gd,p

A = Gu,n
A ≡ Gd

A, Gs,N
A ≡ Gs

A. (2.36)

Using this assumption, we can write out the neutron form factors as

Gγ,n
E,M =

2

3
Gd

E,M − 1

3
Gu

E,M − 1

3
Gs

E,M (2.37)

GZ,n
E,M =

(

1 − 8

3
sin2 θW

)

Gd
E,M −

(

1 − 4

3
sin2 θW

)

(

Gu
E,M + Gs

E,M

)

, (2.38)

with the neutral weak axial currents of the quarks giving the axial current

Gn
A = Gd

A − (Gu
A + Gs

A). (2.39)

Thus, GZ,p
E,M can also be written out as

GZ,p
E,M =

(

1 − 4 sin2 θW

)

Gγ,p
E,M − Gγ,n

E,M − Gs
E,M . (2.40)

This all shows that with known electromagnetic form factors, a precision measurement of GZ,p
E,M

would enable the decomposition of the electric and magnetic form factors into the contributions

from the individual quark flavors, as the vector current contributions from the quark flavors may
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be written as (for the proton case):

Gu,p
E,M =

(

3 − 4 sin2 θW

)

Gp,γ
E,M − Gp,Z

E,M (2.41)

Gd,p
E,M =

(

2 − 4 sin2 θW

)

Gp,γ
E,M + Gn,γ

E,M − Gp,Z
E,M (2.42)

Gs,p
E,M =

(

1 − 4 sin2 θW

)

Gp,γ
E,M − Gn,γ

E,M − Gp,Z
E,M . (2.43)

The form factors Gγ
E,M for both protons and neutrons have been measured to such a precision

that they are treated as known quantities for the purposes of the G0 experiment. The goal of the

G0 experimental program is to determine Gs
E,M .

So why is the experiment called G0? The flavor decomposition of the proton form factors can

also be written in terms of the SU(3) flavor generators (that is, for the three lightest quarks). For

the vector current, the singlet, isovector, and octet form factors can be written as

G
(0)
E,M =

1

3

(

Gu
E,M + Gd

E,M + Gs
E,M

)

, (2.44)

G
(3)
E,M =

1

2

(

Gu
E,M − Gd

E,M

)

, (2.45)

G
(8)
E,M =

1

2
√

3

(

Gu
E,M + Gd

E,M − 2Gs
E,M

)

. (2.46)

Using these, the electromagnetic and weak form factors of the proton can be expressed as

Gγ,p
E,M = G

(3)
E,M +

1√
3
G

(8)
E,M , (2.47)

GZ,p
E,M = −G

(0)
E,M +

(

2 − 4 sin2 θW

)

G
(3)
E,M +

(

2√
3
− 4√

3
sin2 θW

)

G
(8)
E,M

= −G
(0)
E,M +

(

2 − 4 sin2 θW

)

Gγ,p
E,M . (2.48)

With a measurement of the neutral weak form factor GZ,p
E,M , combined with measurements of the

proton electromagnetic form factors Gγ,p
E,M , the flavor singlet form factor of the proton, G

(0)
E,M ,

can be determined, which contains the desired information about Gs
E,M . Thus, the experiment is

named after the flavor singlet proton form factor.
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2.3 Parity Violation in Electron Scattering

The question then is how does one access the neutral weak current experimentally? As the

cross section for electron-proton scattering is proportional to the square of electromagnetic and

neutral weak amplitudes, σ ∝ |Mγ +MZ|2, it would seem that such a measurement could provide

access to the neutral weak current. However, the neutral weak current of interest is strongly

suppressed compared to the electromagnetic current in a direct measurement. Therefore, a direct

measurement is not very feasible. However, the parity-violating nature of the weak interaction

makes it possible to make the measurement by using parity-violating electron scattering, which is

the technique that the G0 experiment employs. For the record, the neutral weak current of the

nucleon can actually be measured in two ways: by using elastic neutrino scattering [29, 72] or via

parity-violating electron scattering [40–42].

The scattering of unpolarized electrons from nucleons is dominated by the electromagnetic

currents of the electron and nucleon. The electromagnetic properties of the proton, as approx-

imated by single-photon exchange, are rather well-known, measured by previous experiments.

Vector currents (such as the photon) exchanged in the electromagnetic interaction conserve par-

ity. However, the neutral weak currents do not. As the weak currents carry equal parts vector

and axial-vector components, they violate parity (space inversion) maximally. Because the weak

interaction violates parity [73–76], the interference of the electromagnetic and weak currents also

violates parity [41, 42]. This property is the basis of parity-violation measurements, as it gives

insight into the neutral weak amplitude.

To observe this small effect, a comparison must be done between the experiment and its

“mirror image”, as the cross section contains a pseudo scaler component which changes sign in

the mirror image of the experiment, resulting in an asymmetry between the two measurements,

just as in the ground-breaking experiments by Wu et al. [77–79] and Garwin et al. [80]. In a

parity-violating electron scattering experiment, this mirror measurement is done by reversing the

(pseudoscaler) beam helicity with respect to the beam’s momentum.
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As the cross section is σ ∝ |Mγ +MZ |2, the parity-violating asymmetry for the scattering of

longitudinally polarized electrons from unpolarized protons is defined as the difference of the cross

section measured for each beam helicity state divided by the sum:

APV ≡ σ+ − σ−
σ+ + σ−

, (2.49)

where σ+,− denotes the cross section for each helicity state. The measured parity-violating asym-

metry can be written in terms of the electromagnetic and neutral weak proton form factors as [68]

Ap = − GF Q2

4πα
√

2

ǫGγ,p
E GZ,p

E + τGγ,p
M GZ,p

M − (1 − 4 sin2 θW )ǫ′Gγ,p
M Ge

A

ǫ(Gγ,p
E )2 + τ(Gγ,p

M )2
(2.50)

where ǫ = (1 + 2(1 + τ) tan2 θe

2 )−1, ǫ′ =
√

τ(1 + τ)(1 − ǫ2), and τ = Q2

4Mp
.

However, the parity-violating asymmetry seen in electron-proton scattering is very small. The

small size of the asymmetry is because it is determined by the ratio of the neutral weak and

electromagnetic propagators. As the ratio is MZ

Mγ , and Mγ is larger than MZ by about a factor

of 105, the measured asymmetries are of order parts-per-million (ppm), making these experiments

very challenging [27, 68].

The measured asymmetry has an angular kinematic dependence, making measurements of the

asymmetry mostly sensitive to GZ,p
E and GZ,p

M at forward scattering angles, and predominantly

GZ,p
M and Ge

A at backward scattering angles. The axial term vanishes at 0◦, the electric term

vanishes at 180◦, and the magnetic term contributes independently of angle. Thus, it is possible

to kinematically separate the electric and magnetic terms by conducting measurements of the

parity-violating asymmetry at both forward and backward angles. This angular dependence is key

in the strategy of the G0 experimental program. The forward-angle measurement resulted in a

determination of a linear combination of Gs
E and Gs

M . By then performing subsequent backward-

angle measurements of Gs
M and Ge

A, the separation can be accomplished. However, in order to

have enough information to do the separation, backward-angle angle measurements must be done

on both hydrogen, which has an asymmetry that is sensitive to Gs
M and Ge

A, and deuterium, which

has an asymmetry with an enhanced sensitivity to Ge
A. The asymmetry from a measurement with
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a deuterium target can be expressed as a linear combination of the individual proton and neutron

asymmetries weighted by their cross sections. As this makes it so that Gs
M and Ge

A have different

contributions, there is enough information to make a complete separation when combined with the

other two measurements.

Various experiments have measured the parity-violating asymmetry and have attempted to

optimize the measurements for sensitivity to particular form factors. The G0 experiment performed

forward-angle measurements at eighteen Q2 points, as well as backward-angle measurements on

hydrogen and deuterium at a couple of Q2 values, in order to do a complete separation of the

three unknown quantities (Gs
E , Gs

M , Ge
A) at these Q2 values. This dissertation discusses the

forward-angle measurement.

2.4 Electroweak Radiative Corrections

Although the first-order electromagnetic and neutral weak interactions are the processes of

interest (and are the dominant ones), important higher-order electroweak processes do contribute to

electroweak-nucleon scattering, and so there must be corrections made to account for them [81–83].

These higher-order processes are generally considered as small radiative corrections to the ordinary

Z0 exchange diagram, on the order of 1% corrections to the lowest order predictions [27]. However,

these corrections do have some uncertainty. The uncertainty in the calculation of the contribution

of these higher-order effects is an important systematic background for any experiment measuring

strangeness effects.

These higher-order processes in effect modify the coupling constant (weak vector and axial

charges) at the interaction vertex in the scattering diagrams. The radiative corrections account

for this. The R values are the corrections made to the six weak charges. The RV parameters (in-

troduced in [68]) characterize the difference between the value of the parameters for the one-quark

radiative corrections at the tree level and their full expressions. These corrections are classified

into three types [68]: those due to one-quark processes, those due to many-quark processes, and
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FIG. 2.2: The Feynman diagrams describing two of the one-quark processes that contribute to the
electroweak radiative corrections. Diagram (a) is a γ − Z box diagram, while (b) pictorially describes
γ − Z mixing.

those due to the heavy quark renormalization of light quark operators.

There is another aspect to be considered for these computations. To calculate these correc-

tions, the theory has to use a renormalization scheme to make the calculations finite. The renor-

malization scheme used in this work is the modified minimal subtraction scheme (MS), which is

a widely used one, and depends on a renormalization scale µ that is generally set to the mass of

the Z boson (MZ = 91.19 GeV) [84].

One class of electroweak radiative corrections are classified as one-quark diagrams, because

they involve interactions with only one quark in the hadron. A couple of these are depicted in

Figure 2.2, but there are many more of these to higher and higher order. The first diagram is

a γ − Z box, while the second, the γ − Z mixing diagram, is also referred to as the vacuum

polarization correction due to its similarity to an analogous concept in QED. The corrections for

these processes are purely electroweak and can be calculated fairly well in the Standard Model.

They have a small Q2 dependence [68,85]. For this work, it is assumed that the present calculations

for the one-quark corrections are sufficiently reliable. The values of the one-quark standard-model

parameters were taken from the Particle Data Book [86], where they were calculated in the MS



26

N

γ

Ne-

-e

k

k'

p

ρ
p'

(a) Rho-Meson Pole

π

N

γ

Ne −

−e

k

k’

p

p’

(b) Pion Loop

π

FIG. 2.3: The Feynman diagrams describing two of the many-quark processes that contribute to the
electroweak radiative corrections. Diagram (a) is a rho meson pole diagram, while (b) pictorially de-
scribes the pion loop process. The filled circles denote parity-violating meson nucleon vertices while the
open circles represent parity conserving (strong and electromagnetic) vertices.

scheme. However, there are still uncertainties involved with these calculations. For example,

calculation of the γ − Z box diagram involving only a nucleon intermediate state can be reliably

calculated; full calculations of the γ − Z box diagram must take into account excited hadronic

states, which are not well understood [27].

Uncertainties from hadronic structure come from another class of electroweak corrections, the

ones referred to as many-quark corrections. These many-quark corrections arise from interactions

that involve more than one quark in the hadron, such as the exchange of (weak) Z bosons between

the quarks during the scattering, which modifies the nucleon axial coupling. Some of these diagrams

are sometimes referred to as anapole terms. An example of these types of diagrams can be seen

in the pion loop in Figure 2.3, where a parity-violating pion emission occurs because of the weak

interaction between the quarks. The pion is then absorbed through the strong interaction, which is

parity-conserving. Unfortunately, these are difficult corrections to calculate, as the strong coupling

constant αS is too strong in this kinematic region to use perturbative QCD. Hadronic models then

must be used to calculated these corrections, leading to rather large uncertainties as it is impossible

to include all virtual hadronic states. Happily, the contribution of the many-quark processes only
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Factor Value Factor Value

sin2 θW 0.23120 gA 1.2545
GF 1.16637× 10−5 ∆s −0.084± 0.040

RT=1
V −0.0140914 RT=1

A −0.1727633
RT=0

V −0.0091121 RT=0
A −0.2526596

R
(0)
V −0.0111789 R

(0)
A −0.5517526

Rp
V −0.0447091 Rn

V −0.0117890

TABLE 2.2: Electroweak radiative correction factors [82,83]; values taken from the Particle Data Book,
2004 [86] and are evaluated in the MS renormalization scheme.

affect the axial contribution. Zhu et al. performed a calculation of the “anapole” correction to

the axial form factor using heavy baryon chiral perturbation theory (HBχPT) to compute the

many-quark diagrams, yielding values of RT=1
A = −0.087(0.35) and RT=0

A = −0.015(0.20) [85].

The heavy quark corrections come from the fact that the heavier quark flavors (c, b, and t) were

neglected in the calculations for the hadronic (neutral current coupling) currents. Happily, these

effects are very small when calculated, only ∆v < 10−4 for the vector coupling and ∆A < 10−2 for

the axial coupling [40], and so these contributions are considered negligible.

With all the radiative corrections, the parity-violating asymmetry on the proton can be written

as (Q2 dependences dropped for clarity) [82, 83]

A(ep) = − GF Q2

4πα
√

2

{

(1 − 4 sin2 θW )(1 + Rp
V ) − (1 + Rn

V )
ǫGp

EGn
E + τGp

MGn
M

ǫ(Gp
E)2 + τ(Gp

M )2

−(1 + R(0))
ǫGp

E

ǫ(Gp
E)2 + τ(Gp

M )2
Gs

E − (1 + R(0))
τGp

M

ǫ(Gp
E)2 + τ(Gp

M )2
Gs

M

− (1 − 4 sin2 θW )ǫ′Gp
M

ǫ(Gp
E)2 + τ(Gp

M )2
Ge

A

}

, (2.51)

where τ = Q2

4M2
p
, ǫ = 1

1+2(1+τ) tan2 θ
2

, ǫ′ =
√

τ(1 + τ)(1 − ǫ2), θ is the laboratory electron scattering

angle, Mp is the proton mass, and

Ge
A = −2(1 + RT=1

A )GT=1
A +

√
3RT=0

A G
(8)
A + (1 + R

(0)
A )Gs

A, (2.52)

and some of the numerical values for the calculations are shown in Table 2.2.
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2.5 Theoretical Predictions for Strange Form Factors

In spite of the theoretical difficulties, there have been many efforts to calculate the strange-

quark contributions to nucleon properties (for reviews, see References [27, 68–70], for example).

Unfortunately, calculations for strange quark effects are in the realm of non-perturbative QCD

since ms ∼ ΛQCD, so estimations have been done using a variety of methods that include var-

ious theoretical models and lattice calculations. Many of the estimates focus on estimating the

contribution to the strange magnetic moment, µs, and the strangeness radius, ρs, as these values

quantify the contribution at Q2 = 0, that is,

µs = Gs
M (Q2 = 0); ρs ≡ dGs

E

dτ

∣

∣

∣

∣

τ=0

, (2.53)

where τ = Q2

4M2 . The strange charge radius is commonly used as well, which has dimensions of

length (unlike ρs, which is dimensionless):

〈r2
s〉 = −6

dF s
1

dQ2

∣

∣

∣

∣

Q2=0

; ρs = −2

3
M2

p 〈r2
s〉 − µs, (2.54)

although one must be careful in how it is interpreted [70, 87]. This section will give an overview

of the efforts to estimate strange quark effects, starting with calculations using various models of

the nucleon to estimate the strangeness content and ending with lattice QCD calculations, which

employs first-principles to describe the existence of the ss̄ pairs in the sea through gluon splitting.

2.5.1 Heavy Baryon Chiral Perturbation Theory (HBχPT)

The obvious choice to use to estimate strange form factors would be Heavy Baryon Chiral

Perturbation Theory (HBχPT). Chiral perturbation theory has been used for some time very

effectively to predict and interpret a variety of low-energy properties of the nucleon.

However, to calculate strangeness effects, HBχPT must be extended from SU(2), which only

has the u and d quarks, to SU(3). The idea is that in the limit where the light quark masses (u,

d, and s) vanish, the QCD Lagrangian possesses an exact SU(3)L ×SU(3)R symmetry [27], which

can then be used to relate a set of observables to another, or to use a set of measured quanti-
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ties to predict another [88]. By including the kaon loops, addition counterterms are introduced,

and although most of these can be constrained by the experimental electromagnetic moments of

the baryon octet, two of the counterterms are flavor-singlet counterterms that require knowledge

of strangeness radius and magnetic moment, as these counterterms contain the information on

short-distance hadronic effects that cannot be determined from existing measurement using chiral

symmetry. The leading, long-distance loop contributions for the strangeness magnetic moment

and radius are calculable, but it is unknown whether the leading order effects are dominant over

the unknown terms from the same or lower order from the chiral Lagrangian [88]. This creates a

situation where the answer must be measured to calculate the answer, which isn’t terribly helpful.

Because of this, HBχPT cannot be used to predict nucleon strangeness [88]. Thus, to make pre-

dictions for the nucleon’s strangeness moments, additional model-dependent assumptions must be

made.

However, even with this rather severe limitation, it is possible to get some information out

of HBχPT. Hemmert, Meissner and Steininger found that the Q2 behaviour of Gs
M is dictated by

the kaon loop diagram up to the order of p3(O(p3)) in the chiral expansion. This diagram has an

analytical and parameter free form [89]. Hemmert, Kubis and Meissner then derived an expression

of Gs
M (Q2) to O(p3) in terms of the two unknown counterterms, which they constrained using

the data from SAMPLE and HAPPEx (see Chapter 3). By doing this, they obtained values of

〈r2
s〉E = 0.05±0.09 fm2 for the strangeness radius and µs ∼ 0.18 n.m. for the strangeness magnetic

moment [90]. When extended to O(p4), though, the calculation indicated a significant amount of

cancellation between the O(p3) and O(p4) contributions [91]. Because of this, the Q2 slope of the

strange magnetic moment is very sensitive to the unknown coefficient of the O(p4) counterterm,

and so the sign and magnitude of µs are not well constrained by the calculation.

The unknown counterterms makes the use of chiral perturbation theory to calculate the strange

contributions very difficult. However, by making model assumptions about the underlying physics,

estimates can be made, as we will see in the next sections.
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2.5.2 Vector Meson Dominance (VMD)

Although chiral perturbation theory cannot be used alone to calculate predictions for strangeness

properties of the nucleon, it can be used as a framework for calculation, with the assumption of

model-dependent method used to estimate the size of the chiral counterterms [27]. One approach

that has proven to be useful is to estimate the size of the counterterms by using vector and axial-

vector meson exchange contributions, or Vector Meson Dominance (VMD). The principle is that

the photon in an interaction can fluctuate electromagnetically into an intermediate vector meson,

which is a neutral, spin-1, parity-odd meson. The vector meson then interacts via the strong force

with the hadron, as illustrated in Figure 2.4. The lightest vector mesons and their approximate

quark compositions are

ρ0 (770 MeV) =
1√
2
(uū − dd̄), ω0(783 MeV) =

1√
2
(uū + dd̄), (2.55)

φ0(1020 MeV) = ss̄. (2.56)

The ρ is an isovector meson; ω and φ are isoscaler mesons.

V

N

γ

Ne −

−e

k

k’

p

p’

FIG. 2.4: Feynman diagram illustrating vector meson dominance, where the photon fluctuates into an inter-
mediate vector meson, V, which interacts with the hadron.

Using VMD, the nucleon matrix element 〈N |Ĵ µ
EM |N〉 is expressed as the summation over

intermediate vector states by

〈N |Ĵ µ
EM |N〉 =

∑

V

fV

1

m2
V − q2

〈N |V µ|N〉, (2.57)
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where mV is the mass of the intermediate meson V , q2 < 0 is the four-momentum transfer squared

of the photon, and fV is the vector meson photon coupling constant. The couplings fV that are

associated with the strange matrix elements 〈0|s̄γµs|V 〉, where 〈0| is the vacuum state, could be

used to derive the information we seek; however, those couplings are unknown.

However, the flavor content of the vector meson wavefunctions is known, and by assuming

vector meson dominance, dispersion relations for the nucleon form factors can be expressed as

[27, 88]

F a
1 (q2) = F a

1 +
∑

V

q2aa
V

m2
V − q2

(2.58)

F a
2 (q2) =

∑

V

m2
V ba

V

m2
V − q2

. (2.59)

Höhler et al. [92, 93] determined the residues at the vector meson poles by a global three-pole fit

(of electron-nucleon scattering cross section data), where they identified the first pole as the ω,

the second as the φ, and the third as a higher mass vector meson V ′ to take into account any

contributions from higher resonances. With the residues, the counterterms are evaluated as

ba =

(

Λχ

2MN

)

∑

V

ba
V (2.60)

ca =
∑

V

(

Λχ

mV

)2

aa
V . (2.61)

Their results implied a significant strangeness contribution, which was argued by Jaffe [94]. Mergell

et al. [95] used this same method in an updated version of this analysis, although with the inclusion

of constraints from perturbative QCD and unitarity. The analysis supported the earlier conclusions.

Jaffe [94] evaluated the strange residues at the ω, φ poles in terms of the isoscaler electromag-

netic residues by

as
ω

aI=0
ω

= −
√

6 sin ǫ

sin(ǫ + θ0)
(2.62)

as
φ

aI=0
φ

= −
√

6 cos ǫ

cos(ǫ + θ0)
. (2.63)

The term ǫ = 0.053± 0.005 is the mixing angle between the ω, φ states and the pure vector meson
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states:

ω = cos ǫω0 − sin ǫφ0, φ = sin ǫω0 + cos ǫφ0. (2.64)

The term θ0 = tan−1 1√
2

is the “magic” angle of octet-singlet mixing that gives the flavor pure

states ω0 and φ0. To obtain the strange residues for the higher mass vector state, Jaffe made the

assumption that the form factor F1 vanishes as 1
q2 and that F2 vanishes as 1

q4 ; he then applied

the pole residuals from Höhler’s fits. By doing this, he obtained values of µs = −0.31 ± 0.09 and

〈r2
s〉E ∼ 0.14± 0.09 fm2. An updated analysis was performed by Hammer, Meissner, and Drechsel

that was based on the Mergell fit [96]. From this analysis, they obtained µs = −0.25 ± 0.03 and

〈r2
s〉E = 0.22±0.03 fm2. Forkel also made a similar calculation, which was in good agreement with

the other results [97].

Ramsey and Ito [88] calculated the leading, non-analytic loop contribution from χPT using

the ω and φ pole residuals from Höhler’s isoscaler fit [92] to constrain the counterterms. This

approach yielded results of µs = 1.85 for the strangeness moment and 〈r2
s〉E ∼ 0.36 fm2 for the

strangeness radius, a somewhat larger result than the three-pole fits [94, 96]. This arises from a

lesser cancellation between the φ pole and the continuum than that between the φ and the third

higher mass poles in the other analysis approaches. The large value of µs comes from the large kaon

loop contribution to the isoscaler anomalous magnetic moment, which requires large counterterms

to balance it.

There are some caveats with this approach, however. The values obtained are very sensitive

to the ω − φ mixing angle ǫ and to the representation of the form factors in terms of three poles,

especially the second resonance with the φ due to its large strangeness content. The representation

of the high-energy continuum as a zero-width pole raises some concern, and Forkel has shown that

using QCD asymptotics reduces the size of the strangeness couplings from the three-pole results

by a factor of two to three [97]. In addition, the asymptotic constraints used in the three-pole

calculation requires the inclusion of more poles with unknown masses and residues to be consistent

with quark counting rules, leading to even more ambiguity [88].
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FIG. 2.5: Feynman diagram illustrating kaon loop calculations, where the nucleon fluctuates into a kaon and
a hyperon (a Λ), where the photon can couple to either, and then fluctuates back to the original proton.

2.5.3 Kaon Loop Models

Another approach to compute strangeness matrix elements is to just disregard the requirement

of a consistent chiral expansion and include a kaon loop contribution. This model is intuitively

simple, where the strangeness of the proton is modeled by a meson-hyperon intermediate state that

can interact with the exchange photon or Z. This only requires that the nucleon fluctuates into a

kaon (K) and a hyperon (Y ), where the photon can couple to either, and then the s and s̄ quarks

annihilate, leaving the original proton, as shown in Figure 2.5. This type of model is sometimes

called the kaon cloud model, as the kaon is further away from the center of the nucleon due to

its smaller mass compared to the hyperon. As the s and s̄ quarks are spatially separate, there

is an asymmetric and non-zero strange charge and magnetization distribution within the proton.

An interesting feature of these calculations is that because the kaon is on the outside and has a

negative strangeness, this would make the strangeness radius negative, neglecting recoil effects [98].

The K − Λ fluctuation could also make µs negative [99].

However, this procedure introduces divergences, so a cutoff procedure must be used. Donoghue

and Holstein suggested the introduction of a dipole regulator into the chiral loop [100,101]

F (q2) =

(

Λ2

Λ2 − q2

)2

, (2.65)
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where q is the loop momentum and Λ is the cutoff scale. They showed that by doing this, the chiral

structure was maintained; however, consistent power counting was lost. Also, contact or seagull

terms must be introduced to satisfy the Ward-Takahashi identities and preserve gauge invariance,

which introduces some ambiguity in the choice of terms that can result in a large spread in the

final calculations [102]. There is also a cutoff scale dependence [88].

Several calculations have been done using this method. Ramsey-Musolf and Burkardt [102]

performed the calculation using a KΛ loop and the phenomenological meson-baryon form factors

from the Bonn-Jülich potential at the hadronic vertices to prevent UV divergence. Seagull terms

were used to preserve gauge invariance, and the cutoff scale was chosen to have a range of 1 to 2

GeV. The results gave a moderately negative value for the strangeness moment µs = −0.31± 0.05

n.m., as well as for the strangeness charge radius, 〈r2
s〉E = −0.03 ± 0.003 fm2.

A somewhat different approach was taken by Pollock, Koepf, and Henley, who performed a

calculation of strangeness moments using a cloudy bag model [103]. The cloudy bag model is

based on the earlier MIT bag model [104]. In this model, weakly-interacting quarks are confined

in bags (or bubbles) of perturbative vacuum. The bags are stabilized from collapsing to the QCD

vacuum phase by the pressure from the Heisenberg energy of the quark states [27]. No free quarks

exist outside of the bag. Unfortunately, this model breaks chiral symmetry. The cloudy bag model

takes the MIT bag and repairs the broken chiral symmetry at the bag’s surface by introducing a

pion (meson) field that couples to the confined quarks [105,106]. The inverse of the bag dimension

then sets the cutoff parameter. Using this model with a bag radius of about 1.1 fm, determined by

fitting experimental nucleon EM form factors, they determined values of µs = −0.026 n.m. and

〈r2
s〉E = −0.012 fm2 [103].

Cohen, Forkel, and Nielson proposed an approach that combines the kaon loop method with

the vector-meson dominance approach [98,107]. The results of the two methods cannot simply be

added together, as double counting issues then arise. Instead, they calculated the intrinsic nucleon

strange matrix elements by kaon loops and the isoscalar matrix elements using Höhler’s empirical
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fits, which were then mixed using the VMD assumption with only ω and φ poles. Because of

the mixing, both the intrinsic component and the vector meson mixing contribute. This method

yielded results of µs ∼ −0.28 n.m. and 〈r2
s〉E = −0.042 fm2. However, this analysis is very sensitive

to the size of the ω−φ mixing parameter ǫ [27]. Meissner et al. also performed a calculation using

a combination of the kaon loop and VMD models [108]. In this treatment, the excited intermediate

states with K∗ and Σ were included in the K − Λ loop, but ω − φ mixing was neglected. This

calculation yielded results of +0.003 n.m. and +0.002 fm2 for µs and 〈r2
s〉E .

Despite its appealing intuitive simplicity, other authors have questioned some of the assump-

tions of the kaon loop calculations. Malheiro and Melnitchouk raised the concern that the one-

meson current used in the method violates Lorentz covariance [109] and showed that contributions

from this violation cause the calculated value of µs to become small and positive at +0.01 n.m. [109].

A quark-level calculation that included the OZI allowed intermediate loops of K∗ − Y ∗ by Geiger

and Isgur yielded values of µs ∼ +0.035 n.m. and 〈r2
s〉E ∼ −0.04 fm2 [110], although they noted

that the signs arise from the cancellations of large contributions from many intermediate states.

Barz et al. then made a complementary hadronic calculation of the K∗ contribution by using both

a one-loop calculation and a dispersion analysis [111], which confirmed the findings of [110] that

the K∗ can have as significant a contribution as the K.

2.5.4 Skyrme Model and Other Soliton Models

The Skyrme model was one of the first methods used to calculate strangeness effects. In the

1960’s, Skyrme presented the idea that baryons are solitons in the non-linear sigma model [112].

Some twenty-years later, Witten took the model and showed that QCD becomes equivalent to an

effective field theory of mesons at the limit of a large number colors (large Nc QCD) [113, 114],

laying the groundwork for the successful calculation of various static nucleon properties by Adkins

et al. under the Skyrme model [115].
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The Skyrme Lagrangian is

L =
1

16
F 2

πTr(∂µU∂µU †) +
1

32e2
Tr

[

(∂µU)U †, (∂νU)U †]2
, (2.66)

where U is an SU(2) matrix, Fπ is the pion decay constant, and the entire last term was introduced

to stabilize the solitons [115]. From this Lagrangian, the soliton solution is found

U0(x) = exp [iF (r)~τ · x̂] , (2.67)

where we have used what is known as the hedgehog ansatz and have forced the boundary conditions

as F (0) = π and F (∞) → 0. Using variational methods, this system can be solved and used to

successfully describe various aspects of nucleon structure.

However, the extension of this SU(2) Skyrme model approach to SU(3) and thus include

strangeness effects is not a trivial exercise. Additional model dependence must be introduced

[116–118], and the various treatments used contain ambiguities [119]. In addition, SU(3) flavor

symmetry breaking becomes an issue. To deal with this problem, Weigel, Schechter and Park

[119] introduced terms involving nonminimal derivative couplings into the Lagrangian. After the

quantization of the collective and radial excitations, they diagonalized the Hamiltonian, treating

the symmetry breaking term exactly. The results of this yielded moderate negative values for both

the strangeness charge radius and magnetic moment of 〈r2
s〉E = −0.11 fm2 and µs = −0.13 n.m.,

respectively.

This calculation only considered pseudoscalar mesons; in further studies Park and Weigel [120]

added vector mesons into the model. The results of the studies showed a drop in the magnitudes of

both quantities by a factor or two, with a change of sign in the strangeness radius. This discrepancy

indicates some of the uncertainty in the Skyrme model predictions.

There are other concerns about the accuracy of Skyrme model predictions in addition to

concerns about ambiguities introduced by the extension to SU(3). The Skyrme model is justified

in the large Nc limit of QCD, casting doubt as to the accuracy of predictions of quark sea effects

in the real Nc = 3 world. In the Skyrme model, the strangeness current is evaluated by taking



37

the difference between the baryon number and hypercharge currents Js
µ = JB

µ − JY
µ , leading to a

situation where the predictions for strangeness matrix elements are obtained by taking the (small)

difference of two large and uncertain quantities. This casts doubt as to their reliability [27, 98].

There is a related approach to the Skyrme model called the chiral soliton-quark model. In

this model, the interaction of the quarks with the chiral fields is described with a linear sigma

Lagrangian for which a stable soliton solution for the meson fields can be found by imposing the

same hedgehog ansatz. As with the Skyrme model, the soliton solution is identified as a baryon.

Again, as with other models, the extension to SU(3) to include strangeness is not trivial, and

these models share many of the same potential concerns as the Skyrme models.. Calculations of

strangeness effects using the chiral soliton-quark model were done by Silva, Kim, and Goeke [121],

and they reported results of µs ∼ 0.12 n.m. for the strange magnetic moment and 〈rs
s〉E ∼ −0.1

fm2 for the strangeness radius. Another closely related method is to bosonize the NJL model (a

description of which is at the end of Section 2.5.5), which gives a Lagrangian that can be solved by

Skyrme methods to get the stable soliton solution, although with some model dependence [122].

2.5.5 Constituent Quark Approach

Another method that can be used to calculate strange quark effects is called the constituent

quark approach. The idea of this method is to account for the internal quark structure of the

nucleon by representing it in terms of constituent (U, D) quarks whose substructure consists partly

of ss̄ pairs. This came about from the suggestions of Kaplan and Manohar [40].

The problem is how to take the quark sea structure into account. One way is to assume that

the constituent quarks are themselves coupled to mesons by a chiral quark method. Using this

concept, studies by Ramsey-Musolf and Ito estimated the effect of constituent U and D quarks

fluctuating into a kaon and a constituent S quark [88]. To determine the axial coupling of the

constituent quark to the kaon, the constituent quark calculation of the nucleon’s axial charge with

its experimental value in neutron beta decay of gA ≃ 1.27. The results for both µs and 〈r2
s〉E
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are small and negative. However, the calculation has model-dependent assumptions. As such loop

calculations are themselves divergent and the singlet channel quantities are unknown, a hadronic

form factor with a cutoff scale Λ = Λχ was introduced to avoid infinities, and the validity of the

simple one-loop kaon approximation was assumed.

Hannelius, Riska, and Glozman further extended this chiral quark model framework by in-

cluding contributions from pseudovector K∗ loops and K −K∗ radiative transition loops [99,123].

The vector loops serve to help stabilize the calculation from sensitivity to the size of the regu-

lator provided that a cutoff of order the chiral symmetry breaking scale is chosen. The loops

did not add significant strangeness, and the resulting strangeness moments are µs = −0.05 n.m.

and 〈r2
s〉E = 0.02 fm2, where there was also a substantial cancellation between the kaon and K∗

loop contributions. In addition to the uncertainty from the remaining cutoff dependence, there is

uncertainty introduced because of the loop diagram involving the K − K∗ − γ vertex. Another

calculation was done by Lyubovitskij et al. using the perturbative chiral quark model [124], which

treated the valence quarks as though moving in a perturbative Goldstone meson cloud. To deter-

mine the cutoff scale of the effective confinement field the quarks feel, a fit is done to the charge

radius of the proton, much like above. The one-loop perturbative calculation then yielded values

of µs and 〈r2
s〉E that were small and negative, and in agreement with [88].

Unfortunately, the chiral quark model has an additional concern other than the usual model

dependencies that plague everybody else: double-counting, because it is unknown whether the QQ̄

bound states in the theory should be separated from the Goldstone bosons or not [88].

Another approach to tackle the question of how to take the quark sea structure into account

is to use the Nambu Jona-Lasinio (NJL) model [125]. This model is an effective field theory that

involves relativistic fermions that interact through four-point vertices that respect chiral symmetry.

The idea is that if a massless quark is exposed to a nonzero 〈qq̄〉 condensate, it becomes a massive

pseudoparticle, the constituent quark, breaking chiral symmetry. To introduce strangeness into the

constituent quarks, there must be a flavor mixing interaction, which was done [126, 127] through
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a mean field approximation to the NJL model, where the terms come from 6-quark interactions

involved in the determinant. Forkel et al. performed a calculation using this method, and obtained

a strangeness charge radius of 〈r2
s〉E = +0.0169 fm2 [98]. A related approach is to bosonize the

NJL model, and then solve the effective topological soliton by Skyrme methods [122].

2.5.6 Dispersion Relations

Yet another way to calculate strangeness content is by using dispersion relations. This tech-

nique shares a similarity to the use of effective field theory, as both are based in general principles,

although in the case of dispersion relations those principles are causality and analyticity instead

of chiral symmetry as in chiral perturbation theory.

Working with the standard Dirac and Pauli form factors F
(s)
1 and F

(s)
2 , we can write the mean

square strangeness radius and magnetic moment as [128]

〈r2
s〉 = 6

dF
(s)
1

dQ2

∣

∣

∣

∣

∣

Q2=0

, (2.68)

µs = F
(s)
2 (0). (2.69)

To obtain the dispersion relation for the F
(s)
i (t)(i = 1, 2), where t is real, assumptions must be

made that an analytic continuation F
(s)
i (z) exists in the upper half plane that approaches F

(s)
i (t)

as z → t + iǫ, has a branch cut on the real axis for t greater than some threshold t0, and that

F
(s)
i (z)

zn → 0 as z → ∞ for non-negative integers n in the upper half plane. Cauchy’s theorem then

yields these relations:

F1(t) = F1(0) +
t

π

∫ ∞

t0

Im[F1(t
′)]

t′(t′ − t)
dt′, (2.70)

F2(t) =
1

π

∫ ∞

t0

Im[F2(t
′)]

(t′ − t)
dt′. (2.71)

In this case, F
(s)
1 (0) = 0, as the nucleon carries no net strangeness, and the unsubtracted dispersion

relation is used for F
(s)
2 (t) since one would like to predict the value of the magnetic form factor at

t = 0. The integral can be represented by the sum over all possible stable intermediate states. The

threshold t0 is the production threshold of the lowest possible intermediate state. The Im[F1,2(t
′)]
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are often called the spectral functions, as they imply dynamical contributions to the form factors

from the intermediate states. The general dispersion relation includes all possible on-shell interme-

diate states, unlike VMD, which only includes a few off-shell vector meson resonance [129]. For the

isoscalar and strangeness form factors, the allowable continuum includes 3π, 5π, KK̄, NN̄ , etc.

Naturally, the KK̄ is generally focused on, as it is the lightest state containing strangeness. The

first evaluation of this was done by Ramsey-Musolf, Hammer and Drechsel [128]. The contribution

of KK̄ to the strangeness spectral function can be written in terms of a product of the amplitudes

of γ → KK̄ and KK̄ → NN̄ ; however, direct data exist only when t > 4m2
N , forcing the need for

models or extrapolation. In [130], the authors addressed this problem by calculating the scattering

amplitudes of KK̄ → NN̄ under the Born approximation in both the physical and unphysical

regions.

Ramsey-Musolf and Hammer further refined this analysis in following papers [128, 129, 131].

Instead of using the Born approximation in the unphysical region, they used an analytical contin-

uation of the experimental K −N scattering amplitudes. They reported results of µs ∼ 0.28 n.m.

and 〈r2
s〉E ∼ 0.42 fm2 in Ref [131].

However, there are some issues with this method. Unlike χPT, dispersion relations do not

involve a systematically controlled approximation. The assumption that the lowest OZI-allowed

state KK̄ is the dominant contribution to the continuum may not be entirely true. Despite

being OZI violating processes, the contributions from light multi-meson intermediate states could

be significant. It was shown by Hammer and Ramsey-Musolf that the effects of 3π → ω or

3π → ρπ → φ can enhance the 3π contribution up to the same scale as the KK̄ continuum [132].

2.5.7 Lattice QCD

There is another approach, very different than the hadronic-type models described above,

where observables from strongly interacting field theories such as µs and rs are numerically cal-

culated numerically from first principles. This is know as lattice QCD (or LQCD). This method
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is non-perturbative and computational, and is done by applying QCD on a discrete lattice of

space-time points.

Lattice field theory is based on the idea of Feynman’s path integral [84,133], where a functional

integral over fields on a lattice is used to approximate Green’s functions, allowing the calculation of

physical observables [84,134]. By introducing a discretely-spaced lattice to replace the continuum,

the inverse of the lattice spacing provides a natural momentum cutoff, eliminating the possibil-

ity of unphysical infinities. In addition, because of the finite number of lattice sites, numerical

computation becomes computationally possible. LQCD calculations converge much more rapidly

with large quark masses. As a result, the calculations are done at several large quark masses,

then extrapolated using χPT to the masses of physical quarks, usually by a technique called chiral

extrapolation.

The primary allure of LQCD is that it should be free of the model dependencies that plague

the other hadronic models. However, it suffers from a limiting unwieldiness, as the application of

LQCD to computing the contributions from qq̄ loops and using quarks with their physical masses

is at present computationally prohibitive. As computers improve, so does the ability to do LQCD

calculations. To make up for this computational limitation, many of the LQCD calculations use

the quenched approximation, where quarks are assumed not to be dynamical, so these calculations

of the QCD sea effects have uncertainties.

There have been several calculations using LQCD. Dong, Liu, and Williams calculated val-

ues (in the quenched approximation, with a simple extrapolation to physical valence masses) of

Gs
M (0) ≡ µs = −0.36± 0.20 and 〈r2

s〉E = −0.061± 0.003 → −0.16± 0.06 fm2 [135]. After improv-

ing their Monte Carlo technique, they reported an updated value of µs = −0.28 ± 0.10 µN [136].

Lewis, Wilcox, and Woloshyn performed calculations of strangeness effects using a quenched chiral

extrapolation, reporting a value of µs = 0.05 ± 0.06 [137]. Leinweber et al. [138] took a different

approach, combining the constraints of charge symmetry with new chiral extrapolation techniques

and low-mass quenched lattice QCD simulations to account for the difference between the quark
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Type of Calculation µs (µN ) r2
s(fm2) Reference

HBχPT ∼ 0.18 0.05 ± 0.09 [90]
VMD −0.31 ± 0.09 ∼ 0.14 ± 0.09 [94]
VMD −0.25 ± 0.03 0.22 ± 0.03 [96]

χPT+VMD 1.85 ∼ 0.36 [88]
Kaon Loop −0.31 ± 0.05 −0.03 ± 0.003 [102]

Cloudy Bag Model −0.026 −0.012 [103]
Kaon Loop and VMD ∼ −0.28 −0.042 [98, 107]
Kaon Loop and VMD +0.003 +0.002 [108]

Skyrme Model −0.13 −0.11 [119]
Chiral Soliton ∼ 0.12 ∼ −0.1 [121]

NJL Soliton Model −0.05 ≤ µs ≤ +0.25 −0.25 ≤ r2
s ≤ −0.15 [122]

Chiral Quark −0.05 0.02 [123]
Dispersion Relations ∼ 0.28 ∼ 0.42 [131]

Lattice QCD 0.05 ± 0.06 — [137]
Lattice QCD −0.046± 0.019 — [138]

TABLE 2.3: A brief summary of some of the theoretical predictions for µs and r2
s .

masses in the calculation and their physical values. Using the ratios of the valence u quark con-

tribution to the magnetic moment of the proton and neutron to the Σ+ and Ξ0 (respectively), the

experimentally measured values of the baryon moments, and charge symmetry, they obtained a

result of −0.046± 0.019 µN .

As the lattice QCD calculations become more precise due to improvements in lattice tech-

niques, and chiral extrapolation techniques, as well as advances in computing power, precision

measurements will certainly be needed to guide the theoretical progress.

2.6 Summary of Estimates of Strangeness

This section has provided a brief overview of a sampling of the calculations for strange quark

contributions to nucleon structure using a variety of theoretical models, and although far from

exhaustive, it does give an idea of the various flavors of models employed to estimate strange

quark effects on the nucleon’s charge and magnetic properties, as well as the rather wide range of

the predictions. Some of the uncertainties and limitations of these different approaches have been

remarked upon as well. A summary of the results of some of these calculations is shown in Table
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2.3 for the convenience of the reader.

2.7 Two Photon Exchange in Elastic Electron-Nucleon Scat-

tering

The rest of this chapter discusses the theory behind the second measurement that is covered

in this dissertation. Elastic electron-nucleon scattering has been used very successfully for several

decades to study hadron structure. The electromagnetic interaction provides a powerful tool to in-

vestigate nucleon structure, and experiments measuring the form factors of the nucleon historically

have successfully made use of the Born approximation, where only a single photon is exchanged.

The elastic electromagnetic form factors of the nucleon characterize its internal structure, describ-

ing the charge and current distributions within it. However, as the measurements have become

more precise, it has become apparent that the neglected higher-order processes have become a

more significant systematic uncertainty, motivating the need for theoretical understanding and

experimental characterization.

The primary goal of the G0 experiment is to measure the parity-violating asymmetries from

the elastic scattering of longitudinally-polarized electrons from unpolarized protons in order to

use these asymmetries to determine the contribution of strange sea quarks to the charge and

magnetization of the nucleon. However, the experiment included the taking of data from which

other very interesting and important physics can be extracted about the electromagnetic probe in

the elastic scattering of electrons from protons.

In addition to the primary parity-violating measurement, the experiment also performed a

measurement of asymmetries using a beam polarized transversely to the beam motion, in order

to determine the possible contribution of any systematic false asymmetry in the longitudinal mea-

surement that would arise from any residual transversely-polarized beam component. Unlike the

parity-violating longitudinal (i.e. helicity-dependent) asymmetry, the transverse beam single-spin

asymmetry is a parity-conserving quantity that arises from two-photon exchange or higher-order

processes. Although the two-photon exchange contribution is small, it can be comparable to
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the parity-violating elastic electron-nucleon scattering asymmetry [64], and recent parity-violation

measurements have had to consider possible systematic corrections due to this effect. However,

the data of this measurement is very interesting for much more than a systematics check, as it

contains valuable information on two-photon exchange physics. These data are of interest because

as experiments in electron scattering are reaching higher levels of precision, the need has arisen

to understand these higher-order corrections such as two-photon exchange, and how they affect

different observables.

In this section, the theoretical formalism for the imaginary part of the two-photon exchange

amplitude will be discussed, followed by brief discussions of calculations in various regions: the

threshold region, the resonance region, the diffractive region (corresponding to high energy and

forward angles), and the hard scattering region. For a thorough review of this topic, see Carlson

and Vanderhaeghen [139].

2.7.1 Transverse Single Spin Asymmetries

The elastic scattering of electron from protons at leading order involves the exchange of a single

photon, followed by higher-order processes such as two-photon exchange. A schematic illustrating

the electron-proton scattering amplitude through second-order for one-photon and two-photon

exchange is shown in Figure 2.6. Elastic electron-proton scattering is often approximated as a

single photon exchange process (known as the Born approximation). This is possible because of

the small value of the electromagnetic coupling constant α ≈ 1/137, and so higher order processes,

such as two-photon exchange, are treated just as small “radiative corrections”.

The two-photon exchange process involves the exchange of two virtual photons with an in-

termediate hadronic state that includes the ground state and all excited states. There are several

observables that are directly sensitive to two-photon effects. The real (or dispersive) part of the

two-photon exchange amplitude can be measured through the difference between elastic electron

and positron scattering cross sections off a nucleon [140, 141]. The two-photon exchange process

also can produce a single-spin asymmetry in electron scattering [67], from either the scattering of
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FIG. 2.6: Feynman diagrams of the electron-proton scattering amplitude expanded through second-order for
one-photon and two-photon exchange.

transversely polarized electrons from unpolarized nucleons or from the scattering of unpolarized

electrons from a transversely polarized nucleon target [67,140,141]. These measurements access the

imaginary (or absorptive) part of this amplitude. In addition, efforts have been made to determine

the magnitude of two-photon exchange effects in a quantitative way from the electron-proton scat-

tering data by studying deviations from the Rosenbluth formula [142,143]. In the G0 experiment,

the second method was used, where the transverse single-spin asymmetry was measured using a

transversely-polarized electron beam on an unpolarized proton target, so that is the focus of this

section.

The beam-normal single-spin asymmetry, or transverse asymmetry An, is sensitive to the

imaginary part of the two-photon exchange amplitude in the elastic scattering of transversely

polarized electrons from unpolarized nucleons, and arises from the interference of the one-photon

and two-photon exchange amplitudes [67]

An =
2A1γℑ(A2γ)

|A1γ |2
, (2.72)

where the symbol ℑ represents the imaginary part. Time-reversal invariance forces An to vanish

in the Born approximation, so it is of relative order α = e2

4π
≈ 1

137 . Furthermore, An must vanish

in the chiral limit and so is suppressed by the ratio of the electron’s rest mass to the beam energy,

leading to an asymmetry on order of 10−5 − 10−6 for ≃ GeV electrons. Hence, measurement of

An is challenging. An analogous case is the target normal single-spin asymmetry, where the target
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FIG. 2.7: A schematic of the coordinate system. Shown are the incident and scattered electron wave vectors
k and k′, respectively, the unit vector n̂, the polarization vector P, and the angles θ and φ, where ~P · ẑ = 0.
Figure from [145].

is polarized normal to the scattering plane, which is also sensitive to the imaginary part of the

two-photon exchange amplitude, and gives an asymmetry on order of 10−2 [66, 67, 144].

For a beam polarized normal to the scattering plane, the transverse asymmetry is defined as

An =
σ↑ − σ↓
σ↑ + σ↓

, (2.73)

where σ↑(σ↓) represents the cross section for the elastic scattering of electrons with spins parallel

(anti-parallel) to the normal polarization vector defined by

n̂ ≡
~ke × ~k′

|~ke × ~k′|
, (2.74)

where ~ke and ~k′ are the three-momenta for the incident and scattered electron, as shown in Figure

2.7. The scattering angle is positive for the electron scattering to beam left (the Madison con-

vention). The measured asymmetry Ameas can be written as An
~Pe · n̂, where ~Pe is the incident

electron beam polarization. Because of the term ~Pe · n̂, Ameas is dependent on the azimuthal

scattering angle φ, which is manifested as a sinusoidal dependence in Ameas versus φ. Ameas has a

zero crossing where the scattering plane contains the incident electron polarization vector. Ameas

vanishes for forward scattering (θe = 0◦) and backward scattering (θe = 180◦), and also if the

electron polarization vector is longitudinal. The target normal beam asymmetry can be defined in
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the same manner.

2.7.2 Beyond the One-Photon Exchange Approximation

The transverse asymmetry due to two-photon exchange can be expressed using the formalism

developed for the general amplitude for electron-nucleon elastic scattering [146]. This parameter-

ization uses six complex functions, G̃M (ν, Q2), G̃E(ν, Q2), and F̃i(ν, Q2), i = 3, . . . , 6, dependent

on ν, the energy transfer to the proton, and Q2, the four-momentum transfer. In the Born approx-

imation, these functions reduce to the usual magnetic and electric form factors GM (Q2), GE(Q2),

and to F̃i = 0, so the F̃i and phases associated with GM , GE must come from processes with the

exchange of two or more photons. An is proportional to the imaginary part of the combination of

F̃3, F̃4, F̃5 and for a beam polarized perpendicularly to the scattering plane can be expressed as

[140,147]

An =
2me

Q

√

2ǫ(1 − ǫ)

√

1 +
1

τ

(

G2
M +

ǫ

τ
G2

E

)−1

×
{

−τGMℑ
(

F̃3 +
1

1 + τ

ν

M2
F̃5

)

− GEℑ
(

F̃4 +
1

1 + τ

ν

M2
F̃5

)}

+ O(e4), (2.75)

where ℑ denotes the imaginary part. Thus, An is a function of Q2 and the center-of-mass scattering

angle θCM , with the intermediate hadronic state information contained in the F̃i. The beam normal

spin asymmetry vanishes when me = 0, as it involves an electron helicity flip.

In an analogous manner, the target normal spin asymmetry Atarg, where the target is polarized

normal to the scattering plane, can be expressed as [140,147]

Atarg =
2ǫ(1 + ǫ)

τ

(

G2
M +

ǫ

τ
G2

E

)−1 {

−GMℑ
(

δG̃E +
ν

M2
F̃3

)

+ GEℑ
[

δG̃M +

(

2ǫ

1 + ǫ

)

ν

M2
F̃3

]}

+ O(e4), (2.76)

when neglecting terms that correspond with electron helicity flip (i.e. setting me = 0). In both An

and Atarg, it can be seen that they vanish in the Born approximation, and are therefore of order

e2.
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2.8 Theory Predictions for the Transverse Asymmetry An

There have been several calculations of the transverse asymmetry (examples of such for the

G0 experiment include [139, 140, 147–149]), but the primary theoretical difficulty in calculations

of the two-photon exchange amplitude is the large uncertainty in the contribution of the inelas-

tic hadronic intermediate states. As the calculations require both the proton elastic form factors

(elastic contribution) and the excitation amplitudes to other intermediate states, e.g. πN (inelas-

tic contribution), experimental verification is important to test the framework of the calculations.

However, at the present experimental information on An is scarce (see Chapter 3 on experimental

measurements). This section will discuss some of these calculations, primarily ones in the kine-

matics of the G0 transverse measurement, but will a brief discussion of other relevant calculations

in other regimes, particularly those of companion experiments.

There has been quite a bit of theoretical activity on this subject, much of it quite recent

due to efforts to explain the discrepancy in the proton elastic form factor measurements. The

first calculations of the transverse beam asymmetry from the scattering of a spin-1
2 particle from

a nuclear target were done by N. F. Mott in the late 1920’s and early 1930’s [150, 151], and

neglect proton recoil and internal structure. These calculations are the basis for a method of

polarimetry for low-energy (a few MeV) electron beams [152]. The first estimates of the target

normal single-spin asymmetry in elastic electron-nucleon scattering were performed by DeRujula

and his collaborators [67, 144]. In these early works, the calculations were done with the nucleon

intermediate state (the elastic or nucleon pole contribution), with an estimation of the inelastic

contribution for a very forward approximation. The beam normal transverse asymmetry was

calculated within this approximation by Afanasev et. al as well [141].

More recent predictions for the transverse beam spin asymmetry have been done using a variety

of models for the intermediate hadronic states. The various models can be grouped according to

how they treat those intermediate states.
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FIG. 2.8: The calculation for the transverse asymmetry at the SAMPLE kinematics by Diaconescu
and Ramsey-Musolf. The dashed line represents the leading-order result; the solid line denotes the full
calculation. Figure taken from [153]; Data point from [145].

2.8.1 Pion Electroproduction Threshold Region

The transverse asymmetry in the low energy, elastic scattering of transversely-polarized elec-

trons from protons was studied using an effective theory of electrons, protons, and photons by

Diaconescu and Ramsey-Musolf [153, 154]. The goal of the calculation was to determine if the

discrepancy between the low-energy SAMPLE transverse beam spin experimental result for the

vector analyzing power and the original scattering calculation by Mott could be resolved using

effective field theory. If this approach was successful, the same technique could be employed to the

electroweak box corrections for electroweak observables such as the ones for neutron and nuclear

β-decay.

In the calculations, only the electron, photon, and nucleon were considered as dynamical

degrees of freedom, since the SAMPLE measurement corresponded to kinematics close to the

pion electroproduction threshold. This corresponds to the use of heavy baryon chiral perturbation

theory (HBχPT) with the pions integrated out, providing a systematic expansion of An in powers of

p/M , where M is the nucleon mass and p is either the incident electron energy E or electron mass m.

Up to second order in p/M , the prediction for An was free of unknown parameters and included all
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contributions that arise uniquely from one-loop, two-photon exchange parameters. The calculation

showed that the inclusion of all one-loop effects through second order in Mγγ and all terms in Mγ

to second order is sufficient to resolve the disagreement between the measured SAMPLE result and

the original simplest potential scattering predictions by Mott, which corresponds to the O(p/M)0

contribution (an infinitely heavy target). The calculation for the vector analyzing power An is

shown in figure 2.8 versus energy for fixed scattering angle, θ = 146.1◦. In the plot, the dashed line

is the leading order result, and the solid line is the full calculation; the SAMPLE result is shown

at E = 192 MeV.

This EFT approach worked well for the SAMPLE result, despite the lack of dynamical pions

in the calculation and the fact that the SAMPLE kinematics are just above the pion production

threshold. However, this prediction did not work for the measurement of An at higher energies by

the A4 collaboration at Mainz. This is unsurprising given that the Mainz energies are well beyond

the valid limit of this EFT, and addition dynamical degrees of freedom such as the π or ∆(1230)

resonance probably need to be included.

A full calculation for the N intermediate state for this kinematical region was done by Pasquini

and Vanderhaeghen [140]. The calculation is model independent, involving only on-shell γ∗NN

matrix elements. However, the inclusion of threshold pion electroproduction contributions that

arise from the πN intermediate states partly cancels the elastic contributions, which reduces the

effect, as can be seen in Figure 2.9. The matrix elements are fairly well-known in this low-energy

region, leading to a puzzle as to why the calculation is not in better agreement with the somewhat

larger asymmetry measured by the SAMPLE experiment [145].

2.8.2 Resonance Region

If the transverse asymmetry is measured at energies below or around the two-pion production

threshold, the electroproduction amplitudes used in the calculations of the intermediate states are

relatively well known, since pion electroproduction experiments can be used as input. Conversely,

as the transverse asymmetry is sensitive to the electroproduction amplitudes on the nucleon, the
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FIG. 2.9: The transverse asymmetry (denoted as Bn) for a beam energy of 0.2 GeV as a function of
the center-of-mass scattering angle θcm. The dashed curve represents the nucleon intermediate state,
the dashed-dotted line the πN contribution, and the solid curve the sum of both contributions. Figure
taken from [140]; Data point from SAMPLE [145].

asymmetry could provide information on resonance transition form factors.

Pasquini and Vanderhaeghen [140] used this method to calculate the imaginary part of the

two-photon exchange amplitude, by relating the amplitude to the contribution of X = N and X =

πN intermediate state contributions through unitarity. The πN intermediate state contributions

were assessed using the phenomenological MAID analysis [155] to obtain the corresponding pion

electroproduction amplitudes. Both resonant and non-resonant pion production mechanisms are

included in the MAID analysis. The results of the calculation show that at forward angles, the

quasi-real Compton scattering at the endpoint W = Wmax only yields a very small contribution.

However, it grows larger going to backward angles, because the quasi-real Compton scattering

contribution is the opposite sign as the remainder of the integrand, which determines the location

of the absolute maximum value of the transverse asymmetry.

The results for the full calculation (solid line) of An are shown in Figure 2.10 for beam energies

of 0.3, 0.424, 0.570, and 0.855 GeV, along with the results for only the nucleon intermediate state

(the dashed line) and the πN inelastic contribution (dashed-dotted line). At these energies, the

nucleon intermediate state has a relatively small contribution compared to the inelastic states,
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dashed-dotted line the πN contribution, and the solid curve the sum of both contributions. Figure taken
from [140]; Data points from A4 [156].

making An primarily a measure of the inelastic part. The transverse asymmetries are large in

the backward-angle region, because of the quasi-real Compton scattering near singularity. The

transverse asymmetry has been measured in this energy region by the A4 collaboration (see Sec-

tion 3.4.2). At forward angles, the predicted asymmetries are compatible, although the calculation

somewhat overpredicts the absolute size of the asymmetry in this range [156]. However, asymme-

tries of this size (∼ 100 ppm around θCM = 150◦) in the backward-angle range have recently been

observed in preliminary results by the A4 collaboration [157]. More backward-angle transverse

asymmetry data has also recently been taken by the G0 collaboration in this energy region (see

Section 7.1.2).

2.8.3 Intermediate and High-Energy, Forward Scattering

The calculations for the transverse asymmetry become somewhat easier in the extreme limit

of very high energies and very forward scattering angles (known as the diffractive limit). In this

limit, An is dominated by the quasi-real Compton singularity, and can be expressed rather simply

in terms of the total photo-absorption cross section on the proton, σγp
tot [148, 158,159]. An is then
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from [148].

given by the analytical expression

An = −me

√

Q2σγp
tot

8π2

GE

τG2
M + ǫG2

E

[

log
Q2

m2
e

− 2

]

. (2.77)

The logarithmic enhancement factor comes from the quasi-real Compton singularity, and is the

cause of the relatively large magnitude of An. Using this expression, estimates were done for

different parameterizations of the total absorption cross section [148], which seem to be in agree-

ment with preliminary result for the transverse proton asymmetry measured by E158 at SLAC, an

experiment that is primarily an e−e− scattering experiment [139].

However, the situation becomes much more complicated at intermediate energies. The diffrac-

tive expression above no longer rigorously applies in this region, and thus corrections to the diffrac-

tive limit result to account from the deviation from forward scattering must be calculated, as has

been done in [148] and [149] using different model approaches.

Afanasev and Merenkov used an optical theorem to evaluate the transverse asymmetry in

terms of the total photoproduction cross section on the proton [148, 160]. They found that the

asymmetry has logarithmic and double logarithmic enhancement that arises from the contributions

of hard collinear quasi-real photons. The results of the calculations are shown in Figure 2.11. At
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curve corresponds to the full calculation including the subleading terms of t. Figure taken from [149].

small Q2, the asymmetry follows the high-energy diffractive behaviour of total photoproduction

cross section on the photon, while at higher Q2 the asymmetry starts to decrease in magnitude

due to introduced exponential terms. For the G0 kinematics at 3 GeV, the magnitude is ∼ 6 − 7

ppm.

Gorchtein calculated the transverse asymmetry at forward angles using a model which com-

bined forward-angle DIS input with the phenomenological t-dependence (where t denotes the four-

momentum transfer) taken from the Compton scattering differential cross section dσ/dt measured

at high energies and low t values [158, 159], as proposed by [148]. The calculation was then ex-

tended in a later work that included subleading t terms [149]. The results reported in [149] are

presented in Figure 2.12. The leading terms in t clearly dominates the calculation, and results in

a prediction of about −7 ppm for the Q2 range of the G0 experiment.

Pasquini and Vanderhaeghen [140] performed calculations for the transverse asymmetry by

extending the method employed for lower energies to a beam energy of 3 GeV. The result of these

calculations are shown in Figure 2.13, where the elastic contribution (dashed), inelastic contribution

(dashed-dotted), and total contribution (solid) curves are shown as a function of center-of-mass
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intermediate states are estimated for W < 2 GeV. Figure taken from [140].

scattering angle. In the figure, it is clear that the elastic contribution is not a significant con-

tribution, especially in the forward-angle range. Interestingly, the inelastic contribution changes

sign around θcm ≈ 90◦. However, a possible limitation of this calculation comes from the fact

that the πN contribution is only known for W < 2 GeV, whereas the upper integration range is

Wmax ≈ 2.55 GeV. This could introduce an additional negative component to An, especially in

the forward-angle region.

The calculations of the transverse asymmetry in [148, 149, 160] are in basic agreement with

the reported preliminary results from the HAPPEX collaboration [161] (see Section 3.4.3).

2.8.4 Hard Scattering Region

The hard scattering region is the region where both photons are hard and the momentum

transfer is large (Q2 ≫ M2). Chen and collaborators [162] calculated the contribution of two-

photon exchange to elastic electron-nucleon scattering at large momentum transfer through the

scattering off a parton located in a proton by relating the process on a nucleon to generalized parton

distributions (GPDs). The authors found that these contributions largely resolve the discrepancy

between the Rosenbluth and recoil polarization measurements. Both the beam and the target
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transverse asymmetries have been estimated through the scattering off a parton embedded in

the nucleon through GPDs in Refs. [147, 163]. A precision measurement of the transverse target

asymmetry using a polarized 3He target is planned in Hall A at Jefferson Lab1, which will give

information on the elastic electron-neutron transverse asymmetry from two-photon exchange at

large momentum transfer.

2.8.5 Two-Photon Exchange in Møller Scattering

Two-photon exchange processes can also be accessed by measuring the beam normal spin

asymmetry for polarized Møller scattering, e−↑e− → e−e−. This transverse asymmetry arises

from a QED rescattering phase. Theoretical calculations of the beam normal spin asymmetry have

been calculated by several authors [66,153,164–167], with the most recent theoretical work focused

on estimating the size of possible radiative corrections due to this effect for the E158 experiment at

SLAC [168,169]. The E158 experiment performed a measurement of the transverse asymmetry in

Møller scattering at a Q2 ≈ 0.05 (GeV/c)2 and a beam energy of about 46 GeV. The collaboration

announced a result of a few ppm and a negative sign, with the final results forthcoming in the near

future.

2.9 A Summary about Two-Photon Exchange

In this section, an overview of two-photon exchange and the transverse asymmetries measured

in the elastic scattering of transversely polarized electrons from nucleons has been presented, along

with theoretical calculations covering a rather wide kinematical range. Despite difficulties in cal-

culating the inelastic contribution of the hadronic intermediate states, the calculations indicate

that the inelastic contribution is significant, and first measurements of An by the SAMPLE col-

laboration [145] and the A4 collaboration [156] (see section on these measurements) indicate that

models including only the nucleon elastic state are insufficient. Other preliminary data suggest

that the elastic contribution alone is insufficient [157,161].

1JLab experiment E05-015, spokespersons T. Averett, J.P. Chen, and X. Jiang
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Calculation An(Q2 = 0.15) An(Q2 = 0.25) Reference

Afanasev and Merenkov −7.3 ppm −7.2 ppm [148]
Gorchtein −7.2 ppm −7.5 ppm [149]

Pasquini and Vanderhaeghen −1.6 ppm −2 ppm [140]

TABLE 2.4: Calculations of the transverse asymmetry at 3 GeV for the G0 forward-angle measurements
at Q2 = 0.15 (GeV/c)2 (θcm = 20.2◦) and Q2 = 0.25 (GeV/c)2 (θcm = 25.9◦).

The G0 measurement is at a higher beam energy (3 GeV) and forward angles, where the πN

intermediate states are predicted to be a significant contribution to An [140]. Furthermore, this

beam energy falls in a transition range between models. At energies below the two-pion production

threshold, the πN intermediate state contribution can be calculated using pion electroproduction

amplitudes based on experimental input. Above that limit, the πN contribution is not well known,

and there could be additional contributions to An [140]. At very high energies and forward scatter-

ing angles (the diffractive limit), An can be expressed simply in terms of the total photo-absorption

cross section using the optical theorem [148, 158]. For the present intermediate energy [148, 149],

corrections to the diffractive limit result have been calculated. A summary of the predictions

relevant to the G0 transverse measurement is shown in Table 2.4.

2.10 Goals of the G0 Physics Program

As stated earlier, the goal of the G0 is to determine the values of the strange electric and

magnetic form factors of the nucleon, Gs
E and Gs

M . To completely separate the electric, magnetic,

and axial form factors, three independent measurements are required, so the G0 experimental

program includes a forward-angle measurement, which is the scope of this dissertation, a backward-

angle measurement using a hydrogen target, and a backward-angle measurement using a deuterium

target. The forward-angle measurement resulted in the linear combination Gs
E + ηGs

M for 18 Q2

values between 0.1 and 1.0 (GeV/c)2. The two backward-angle measurements were each recently

done at two Q2 values, 0.23, 0.62 (GeV/c)2, allowing a complete separation at those points. The

analysis of these data is currently underway.
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However, the G0 experiment is not the only experiment studying these effects, nor could it

map the entire range alone. The next chapter discusses some of these companion experiments and

their goals.



CHAPTER 3

Survey of Related Experiments

3.1 Overview

Over the last thirty years, parity-violating electron scattering has become an important ex-

perimental tool, especially in the last decade, where this technique has been used to investigate the

contribution of the quark-antiquark sea of the nucleon to its electromagnetic structure. These very

challenging experiments have become possible with the development and improvement of many

experimental techniques which facilitate the measurement of the parity-violating asymmetries at

the parts-per-million level. In this chapter, an overview of some of the pioneering experiments

utilizing parity-violating electron scattering will be given, followed by summaries of measurements

by previous and contemporary experiments to provide a context for the G0 experiment.

3.2 Classic Parity-Violating Electron Scattering Experiments

Parity-violating electron scattering experiments are difficult to perform due to the extremely

small asymmetries of only a few parts-per-million that are being measured and the need to therefore

keep the statistical and systematic errors even smaller. Many of the experimental techniques

59
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needed to gain the necessary statistical precision and to control systematic errors, such as the

development of a source of a high-quality, intensely polarized electron beam and the ability to

control and accurately measure the properties of the beam such as the polarization, were developed

by the pioneering deep inelastic eD parity experiment at SLAC in the late 1970’s [170, 171].

The experiment observed parity-violating asymmetries in the inelastic scattering of longitudinally

polarized electrons of energy between 16.2 and 22.2 GeV from unpolarized liquid deuterium and

liquid hydrogen targets at a Q2 = 1.6 (GeV/c)2. The techniques were further developed in the

quasi-elastic beryllium experiment at Mainz in the 1980’s [172]. In this experiment, polarized

electrons were scattered off a 9Be target at an energy of 300 MeV at angles from 115◦ ≤ θ ≤ 145◦.

After the corrections for the beam polarization of 44% and for background processes, they reported

a measurement of A = −9.4 ± 1.8stat ± 0.5sys ppm. Both of these experiments sought to test

the standard model by using the measured asymmetries to compute a value for sin2 θW , where

θW is the Weinberg angle (also called the weak mixing angle), to compare to the value predicted

by the standard model. Their values agreed with the value predicted by electroweak theory,

within the error bars of the measurements. These experiments were followed by the elastic carbon

measurement at MIT-Bates that further refined the experimental techniques, publishing results

in 1990 [173]. In this experiment, the parity-violating asymmetry from the elastic scattering

of polarized electrons from 12C nuclei was measured to compute the isoscaler vector hadronic

coupling constant γ̃ as another test of the standard model. The observed asymmetry was A =

0.60±0.14stat±0.02syst ppm, yielding a value of γ̃ that agreed with the prediction of the standard

model.

These classic experiments were all directed toward tests of the electroweak standard model.

However, the next generation of parity-violating electron scattering experiments has taken the

focus of this technique at the facilities at MIT-Bates, Jefferson Lab, and MAMI in a new direction

and has successfully used this technique to investigate the spin-flavor structure of the nucleon.
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3.3 Previous Strange Form-Factor Experiments

Recent parity-violating electron scattering experiments, including the G0 experiment, have

been focused on measuring the strange-quark electric and magnetic form factors of the nucleon.

This section discusses other experiments that have been performed, or are currently running,

that have the goal of measuring the strange vector form factors at various kinematics using this

technique.

3.3.1 SAMPLE at MIT-Bates

The first experiment to measure the strange magnetic form factor of the proton was the

SAMPLE experiment at the MIT-Bates Laboratory, which took data from 1998 to 1999 [174,

175]. The experiment performed three measurements of parity-violating asymmetries from electron

scattering: a first measurement on a liquid hydrogen target at a beam energy of 200 MeV [176–178,

180], a second measurement at the same beam energy on a liquid deuterium target [177–180], and

a third measurement on a liquid deuterium target at a beam energy of 125 MeV [179, 180]. The

first two measurements correspond to an average Q2 of 0.1 (GeV/c)2, and the third to Q2 = 0.038

(GeV/c)2.

The experiment measured the parity-violating asymmetries at an angle of θe ∼ 145◦ by de-

tecting the elastically backward-scattered electrons from the unpolarized 40 cm-long hydrogen or

deuterium target with an air Čerenkov detector system, as can be seen in Figure 3.1. The detector

system consisted of an array of ten ellipsoidal mirrors placed symmetrically around the beam axis

that focused the Čerenkov light from the passage of the electrons through the air onto a group of

ten corresponding eight-inch photomultiplier tubes, as illustrated in Figure 3.2. The signals from

the phototubes were integrated over a period of 60 µs, digitized by the ADCs, then read out by

the data acquisition system. The 40 µA longitudinally-polarized beam was generated from a bulk

GaAs electron source, with a polarization of about 37%. The beam was pulsed at 600 Hz (each

pulse with a duration of about 25 µs); the helicity was flipped pseudo-randomly. The combination
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FIG. 3.1: A schematic of the SAMPLE appara-
tus. Portions of the scattering chamber and lead
shielding have been cut away for clarity. Backscat-
tered electrons from the target are detected in the air
Čerenkov detectors at an average scattering angle of
about 145◦. The detectors consist of ten ellipsoidal
mirrors that reflect the Čerenkov light into ten pho-
totubes facing them. Figure taken from [180]

Liquid Hydrogen Target

electron beam

helicity

phototube
mirror

40 cm

FIG. 3.2: A schematic of one of the modules
of the SAMPLE experimental apparatus. Ten of
these mirror-phototube pairs are placed symmetri-
cally around the beam axis. The Čerenkov light from
the electrons back-scattered from the target were re-
flected and focused by the mirrors onto the photo-
tubes. Figure taken from [177].

of the large solid angle of the detectors (∆Ω ≈ 1.5 sr) and the high luminosity of the polarized

beam allowed the experiment to measure the small asymmetries in a relatively short amount of

time.

The measurements were performed at backward angles, so the asymmetry is mostly sensitive

to the linear combination of Gs
M and Ge

A, the nucleon strange magnetic and axial form factors, and

not the strange electric form factor. Making the measurements on both hydrogen and deuterium

targets enabled the collaboration to extract the electron-proton axial form factor and the strange

magnetic form factor.

The measured asymmetry for the hydrogen measurement was [180]

Ap(Q
2 = 0.1) = −5.61 ± 0.67stat ± 0.88sys ppm (3.1)

= −5.56 + 3.37Gs
M + 1.54G

e (T=1)
A ppm. (3.2)

By combining this result with the theoretically predicted value for the isovector component of the

axial form factor of G
e (T=1)
A = −0.83± 0.26 by Zhu et al. [85], the value of Gs

M obtained is

Gs
M (Q2 = 0.1) = 0.37 ± 0.20stat ± 0.26sys ± 0.07FF (3.3)
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in which the last uncertainty is due to the uncertainty in nucleon electromagnetic and axial form

factors. From the analysis of the 200 MeV data taken with the deuterium target, the measured

asymmetry was [180]

Ad(Q
2 = 0.1) = −7.77± 0.73stat ± 0.72sys ppm (3.4)

= −7.06 + 0.72Gs
M + 1.66G

e (T=1)
A ppm. (3.5)

Using only these two data sets, the values of the form factors were determined to be

Gs
M (Q2 = 0.1) = 0.23 ± 0.36stat ± 0.40sys (3.6)

and

G
e (T=1)
A (Q2 = 0.1) = −0.53± 0.57stat ± 0.50sys, (3.7)

which are in excellent agreement with [85] and the determination from the hydrogen data alone

[180]. These calculations assume that Gs
E = 0. The two results are shown in Figure 3.3 plotted

in the space of Gs
M versus G

e (T=1)
A . The blue diagonal band is the hydrogen measurement and

the red band is the deuterium, where the inner and outer bands represent the statistical and total

uncertainties. The larger pink ellipse representing the 1σ error ellipse is obtained from combining

the two experimental results and the smaller yellow ellipse is the 1σ contour obtained by combining

the hydrogen result with the theoretical G
e (T=1)
A = −0.83 ± 0.26 by Zhu et al. [85], which is the

theoretical prediction shown in the vertical light green band.

The third SAMPLE measurement was carried out in order to provide another experimental

determination of G
e (T=1)
A . This measurement was made with a deuterium target and a beam

energy of 125 MeV, corresponding to a Q2 of 0.038 (GeV/c)2. The asymmetry was found to

be [179,180]

Ad(Q
2 = 0.038) = −3.51 ± 0.57stat ± 0.58sys ppm (3.8)

= −2.14 + 0.27Gs
M + 0.76G

e (T=1)
A ppm. (3.9)

Although no hydrogen data were taken at Q2 = 0.038, the two measurements on deuterium can

be compared to the predicted theoretical values by assuming a value for Gs
M at Q2 = 0.038, as
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FIG. 3.3: The results from the SAMPLE data
taken at 200 MeV and Q2 = 0.1 (GeV/c)2. The re-

sults are shown in the space of Gs
M

versus G
e (T−1)
A

,

along with the theoretical calculation of G
e (T−1)
A

by [85]. The ellipses correspond to a 1-σ overlap
of the two experimental data sets (larger) and the
combination of only the hydrogen data and theory
by [85] (smaller). Figure taken from [180]

FIG. 3.4: The results from the two SAMPLE deu-
terium measurements plotted as a function of Q2

along with the theoretical predictions (open circles,

offset for clarity) with the value of G
e (T−1)
A

from
[85], assuming Gs

M
= 0.15 nuclear magnetons. The

grey bands represent the change in the physics asym-
metry corresponding to a change in Gs

M
of 0.6 n.m.

Figure taken from [179,180]

the deuterium asymmetry only has a weak dependence on Gs
M . A comparison between the data

and the theoretical predictions are shown in Figure 3.4, where a constant value of Gs
M = 0.15 is

assumed. The shaded grey areas represent the variation in the theory corresponding to a change

in Gs
M of 0.6 nuclear magnetons. The good agreement indicates that G

e (T=1)
A has a weak Q2

dependence, which is consistent with theory [180].

3.3.2 HAPPEX at Jefferson Lab

The first measurements of parity-violating electron scattering at Jefferson Lab were performed

by the Hall A Proton Parity Experiment, known as HAPPEX. The goal of the experiment is to

measure the strange-quark contribution to the nucleon. In the experiment, forward-scattered

electrons from the interaction of the electron beam with the target are focused by two high-

resolution spectrometers onto detectors set in the focal plane, as seen in Figure 3.5. To date, there

have been three HAPPEX measurements:
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FIG. 3.5: A schematic overview of the HAPPEX experiment in Hall A at Jefferson Lab. Figure taken
from [183].

1. HAPPEx-H-I with a LH2 target at Q2 = 0.477 (GeV/c)2 [181–183],

2. HAPPEx-H-II with a LH2 target at Q2 = 0.1 (GeV/c)2 [184, 186], and

3. HAPPEx-He with a 4He target at Q2 = 0.1 (GeV/c)2 [185, 186].

The first HAPPEX measurement obtained data in two separate data-taking runs in 1998 and

1999, using a 3.2 GeV polarized electron beam on a 15 cm unpolarized liquid hydrogen target. For

the 1998 run, a bulk GaAs photocathode was used in the polarized source to deliver 100 µA of

beam with a polarization of about 38%, but for the 1999 run the experiment used a strained GaAs

photocathode which produced a beam of about 40 µA at a polarization of about 70%, as measured

with a laser-Compton polarimeter and a Møller polarimeter, as well as a Mott polarimeter located

near the source. This marked the first use of a strained GaAs photocathode and a Compton

polarimeter in a fixed target parity-violation experiment [183].

The elastically-scattered electrons from the hydrogen target at θlab = 12.3◦ were focused by

the two high-resolution spectrometers (HRS) onto calorimeter detectors consisting of alternating

layers of lead and Lucite sandwiched together. The Čerenkov light from the scattered electrons

were collected by a photomultiplier tube, integrated over the duration of the helicity window

(1/30 s), and digitized by analog to digital converters (ADCs). Since the HRS pair has high



66

enough resolution to spatially separate the elastic electrons from the inelastic electrons at the π0

threshold, the amount of background events was small, and only resulted in a small correction.

As the measurement is at a forward angle, the measured asymmetry is sensitive to the linear

combination of Gs
E and Gs

M . The measurement yielded an asymmetry of

Ap(Q
2 = 0.477) = −15.05 ± 0.98stat ± 0.56sys ppm, (3.10)

which gives an extraction for the linear combination of

(Gs
E + 0.392Gs

M)(Q2 = 0.477) = 0.014 ± 0.020± 0.010, (3.11)

where the first error quoted is from the experiment and the second is from the electromagnetic form

factor data [183]. Although consistent with zero, the measurement does not rule out the possibility

that Gs
E and Gs

M are of opposite sign and cancel each other out, so a back-angle measurement at

this kinematic point is necessary to separate them.

The HAPPEX collaboration carried out two other measurements on liquid hydrogen and on

cryogenic high-pressure 4He gas targets in two separate data-taking runs in 2004 and 2005. These

measurements used a 3.3 GeV polarized electron beam on the 20 cm unpolarized cryogenic targets.

For these runs, an engineered superlattice of doped GaAs semiconductor layers was used as

the photocathode in the polarized source, which yielded an electron beam intensity of 35 to 55

µA with a polarization of about 85%. As with the previous HAPPEX measurement, elastically-

scattered electrons from the hydrogen target were focused by the two identical high-resolution

spectrometers onto total-absorption calorimeter detectors, but this time at θlab ≈ 6◦, which was

achieved by using superconducting septum magnets. In these measurements, the detectors were

made of alternating layers of brass and quartz, positioned so the Čerenkov light from the scattered

electrons were collected by the phototube at the end of the detector. The phototube signals were

integrated over the duration of the helicity window (1/30 s), and read out by the DAQ.

Results from these measurements were published in 2005 after the first data-collection period

had ended [184,185], and the final results of the complete data set have been recently published in



67

-1.5 -1 -0.5 0 0.5 1 1.5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
sG

M
sG

He (’04)4HAPPEX-

HAPPEX-H (’04)

He (’05)4HAPPEX-

HAPPEX-H (’05)

FIG. 3.6: The recent HAPPEX results plotted in the Gs
E versus Gs

M plane. The ellipses indicate the
68% and 95% confidence levels. Data taken from [184–186].

2006 [186]. The hydrogen measurement at this forward angle is sensitive to the linear combination

of Gs
E and Gs

M . However, since 4He is a spin = 0, isospin = 0, target, there are no contributions

from the magnetic or axial vector currents, and the measured asymmetry can be directly related

to Gs
E with some knowledge of the 4He nucleus.

The measurement on hydrogen yielded an asymmetry of

Ap(Q
2 = 0.109) = −1.58 ± 0.12stat ± 0.04sys ppm, (3.12)

which gives an extraction for the linear combination of

(Gs
E + 0.09Gs

M )(Q2 = 0.109) = 0.007 ± 0.011± 0.006, (3.13)

where the first error quoted is from the experiment and the second is from the electromagnetic

form factor data [186].

For the measurement on helium, an asymmetry of

A4He(Q
2 = 0.077) = +6.40 ± 0.23stat ± 0.12sys ppm, (3.14)

was measured. This gives an extraction for the strange electric form factor of

Gs
E(Q2 = 0.077) = 0.002 ± 0.014± 0.007, (3.15)
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where the first error quoted is statistical and the second is systematic, including those from radiative

corrections and electromagnetic form factors [186]. The HAPPEX results are shown in Figure 3.6

in the Gs
E versus Gs

M plane. Because the measurements were done on both hydrogen and 4He, a

complete separation of Gs
E and Gs

M is possible, and the values of

Gs
E = −0.005± 0.019 and Gs

M = 0.18 ± 0.27 (3.16)

were obtained for Q2 = 0.1 (GeV/c)2. Both are consistent with zero at this Q2.

The HAPPEX collaboration is preparing for another measurement at a higher Q2 of ∼ 0.6

(GeV/c)2 in the future, which will be discussed in Section 7.1.

3.3.3 PVA4 at MAMI

Another experimental program to measure parity-violating asymmetries with the goal of de-

termining the strange quark contribution to the magnetic and electric form factors is the PVA4

experiment that is being carried out at the Mainzer Mikrotron accelerator facility (MAMI) in

Mainz, Germany. As with the previous experiments, there are several measurements that make

up the experimental program for PVA4. The experiment has completed two measurements of the

parity-violating asymmetry at forward electron scattering angles between 30◦ < θe < 40◦ on liquid

hydrogen targets. The collaboration is currently taking data for a backward-angle measurement

at about 145◦, which will be discussed later in this section and in Section 7.1.

The experiment uses a somewhat different approach to the previous experiments, in that the

experiment utilized a counting technique to collect the data from the scattered particles, which

is feasible in spite of the very high scattered electron rates because of the segmented detectors

and specialized electronics. The custom-built detector system is azimuthally symmetric around

the beam axis, and has no magnetic field. A schematic of the experimental configuration for the

forward-angle measurement is shown in Figure 3.7. The forward-scattered electrons from the liquid

hydrogen target were detected by a lead fluoride (PbF2) Čerenkov total-absorption calorimeter,

which consisted of 1022 PbF2 crystals arranged in seven rings. The calorimeter accepted elastically
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FIG. 3.7: A schematic of the PVA4 experimental
apparatus. The left side is a schematic of the lead
fluoride calorimeter with the electron beam coming
in from the left at about 2.2 m from the floor. The
secondary ring of detectors are eight water-Čerenkov
luminosity monitors. The right side is a schematic
of the readout electronics, which stands about 3 m
high. Figure taken from [187].

C
o
u
n
ts 1800

1600

1400

1200

1000

800

600

400

200

0

x 102

 ∆

 

Elastic Cut

Elastic Cut

Elastic Peak

ADC-Channel 32

0 50 100 150 200 250

π
0

FIG. 3.8: A histogram showing the energy spectrum
of accepted particles from the hydrogen target into
the PVA4 lead fluoride calorimeter. The dashed red
histogram is the raw energy spectrum, and the solid
black is the spectrum corrected for the differential
non-linearity of the ADC. The position of the elas-
tic scattering peak, the threshold for π0 production,
the position of the ∆ resonance, and the position of
the cuts used for the experiment are all indicated.
Figure taken from [188].

scattered electrons from 30◦ < θe < 40◦ as well as inelastic electrons and photons from π0 decays.

The Čerenkov photons from the particles that were detected in the PbF2 crystals were collected

by phototubes. An energy deposition by the particles above a specified threshold triggered the

digitization of the summed output of the signals from clusters of nine crystals, in which the charge

was integrated over 20 ns and histogrammed to produce an energy spectrum of the scattered

particles. The separation of the signal of the elastic electron scattering events from the inelastic

background events was done based on their different deposits of energy in the PbF2 crystals of

the calorimeter. A typical energy spectrum is shown in Figure 3.8. The experiment used a 20

µA beam of electrons at about 80% polarization from a strained GaAs source, as measured by a

Møller polarimeter in another experimental hall. The electron helicity was flipped every 20 ms for

both measurements. The experiment also had eight water Čerenkov luminosity detectors placed

symmetrically around the beamline at very small forward angles to monitor the target density.

As a forward-angle experiment, the measured asymmetry is sensitive to a linear combination

of Gs
E and Gs

M . The first PVA4 forward-angle measurement was at a beam energy of 855 MeV,
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at Q2 = 0.230 (GeV/c)2. For this measurement, only half (511 of 1022) of the channels for the

detector and corresponding electronics were instrumented. They measured the asymmetry to be

Ap(Q
2 = 0.230) = −5.44 ± 0.54stat ± 0.26sys ppm, (3.17)

which gives the extracted value of

(Gs
E + 0.225Gs

M)(Q2 = 0.230) = 0.039± 0.034 (3.18)

for the linear combination [188]. The expectation from the standard model assuming no strangeness

contribution to the vector current is Anvs(Q
2 = 0.230) = −6.30 ± 0.43 ppm. The experiment

reported a linear combination at this Q2 that is positive, and the result hints that either Gs
E and

Gs
M are both small or have opposite signs and largely cancel each other.

The second PVA4 forward-angle measurement made use of the fully operational detector (all

1022 channels). The measurement was at a beam energy of 570.4 MeV, at Q2 = 0.108 (GeV/c)2,

and yielded an asymmetry of

Ap(Q
2 = 0.108) = −1.36 ± 0.29stat ± 0.13sys ppm, (3.19)

which gives the extracted value of

(Gs
E + 0.106Gs

M)(Q2 = 0.108) = 0.071± 0.036 (3.20)

for the linear combination [189]. The prediction from the standard model assuming no strangeness

contribution to the vector current is Anvs(Q
2 = 0.108) = −2.06±0.14 ppm. Again, the experiment

reported a value for the linear combination as positive, this time 2σ from zero.

After the completion of the forward-angle measurements of the experimental program, the

PVA4 apparatus was turned around and modified for a series of backward-angle measurements.

A double-ring of 72 scintillator counters that each cover 14 of the PbF2 detectors were added to

the detector system. These are used for electron tagging to differentiate the electrons from the

photon background coming from π0 decay at the measurement beam energy of 315 MeV [190].

The first back-angle measurement used a 20 µA of 315.1 MeV beam at a Q2 of 0.230 (GeV/c)2.
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Beam Q2

Energy (GeV/c)2
θlab Aphys (ppm) Target

SAMPLE-I 200 MeV 0.1 ∼ 145◦ −5.61 ± 0.67 ± 0.88 H
SAMPLE-II 200 MeV 0.1 ∼ 145◦ −7.77 ± 0.73 ± 0.72 D
SAMPLE-III 125 MeV 0.038 ∼ 145◦ −3.51 ± 0.57 ± 0.58 D
HAPPEX-H-I 3.2 GeV 0.477 ∼ 12.3◦ −15.05± 0.98 ± 0.56 H
HAPPEX-H-II 3.3 GeV 0.109 ∼ 6◦ −1.58 ± 0.12 ± 0.04 H
HAPPEX-He 3.3 GeV 0.077 ∼ 6◦ +6.40 ± 0.23 ± 0.12 4He

A4 855 MeV 0.230 ∼ 35◦ −5.44 ± 0.54 ± 0.26 H
A4 570.4 MeV 0.108 ∼ 35◦ −1.36 ± 0.29 ± 0.13 H
A4∗ 315 MeV 0.230 145◦ −17.1 ± 1.4 H

TABLE 3.1: A summary of the measurements of parity-violating asymmetries from strange-quark con-
tribution experiments prior to G0. An asterisk (∗) indicates a preliminary result. The data are taken
from the publications, with the exception of the preliminary results, which are taken from presenta-
tions by the collaborations. The first and second error bars on the measured asymmetry A⊥ designate
statistical and systematic uncertainties, respectively.

The collaboration has reported a very preliminary result of APV = (−17.1 ± 1.4) ppm, but the

analysis and the data-taking are still ongoing at the time of this writing [191]. We are looking

forward to these results in the near future.

The PVA4 collaboration has other backward-angle measurements with a deuterium target and

at different beam energies planned, which will be discussed in Section 7.1.

3.3.4 Summary of Previous PV Experiments

A summary of the existing measurements of the asymmetries from related parity-violation

experiments prior to or concurrent with the G0 experiment is displayed in Table 3.1, from the

published results of data taken from [180,183,186,188,189,191]. It is important to note that these

data have been taken on different targets and at various kinematics, so not all of the asymmetries

are sensitive to the same strange form factors. However, most of the measurements have been

focused on measurements at lower Q2 values, so it is evident that more investigation must be done

at higher momentum transfer settings.

The extracted values for the linear combination of the strange electric and magnetic form

factors Gs
E + ηGs

M from the measured asymmetries in the forward-angle experiments are shown in
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Table 3.2 from the published results of data taken from [183,186,188,189]. The published results

from the measurements at Q2 = 0.1 (GeV/c)2 (where most of the data have been measured) are

shown in the Gs
E versus Gs

M plane in Figure 3.9. Since these measurements have been done at

different kinematics and on different targets, the intersection of the bands yields the values of Gs
E

and Gs
M . These data give hints of possibly non-zero form factors, but nothing conclusive, making

it clear that more data is necessary, especially at higher Q2 values.

Beam Q2

Energy (GeV/c)2
θlab η Gs

E + ηGs
M

HAPPEX-H-I 3.2 GeV 0.477 12.3◦ 0.392 0.014± 0.022
HAPPEX-H-II 3.3 GeV 0.109 6◦ 0.09 0.007± 0.013
HAPPEX-He 3.3 GeV 0.077 6◦ 0 (Gs

E only) 0.002± 0.016
A4 855 MeV 0.230 35◦ 0.225 0.039± 0.034
A4 570.4 MeV 0.108 35◦ 0.106 0.071± 0.036

TABLE 3.2: A summary of the extracted values for Gs
E

+ ηGs
M

and average kinematics from the
indicated experiments at forward angles from the publications to date. The uncertainty for the linear
combination is the reported statistical and systematic uncertainties combined in quadrature. Note that
the extractions of Gs

E + ηGs
M by the various experiments have used different parameterizations of the

nucleon electromagnetic form factors in their published results.
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The values determined for Gs
M and G

e (T=1)
A by the SAMPLE experiment from the measured

asymmetries at a backward scattering angle were extracted from the data used two methods: using

the first data set and the theoretical value from [85], and by using their two data sets alone [180].

As measurements at backward angles are necessary to disentangle the strange electric, magnetic,

and axial form factors, it is clear that more measurements are needed to accomplish this.

The results of these experiments provide hints of possible non-zero strange form factors, but

are not at all conclusive, especially at higher values of Q2. As the G0 experiment will measure the

linear combination of Gs
E and Gs

M up to Q2 = 1 (GeV/c)2, and will perform a full separation at

Q2 = 0.23, 0.62 (GeV/c)2, providing information at higher Q2.

3.4 Previous Transverse Beam Spin Measurements

As parity-violating electron scattering experiments have achieved greater levels of precision

due to improvements in experimental techniques, it has become increasingly more important for

them to measure the parity-conserving transverse beam spin asymmetry as part of their systematics

studies in order to provide a constraint on the contribution of any systematic false asymmetry in

their measurement arising from any residual transversely-polarized beam component. However,

these data are also of interest in their own right because they can be analyzed to study two-

photon exchange processes. There are several experiments that have performed measurements of

the transverse beam spin asymmetry in elastic electron-photon scattering in order to investigate

two-photon exchange effects. This section discusses these experiments and their findings.

A key feature of most of these experiments is an azimuthally-symmetric detector in φ (around

the beam axis) that can be divided into sections, since if averaged over φ, the measured transverse

beam spin asymmetry averages to zero, but if divided into sections and plotted versus φ, the

sinusoidal dependence of the transverse beam asymmetry can be easily seen.
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3.4.1 SAMPLE at MIT-Bates

The SAMPLE Collaboration performed the first measurement of the transverse beam spin

asymmetry in elastic e-p scattering using the SAMPLE apparatus discussed in Section 3.3.1. For

the two data-taking periods of the measurement, the experiment used a 200 MeV transversely

polarized electron beam of an average current of 40 µA incident on the liquid hydrogen target. To

generate the transverse beam polarization required, the longitudinal electrons from the polarized

source were oriented using a Wien filter and a set of beam solenoids to be transverse to the beam

direction in the plane of the accelerator for one running period, and vertically polarized for the

other. The polarization of the beam, measured by a Møller polarimeter on the beamline, averaged

36.3± 1.8% for the measurements. The rest of the experimental configuration was the same as for

the primary SAMPLE parity-violation experiment, as described in Section 3.3.1. The data were

corrected for effects including the beam polarization, background dilution, and radiative effects

in the same manner as the other SAMPLE data. The transverse asymmetries were extracted for

each of the ten mirrors positioned at varying azimuthal angles φ around the beamline, although

the data for mirrors 4 and 5 and mirrors 6 and 7 were combined since they were positioned at the

same azimuthal angle (but different polar angles).

The combined measured asymmetry results from both running periods are shown in Figure

3.10 as a function of the azimuthal scattering angle φ. The data show a sinusoidal trend as

expected. From these measured asymmetries, the transverse beam spin asymmetry result was

found to be

A⊥(Q2 = 0.1) = −16.4± 5.9 ppm (3.21)

at an average electron laboratory scattering angle of 146.1◦, which corresponds to a value of

Q2 = 0.1 (GeV/c)2 [145, 180]. Figure 3.11 shows this result for A⊥ plotted versus the center-of-

mass angle along with a calculation by A. Afanasev for the collaboration for the transverse beam

spin asymmetry for elastic electron-proton scattering. This measurement demonstrated that two-

photon exchange observables were accessible by this technique, and were a possible systematic for
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FIG. 3.10: The combined measured transverse beam
spin asymmetries for the SAMPLE experiment.
The measured asymmetries are plotted as a function
of the azimuthal scattering angle φ. Figure taken
from [145].

FIG. 3.11: The SAMPLE extracted transverse
beam spin asymmetry result as a function of center-
of-mass angle compared to calculations by Afanasev.
Figure taken from [145].

parity-violation measurements.

3.4.2 PVA4 at MAMI

The PVA4 Collaboration also made measurements of the transverse beam asymmetry, both

as part of their systematics studies for their forward-angle parity-violating asymmetries measure-

ments, and in an effort to measure the imaginary part of the two-photon exchange amplitude. The

measurements were at a higher beam energy than SAMPLE and at a forward angle, so, unlike

the SAMPLE measurements, the PVA4 ones are sensitive to πN-intermediate states as well as the

ground state.

The experiment performed two measurements at a forward angle of θe ∼ 35◦ using the PVA4

apparatus (see Section 3.3.3). The experimental configuration was the same as for the primary

forward-angle parity-violation experiment, except that the longitudinally polarized electrons in

the beam from the source were rotated in the accelerator plane using a Wien filter, resulting in a

transverse polarization of about 80% as measured by a Møller polarimeter in another experimental

hall and by a transmission Compton polarimeter located in the hall between the liquid hydrogen

target and the beam dump. Averaging the asymmetries from all the detectors would result in zero
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FIG. 3.12: The measured transverse beam spin
asymmetries for the forward-angle PVA4 experi-
ment. The upper plot shows the data for a beam
energy of 569.31 MeV, and the lower plot for the
beam energy of 855.15 MeV. The measured asym-
metries are plotted as a function of the laboratory
angle φe. Figure taken from [156].
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since the φ dependence of the transverse asymmetry results in a complete cancellation averaged

over a φ-symmetric detector. Therefore, for these measurements the 1022 PbF2 crystal detectors

of the calorimeter were divided into eight sections (labeled 1 through 8) that each spanned a

range of about 45◦ in φ. For the first measurement at 855.15 MeV however, only 756 channels

had been installed, so data could only be taken for sectors 1, 2, 5, 6, and part of sector 8. The

transverse beam spin asymmetry data were analyzed using the same analysis method as for the

primary forward-angle parity-violation experiment described in [188], except that the data were

divided into the sectors. The data for each of the sectors are shown in Figure 3.12, along with the

sinusoidal fit to the data points.

The measurement at a Q2 = 0.106 (GeV/c)2 with a beam energy of 569.31 MeV yielded a
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FIG. 3.14: The PVA4 forward-angle transverse beam spin asymmetry results compared to predictions.
In the calculations from [140], the elastic contribution is denoted by the dashed-dotted line, the πN-
intermediate states (inelastic contribution) by the dashed line, and the full calculation by the solid line.
The dashed-double dotted line shows the calculation from Reference [153] that uses an effective theory
of electrons, protons, and photons. Figure taken from [156].

result of

A⊥(Q2 = 0.106) = −8.59 ± 0.89stat ± 0.75sys ppm, (3.22)

and the second measurement at a Q2 = 0.230 (GeV/c)2 with a beam energy of 855.15 MeV yielded

a result of

A⊥(Q2 = 0.230) = −8.52 ± 2.31stat ± 0.87sys ppm, (3.23)

where the two errors in both cases represent the statistical error and the systematic uncertainty

respectively [156]. These results are shown in Figure 3.13 with the calculations by reference [140].

They are also shown in Figure 3.14, along with two model calculations from references [140]

and [153]. The measurements show that the two-photon exchange contribution at these low-Q2

kinematics of Q2 = 0.106 and 0.230 (GeV/c)2 is largely dominated by the inelastic πN-intermediate

state of ∆(1232) resonance and higher resonances, as the contribution from the nucleon elastic state

(the dotted-dashed curve) is very small and the inelastic contribution (the dashed curve) dominates

the full calculation (the solid curve).

The PVA4 Collaboration also recently presented the preliminary results of their backward-

angle measurement of the transverse spin asymmetry using the PVA4 apparatus in its backward-
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FIG. 3.15: The PVA4 backward-angle transverse beam spin asymmetry preliminary results versus scat-
tering angle compared to calculations of [140], where the dotted line is for a beam energy of E = 855
MeV, corresponding to the square data point from the forward-angle measurement, the dashed line and
triangular data point are for E = 570 MeV, and the solid line is for E = 300 MeV with the circle for
the preliminary backward-angle point. Data points taken from [156] and [157]; figure from [157].

angle configuration from transverse beam spin data taken in March of 2006. With a 315 MeV

beam at a lab angle of θe = 145◦ at Q2 = 0.23 (GeV/c)2, the measurement yielded a preliminary

result of

Ael
⊥ = −87 ± 6stat ppm, (3.24)

where the error bar is statistical [157]. These preliminary results seem to be in agreement with

theoretical predications at Q2 = 0.23 and a beam energy of 315 MeV, as shown in Figure 3.15. We

look forward to their final results.

The PVA4 collaboration is presently taking more backward-angle data, and plan on conducting

transverse beam spin measurements at different Q2 values on liquid hydrogen and deuterium targets

(see Section 7.1).

3.4.3 HAPPEX at Jefferson Lab

Recently, the HAPPEX Collaboration showed preliminary results of a transverse beam spin

measurement taken with a hydrogen target during their 2004 run and the first measurement of the

transverse spin asymmetry on a nucleus, taken on a 4He target during their 2005 run period.
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Unlike the previously described experiments, HAPPEX does not have an azimuthally-symmetric

detector array around the beam axis, but instead has two high-resolution spectrometers positioned

with left-right symmetry. With the electron beam transversely polarized in the plane of the ac-

celerator, the measured asymmetry in the spectrometers would be zero because the ~Pe · n̂ term

(defined in the Section 2.7.1) introduces a sine dependence of Am
⊥ on the electron azimuthal angle

φe, with a zero crossing for the case where the scattering plane contains the incident electron po-

larization vector ~Pe. Because of this, the experiment required out-of-plane transverse polarization,

which was achieved with a Wien filter and an unbalanced counter-wound solenoid. This vertical

polarization was measured using the 5 MeV Mott polarimeter and the Hall A Møller polarimeter

with a tilted target foil. The rest of the experiment was in the usual parity-violation data-taking

configuration for HAPPEX (see section 3.3.2 and reference [186]).

From the measurement on a liquid hydrogen target with a beam energy of 3 GeV, at θlab ∼ 6◦

and Q2 = 0.099 (GeV/c)2 HAPPEX reported a preliminary result of

A⊥(Q2 = 0.099) = −6.58 ± 1.47stat ± 0.24sys ppm, (3.25)

where the first error is statistical and the second uncertainty is the systematic error on the mea-

surement. On the helium target, a preliminary measurement of

A⊥(Q2 = 0.077) = −13.51± 1.34stat ± 0.37sys ppm (3.26)

was reported for a beam energy of 2.75 GeV, with θlab ∼ 6◦ and Q2 = 0.077 (GeV/c)2 [161].

The preliminary HAPPEX asymmetry result for hydrogen agree well with the calculations

by Afanasev and Merenkov [148]. The transverse asymmetry calculation for 4He by Cooper and

Horowitz predicts a magnitude on order of 10−10 for the HAPPEX kinematics, assuming that the

nucleus remains in the ground state at all times [192]. As the HAPPEX transverse asymmetry

results for 4He are 5 orders of magnitude larger than this, the excited states of the nucleus must

have a significant contribution to the asymmetry. Another prediction using the optical theorem

to relate the transverse asymmetry to the total photoabsorption cross-section was in reasonable

agreement [193].
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Beam Energy Q2 (GeV/c)2 θlab A⊥ (ppm) Target

SAMPLE 200 MeV 0.1 146.1◦ −15.4± 5.4 H
A4 569.31 MeV 0.106 ∼ 35◦ −8.59± 0.89 ± 0.75 H
A4 855.15 MeV 0.230 ∼ 35◦ −8.52± 2.31 ± 0.87 H

HAPPEX∗ 3 GeV 0.099 ∼ 16◦ −6.58± 1.47 ± 0.24 H
HAPPEX∗ 2.75 GeV 0.077 ∼ 6◦ −13.51± 1.34 ± 0.37 He

A4∗ 315 MeV 0.23 145◦ −87 ± 6 H

TABLE 3.3: A summary of the measurements of the transverse beam spin asymmetry prior to G0. An
asterisk (∗) indicates a preliminary result. The data are taken from the publications, with the exception
of the preliminary results, which are taken from presentations by the collaborations. The first and
second error bars on the measured asymmetry A⊥ designate statistical and systematic uncertainties,
respectively.

3.4.4 Summary of Previous Transverse Measurements

A summary of the existing world data from measurements of the transverse beam spin asym-

metry by other experiments prior to the G0 experiment is displayed in Table 3.3 (data taken from

references [145, 156, 157, 161]). As with the data shown from the parity-violation experiments,

it is important to note that these measurements have been done at both forward and backward

angles, as well as on different targets. The data suggest that two-photon exchange processes could

be a sizable contribution to the radiative corrections for measurements of the electric form factor

using Rosenbluth separation. However, these data are insufficient to extract the real part of the

two-photon exchange amplitude from the measurement of the imaginary part of the two-photon

exchange amplitude in order to cross check with model calculations to resolve the discrepancy

observed in measurements of the elastic form factors, so more investigations into two-photon ex-

change effects are clearly necessary. The results also suggest that the transverse asymmetry could

be a potential systematic uncertainty for parity-violation experiments as these experiments reach

new levels of precision, implying that An cannot be considered negligible in future experiments

and that a good understanding of these effects is necessary.
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3.5 Remarks on Previous Experiments

As can be seen in this chapter, there have been other contemporary experiments with the goal

of measuring the strange-quark contributions to the vector structure of the nucleon. However, most

of these experiments have been performed at lower Q2 values. The results of these experiments

provide hints of non-zero strange form factors, but are not at all conclusive. As was discussed in

Section 2.10, the G0 experimental program is unique in its ability to measure the linear combination

of the strange electric and magnetic proton form factors for 18 Q2 values over the range of 0.1 <

Q2 < 1.0 (GeV/c)2 simultaneously, allowing researchers to study the possible Q2 evolution of the

linear combination Gs
E + ηGs

M . Combined with the anticipated backward-angle measurements,

the G0 experiment will also be able to perform a complete separation of the strange electric

(Gs
E), magnetic (Gs

M ), and axial (Ge
A) form factors for two of these Q2 points. Along with the

complementary experimental programs discussed in this chapter, these measurements should help

give a better understanding of nucleon structure. In the following chapters, a description of how

the G0 experiment achieved these challenging goals is discussed.



CHAPTER 4

The G0 Experimental Apparatus

Designing an experiment that meets all the demands of both forward and backward-angle

measurement configurations in addition to all the other demands of parity-violation experiments

is quite challenging. This chapter discusses how these challenges were overcome and describes the

equipment constructed to accomplish this (for the forward-angle phase of the experiment).

4.1 The G0 Experiment

The G0 experiment used the technique of parity-violating electron scattering to measure tiny

parity-violating asymmetries to determine the strange quark contributions to the properties of

the nucleon. For the G0 forward-angle measurement, the polarized electrons from the accelerator

were incident on a liquid hydrogen target located inside a superconducting magnet system (SMS),

as shown in Figure 4.1. The trajectories of the recoiling protons from the target were bent by

the toroidal field of the SMS and focused onto arrays of scintillating detectors (called focal plane

detectors, or FPDs) placed on the focal plane of the spectrometer. In order to identify elastic

proton events from the background of positively-charged pions (π+) and inelastic protons, the

time-of-flight (ToF) of the particles from the target to the detectors was used. From the rates

82
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FIG. 4.1: A schematic of the particle trajectories from the target to the detectors in the G0 Spectrometer.

measured in the detectors, the parity-violating asymmetry could be determined.

4.1.1 Experimental Technique

The principle of parity-violation in electron scattering is elegant and straightforward. The

incident electron beam is polarized either parallel (referred to as right-handed or positive electron

helicity) or anti-parallel (left-handed or negative electron helicity) to the beam momentum. The

target for the experiment is unpolarized, and the outgoing particles from the interaction are de-

tected at a particular scattering angle. The relative difference of the detected rates between the

two electron helicity states is the parity-violating asymmetry, defined as

A =
h+ − h−

h+ + h− , (4.1)

where h+ denotes the measured rate in the positive helicity state and h− is the measured rate in

the negative helicity state.

Due to the dominance of the parity-conserving electromagnetic interaction, the size of this

parity-violating asymmetry is exceedingly small, only on the order of 10−4Q2, where Q2 is the

four-momentum transfer in units of (GeV/c)2. Therefore, the asymmetries are usually measured

in ppm, or parts-per-million.



84

4.1.2 Experimental Design

The concept of the parity-violation technique in electron scattering is very elegant, but it is

also very difficult due to the minuscule size of the effects, only a few parts-per-million, that this

technique is used to measure. All sources that could introduce a false asymmetry (an asymmetry

other than the one desired to be measured) must be either eliminated, or failing that, minimized

as much as possible and then thoroughly studied, understood, and corrected for through measure-

ments of the false asymmetry.

The asymmetries were expected to range in size from about −2 ppm (at the lowest forward-

angle Q2) to about −70 ppm (the highest Q2 in backward-angle). In order to measure these small

asymmetries with a relative precision of a few percent, the statistical and systematic uncertainties

needed to be very small, less than 10−7. However, there were other aspects that had to be

considered in the design. To accomplish the entire experimental program, the system had to be

capable of both forward and backward angle measurements. As measurements on both liquid

hydrogen (for forward and backward-angle measurements) and liquid deuterium (backward-angle

only) were necessary, the cryogenic target had to be designed to handle both. The detector systems

had to be capable of handling both configurations (forward and backward), as well as have a method

for the rejection of background events.

Beamtime is a limited resource. The statistical uncertainty is ∆A = 1/
√

Ntot, where Ntot is

the total number of detected events, so a great many events are needed (1013 – 1014!) to reach the

desired statistical precision of about 5%. To measure each asymmetry at each momentum transfer

Q2 individually for the amount of time needed for a precise measurement of quantities of a few

ppm is prohibitive. Therefore, the system needed to be able to measure the full range of Q2 from

0.1 to 1.0 (GeV/c)2 simultaneously.

As the statistical uncertainty depends on the number of events, the more quickly the events

are collected, the more quickly the desired statistical uncertainty is attained. This can be done

by using a combination of high luminosity and large solid angle acceptance. To achieve a high
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luminosity, G0 used a relatively high beam current (intensity) of 40 µA, and a long target (20 cm)

to achieve a luminosity of about 2 × 1038 cm−2 s−1 [194]. To achieve the second requirement, the

experiment used a large-acceptance magnetic spectrometer that detects recoiling protons from the

target in the forward-angle measurement, and backward-scattered electrons in the backward-angle

measurement.

The spectrometer was designed to have a solid-angle acceptance of about 0.9 sr, which corre-

sponds to an acceptance range of about 55◦ to 75◦ for forward-angle elastic scattering at a beam

energy of 3 GeV. The acceptance is flat along the entire length of the target, with the optics of the

spectrometer designed so that particles with the same momentum transfer are focused onto the

same surface in the focal plane of the spectrometer, no matter where they originate from along the

target length. This design allows the full range of momentum transfers in the forward-angle to be

measured simultaneously, and corresponds to a single momentum transfer in the backward-angle

measurements. However, even with this design, to reach the desired statistical precision, about

700 hours of total beamtime were needed.

By reversing the spectrometer with respect to the beam direction, the same spectrometer can

be used for both forward and backward measurements. By detecting the recoiling protons at a lab

scattering angle of about 70◦ in the forward angle measurement, and backscattered electrons at

about 110◦ in the backward-angle measurement, the separation of the Gγ
EGZ

E and Gγ
MGZ

M terms

can be done. In the forward-angle measurement, ToF was used to reject background particles.

However, the background rejection must be done differently for the two measurements, since the

time-of-flight technique will not work for the relativistic electrons. In addition, Q2 varies slowly

with angle in the backward direction, and so separate measurements with different beam energies

are required to span the desired range of momentum transfer.

The success of attaining the desired small systematic uncertainties predominantly rests on the

beam quality, and the ability to control and accurately monitor that quality is critical. Precision

control of the intensity, alignment, and polarization of the laser used to drive the polarized beam
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Parameter Value
Beam energy E 3.0 GeV
Beam current I 40 µA

Target type LH2

Target length 20 cm
Proton momentum p 350 – 1130 MeV/c

Scattering angle θp
elastic 52.0◦ − 76.50◦

Momentum transfer Q2 0.12 − 1.0 (GeV/c)2

Azimuthal acceptance ∆φ 0.44 · 2π
Solid angle∆Ωelastic 1.07 sr

Average field integral
∫

~B · ~dl 1.6 T.m

TABLE 4.1: A summary of parameters for the forward-angle measurement, thus corresponding to elastic
protons.

source keeps the changes in the beam parameters associated with the helicity change of the beam

electrons very small. In addition, the azimuthal symmetry (with each of the eight octants having

an opposing octant) of the spectrometer allows the cancellation of any small helicity-correlated

beam motion effects (to lowest-order) when the detected rates are summed over all the detectors.

Since the key to a parity-violation experiment is first doing the measurement, and then the

“mirror-image” of the measurement, which for us is the flipping of the electron helicity, it is very

important that this be accomplished without altering any other beam parameters. In the exper-

iment, the electron helicity was flipped at 30 Hz (33.33 ms) in a pattern chosen pseudorandomly

to avoid linear drifts over the timescale of the sequence and to cancel out any 60 Hz noise [195].

In order to separate the elastic protons from the background particles, time-of-flight is used

(instead of explicitly measuring the trajectories) to determine particle momentum. However, the

time-of-flight of the elastic protons from the passage of the beam through the target to the detectors

is about 20 ns, much longer than the usual 2 ns spacing of the electron beam bunches at Jefferson

Lab. Therefore, the experiment used a special 31.1875 MHz pulsed laser to drive the polarized

source, which produced a beam with a spacing of 32 ns between the electron bunches. Because

of the spectrometer optics and the kinematics of the experiment, the background particles in a

given detector actually arrive earlier, pions at 7 ns and inelastic protons after the pions but before

the elastic protons. As with all the other signals in the experiment, it is important that the start
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signal for the ToF (which is generated by the passage of the beam through the target) be not only

accurate, but also not correlated with the helicity-reversal of the beam.

The choice of having high luminosity to gain the needed statistics means that the rates will

be relatively high, so the choices of detectors and electronics for the forward-angle measurement

are driven by the need to handle these high rates. Because of this, the spectrometer is segmented

into eight arrays, or octants, of detectors. The magnet focuses the protons of a particular Q2 onto

a particular area on the focal plane of the spectrometer, so by placing separate detectors in these

areas on the focal plane, a separation by Q2 can be achieved. The detectors are arc-shaped to

follow a particular Q2, with the widths chosen to give a good resolution in Q2 but limiting the rate

to about 2 MHz (half of which comes from the elastic protons of interest, and half from background

pions and inelastic protons). The detectors are made up of pairs of plastic scintillators (pairs so

as to reduce the background from neutrals by requiring a coincidence), with photomultiplier tubes

at each end of the light guides from the detectors. A coincidence of the mean-timed signals from

the scintillator pair in a detector defines an elastic proton event.

Since particle identification required time-of-flight, a system of electronics was used that counts

the rates from the detectors instead of the charge-integrating systems usually used in parity-

violation experiments. This meant that electronics deadtime introduced by the high rates would

be an issue and would have to be corrected for carefully. The deadtime was corrected directly

from singles measurements, and any helicity-correlated effects from it were corrected with other

helicity-correlated parameters such as the beam position. The spectra containing the time-of-flight

information were then read out for every beam pulse (33.33 ms) by the custom time-encoding

electronics.

Each of the subsystems of the experiment were carefully designed and built to meet the

stringent requirements of this measurement, as can be seen in the following sections.
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4.2 Jefferson Lab Accelerator

The forward-angle measurement took place in Hall C at Thomas Jefferson National Accelerator

Facility (TJNAF or Jefferson Lab) in Newport News, Virginia. The equipment was commissioned in

dedicated commissioning runs, the first one beginning in October 2002 and the second in November

of 2003. The forward-angle production data taking finally started in January 2004, ending in May

2004.

The G0 experiment typically made use of 40 µA of a 3 GeV polarized electron beam deliv-

ered into experimental Hall C by the CEBAF (Continuous Electron Beam Accelerator Facility)

accelerator at Jefferson Lab. The CEBAF accelerator has the ability to deliver continuous electron

beams of different energies (from 1 to 6 GeV) simultaneously to three experimental endstations,

Halls A, B, and C. The polarized electron beam available at Jefferson Lab is very clean, with little

beam halo and small helicity-correlated differences in beam properties such as charge, position,

and angle, making the lab the ideal place to conduct a precision parity-violation measurement like

G0. The beam is only approximately continuous, as in reality the beams are pulsed with a very

high repetition rate, usually 499 MHz for normal running. However, for the G0 experiment the

Hall C beam had a repetition rate of 31.1875 MHz to allow for a good measurement of the particle

flight time. The accelerator can be divided into several major components: the injector region,

the recirculating arcs, the linear accelerators (LINACs), and the beam switchyard.

To generate the electron beams for each of the three halls, each hall has an individual laser

that is pulsed at 499 MHz and offset in phase by 120◦ from each other. The circularly-polarized

light from the lasers illuminate a common photo-cathode, where electrons are emitted by the

photo-electric effect. The timing of the three beams is determined by the timing of the pulses

of the three lasers for each of the halls. These electrons are then accelerated by a cathode gun

to about 100 keV, where they then pass through a pre-buncher and a chopper cavity. These

elements ensure the timing and the longitudinal spread of the three electron beams. The chopper

operates at 499 MHz and provides three slits for the three individual beams destined for each of the
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experimental halls. The electrons are then accelerated up to about 500 keV, before passing though

two superconducting radio-frequency (SRF) cavities that provide more bunching and accelerate

the beam to about 5 MeV. The electrons then pass through two more modules, each containing

eight SRF cavities. They accelerate the beam to on average 45 MeV, before passing through a

chicane and entering the main accelerator [196].

The CEBAF accelerator has a fundamental operation frequency of 1497 MHz and consists

of two SRF LINACs joined by two 180◦ recirculating arcs. A diagram of the racetrack layout

of the accelerator is shown in Figure 4.2. Each LINAC has 20 SRF cavities, and with each pass

through a LINAC the electrons gain a maximal energy of 600 MeV, for a maximum of about 6

GeV in five passes through the entire machine. The beams at each pass have different energies,

so at each recirculating arc they require different bending fields to make the turn. To account for

this, the beam is split into several beams as it exits the LINAC by a series of magnets that deflects

the beams of different energies into the different beamlines. At the end of each arc the reverse

happens, and the beams are recombined vertically into one before entering the LINAC for further

acceleration. The beams of various energies are extracted to be delivered to the three experimental

halls by RF separators located at the exit of the south LINAC. The separator cavities operate at

499 MHz, and can be tuned to extract the beam bunches of the desired energy for any one hall

without interfering with the acceleration of the remaining bunches [197]. The extracted beams

then enter the beam switchyard, where they are deflected into Halls A, B, or C according to their

different timing.

4.3 The Polarized Electron Beam for G0

The rigid requirements of parity-violating electron scattering experiments, driven by the need

for high statistical precision and low systematic uncertainties, demand an electron beam with

three major characteristics: high intensity, high polarization, and stable high quality. As the

asymmetries of interest are so small, false asymmetries introduced by properties of the beam that
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FIG. 4.2: A diagram of the layout of the CEBAF accelerator. Figure from [196].

change with the helicity change can easily skew the measurement. Ideally, only the helicity of the

beam should change when the spin-flip occurs, but in reality, many things can change with the

helicity change. Any asymmetry that comes from these other changes is in addition to the desired

one, and is thus a helicity-correlated false asymmetry. These false asymmetries must be corrected

for and removed. Therefore, the ability to control and accurately measure the beam properties

is essential, as any false asymmetries arising from these properties must be minimized, and any

corrections made because of the beam properties must be small and well understood. In addition

to these requirements, the forward-angle G0 measurement required a very different time structure

than what is standard at Jefferson Lab, which created some unique challenges.

4.3.1 The Polarized Source

The highly polarized electron beam produced at Jefferson Lab is produced by shining cir-

cularly polarized laser light onto a strained gallium arsenide (GaAs) photocathode, where the

polarized electrons are generated by photoemission. The linearly polarized light from the tita-

nium(Ti)::sapphire G0 laser is converted into circularly polarized light by a Pockels cell. A Pockels
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cell is a birefringent crystal where the indices of refraction vary in direct proportion to the voltage

applied to it. The voltage applied to it effectively makes the Pockels cell a λ/4 (quarter-wave)

plate, which converts the linearly polarized laser light into left- or right- circularly polarized light.

When the circularly-polarized laser light shines upon the GaAs crystal, electrons escape the crystal

via the photoelectric effect, and have a net polarization due to the incident photon’s polarization

and the allowed transitions in the GaAs crystal. The choice of left- or right- circularly polarized

light incident on the the GaAs crystal determines the helicity state, “h+” or “h−”, of the emitted

electrons [174]. At Jefferson Lab, the system is made up of three lasers (one for each experimental

hall) and two identical 100 kV DC photoemission electron guns, although only one is used at any

time (with the other held in readiness) [198, 199].

The strained-layer GaAs crystals used as photocathodes for the G0 experiment are able to

produce electron beam polarizations of about 75% at the beam current needed for the experiment

(40 µA). Before being used, the cathodes are prepared by a brief atomic hydrogen cleaning in a

dedicated chamber, transferred to the desired electron gun under nitrogen purge and bath, and

then baked. To establish a negative electron affinity surface on the cathode, it is then heated

and activated with cesium and nitrogen tri-fluoride. The laser light shines on the photocathode

through a vacuum window, emitting radio-frequency electron pulses with widths of ∼ 100 ps

that are synchronous to subharmonics of the CEBAF accelerating frequency of 1497 MHz. The

polarized electrons from the cathode are then focused and accelerated by the electrode structure

of the gun to a kinetic energy of about 100 keV.

The G0 experiment required a spacing of 32 ns between the beam pulses (a frequency of 31.1875

MHz) in order to use ToF for particle identification. Two challenges immediately arose from this

requirement. First, a new laser was needed to provide 31.1875 MHz, so a high-power Ti-Sapphire

one was purchased from Time-Bandwidth Products, which could provide tunable wavelengths from

770 nm to 860 nm. For the forward angle measurement it was run at a wavelength of 840 nm,

where it provided a power output of 300 mW. With a typical quantum efficiency of ∼ 0.15% for the
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photocathode, the electron beam polarization was about 75%, with the required 40 µA of beam

current.

The second challenge that arose came from space-charge effects. A high average current at

a low repetition rate means that the peak current is large. With the beam current of 40 µA

and the timing of 31 MHz required by the G0 forward-angle measurement, the peak charge was

1.3 pC per micropulse, much higher than the more typical 0.2 pC of 100 µA at 499 MHz in the

usual high-current operation at CEBAF. Due to this high peak charge, the resulting space-charge

effects caused significant emittance growth in the beam pulses in the low energy (100 keV and 5

MeV) regions of the injector. This caused significant transmission losses and poor quality beam.

However, the beam transport optics could not simply be re-optimized for 1.3 pC beam pulses, as

the injector had to be capable of simultaneously delivering beam to three experimental halls, all of

which have their own stringent demands that also depend on the injector tune. By modifying the

injector hardware, tuning procedures, and typical laser parameters, and by stabilizing RF systems,

an optics tune was developed was developed that satisfied both the requirements for G0 and for

other experiments running in the other experimental halls [194].

Because many of the potential sources of systematic false asymmetries originate in the polar-

ized source, it is very important to carefully set up the optics on the laser table. It is also important

that the random noise fluctuations in the intensity and direction of the emitted laser light be very

small. The observations in Hall C at 30 Hz confirmed that the random noise was < 0.1% for

intensity and < 10 µm for the centroid of the beam position, well below our specifications [194].

The polarization of the laser light, and thus the helicity of the beam electrons, was changed

every 33.333 ms (30 Hz), which is called a macro-pulse (MPS). The MPS was the primary data-

taking period for the experiment, and was chosen to be equivalent to twice the period of the

power line voltage (60 Hz line frequency). This was done to reduce the possibility that slow drifts

over time may affect the asymmetry measurement. By collecting signals from the experiment

over this period, the dominant 60 Hz line noise present in the electron beam properties and in
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electronic signals are effectively averaged out. Furthermore, to ensure the exact cancellation of

linear drifts over the timescale of a sequence, the helicity signals are generated in quartets: +−−+

or −++−, where the first member of the quartet is chosen pseudo-randomly (by a pseudorandom

number generator) and the next member is the complement of the first. The change between the

right and left-circularly polarized light is determined by the Pockels cell, which is driven by high

voltage power supplies set to approximately ±2.5 kV, corresponding to ±λ/4 phase retardation

at the wavelength for the experiment [194]. The switching itself was accomplished by sending the

outputs of the HV supplies into a HV switcher that selects which supply output drives the Pockels

cell depending on the state of a control signal, known as the helicity control signal. The helicity

control signal and other important timing signals for the experimental electronics were generated

by the helicity control electronics. At the transition, the Pockels cell is set to the new state, and

then the helicity information signals “h+” and “h−” were sent to the G0 electronics in the Hall C

counting house from the polarized source helicity control box in “delayed reporting mode”, where

they were delayed by a preset number of 30 Hz pulses [195]. These signals are used to designate

the helicity of a given MPS, although the labels “h+” and “h−” only describe the helicity state

and its complement, respectively, and do not necessarily contain the state that the label implies,

as will be discussed below. The initial helicity state is also accompanied by another signal, called

the QRT signal. This QRT signal is what notifies the electronics that a new sequence of four MPS

has begun. After each MPS, there is a wait period of approximately 500 µs to ensure that the

Pockels cell has stabilized after a helicity change. During this wait period, no data is taken in the

experiment, and all the scalers are read out. [194].

Cross-talk of the helicity signal with the other electronic signals in the experiment could lead

to a false asymmetry, so all the signals from the helicity generation electronics were delivered by

fiber optic cable from the injector, insuring complete ground isolation of these electronics from

the remainder of the experimental electronics. Using the “delayed reporting mode” makes the

possibility of cross-talk even more improbable, as in this mode the helicity signal reported to the
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experimental electronics is delayed by eight MPS signals relative to the actual helicity signal sent

to the Pockels cell HV switch. The true helicity is then reconstructed in the analysis software using

knowledge of the pseudorandom pattern. [194].

As a systematics check, the G0 experiment used an insertable half-wave plate (IHWP) on

the laser table. The insertion of this IHWP reverses the helicity of the beam electrons with

respect to the helicity signal reported to the G0 electronics, so that the electrons labeled as “h+”

are flipped to the opposite helicity state than they were formerly. The parity-violating physics

asymmetry reverses sign, but any electronics asymmetry does not under the insertion or removal

of the IHWP. Since all other aspects of the experiment have remained the same, any helicity-

correlated differences in the electronics become apparent when physics asymmetries from data

taken with the IHWP in and out are summed together, and will tend to cancel when added with

the proper correction for the true helicity state of the beam. If there are no helicity-correlated

differences present in the electronics, the physics asymmetries summed over the two IHWP states

will be zero. In addition, this helps to cancel the effects of helicity-correlated beam position effects.

As the polarization reported by the Møller analyzer is calculated from the Møller asymmetry

measured by the polarimeter, the sign of the Møller asymmetry also changes sign with the IHWP

setting. This causes the polarization to be reported as positive or negative, depending on the

actual helicity of the beam electrons in that IHWP setting. It is by this information that the

actual helicity of the electrons is determined (see Section 5.2.2.3).

4.3.1.1 Beam Position and Intensity Feedback

As false asymmetries originating from the beam are a primary concern in this experiment, it

is important to minimize the helicity-correlation in the beam properties. For G0, active feedback

systems were implemented in the polarized source to do this for the intensity (current), position,

angle, and energy.

Helicity-correlated intensity and position differences in the beam originate with the Pockels

cell that controls the helicity of the laser light as described earlier in Section 4.3.1. As with



95

most real-world objects, the Pockels cell does not provide perfectly circularly polarized light,

but mostly circularly polarized light with a small residual bit of linearly-polarized light. The

linearly-polarized components are transported differently by the optical elements depending on

the polarization direction. As the polarization direction varies with the state of the Pockels cell, a

helicity-correlated variation in the laser intensity results, which causes intensity variations in the

electron beam produced by the laser light. Helicity-correlated position differences are caused in a

similar manner, for example, from birefringence gradients in the Pockels cell [194].

Not all helicity-correlated effects are caused by the interaction of the laser light with the

optical elements, though. Some are caused by the interaction of the laser light with the strained

GaAs photocathode itself. For instance, an anisotropy has been observed in the quantum efficiency

of the strained GaAs photocathode depending on the orientation of the linear polarization of light

incident on it [200]. This can cause very large intensity asymmetries (∼ 10,000 ppm) and position

differences (∼ 10,000 nm). Methods to control this were developed by the HAPPEX collaboration

when they observed this effect [183], which were adopted for G0.

The strategy is to use passive procedures to minimize the false asymmetries as much as pos-

sible, then to use active ones to further minimize to the desired requirements. For G0, the passive

measures consisted of careful alignment and configuration of the optical elements on the laser table

in the polarized source, careful changes to the accelerator optics to achieve large adiabatic damping

and the use of a rotatable λ/2 waveplate in the polarized source. Careful alignment ensures that

the laser light takes a path that gives the least probability of the introduction of helicity-correlated

effects as it passes through the optical elements. The natural adiabatic damping effects of the accel-

eration process can be used to help damp out position differences. In an ideally-tuned accelerator,

the transverse beam size is reduced ∝ 1/
√

p where p is the beam momentum. In reality, imper-

fections in the electron beam transport prevent full suppression, but suppression factors between

10 – 25 were observed between position differences measured in the low-energy injector region and

in the experimental hall [201, 202]. By rotating the λ/2 waveplate (thereby adjusting the axis of
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ellipticity of the laser beam polarization), minima in the intensity and position differences that

arise from the anisotropic quantum efficiency of the strained GaAs can be found. After using these

passive techniques, the intensity asymmetries were typically less than 100 ppm and the position

differences were less than 300 nm at the G0 target, but these fell far from the requirements of

less than 1 ppm and less than 20 nm respectively. Therefore, an active feedback system was also

implemented.

To reduce helicity-correlated beam intensity, a feedback system using an IA (intensity-attenuator)

cell was used. The IA cell consists of a Pockels cell between two linear polarizers oriented parallel

to each other. By varying the voltage on the Pockels cell, the intensity of the laser beam that

generates the beam is also changed. During running, the Pockels cell in the IA cell is operated at

low voltages, between 0 and 50 volts.

To calibrate the system, a helicity-correlated intensity asymmetry was produced by varying

the voltage on the Pockels cell between two set points in a helicity-correlated way. By varying

this voltage difference and measuring the corresponding helicity-correlated beam current (charge

asymmetries) in the experimental hall, a calibration is made that is linear over the operating range.

The slope of this calibration is then used in the feedback routine. During usual production running,

the system is automatic. The measured helicity-correlated beam current is averaged over a period

of about three minutes to a typical precision of 10 – 20 ppm; that value and the calibration slope

are then used to set the IA cell for the next three-minute running period.

Helicity-correlated beam position differences are minimized by feedback using a PZT mirror

device. This device is made up of a mirror that is mounted on piezo-electric transducer mounts

that allows motion in two orthogonal directions. The idea of the system is that the mount of the

PZT mirror can be driven at the helicity-flip frequency, which induces helicity-correlated motion in

the laser beam position, which is then used to compensate for other sources of helicity-correlated

beam motion in the system.

In a somewhat similar manner to the IA, the PZT mirror feedback is calibrated by measuring
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the helicity-correlated beam position differences in the experimental hall with the BPMs as a

function of the two control voltages of the mirror (labeled PZTx and PZTy for the two orthogonal

directions). As with the IA feedback, the system is automatic, and during normal running, the

measured helicity-correlated beam positions are averaged over about 30 minutes, to a precision of

100 – 200 nm. The values are used to update the settings for the PZTx and PZTy values for the

next 30-minute running period.

Ideally, the IA and PZT would be orthogonal devices, but in reality, this is not completely

true. The IA cell induces some helicity-correlated position differences as well as the intensity

asymmetry, and the PZT causes some helicity-correlated intensity variations in addition to the

helicity-correlated beam positions. These cross-coupling terms are also measured as part of the

calibrations, and the feedback algorithm uses a full 3x3 matrix to determine the new control

voltages (IA, PZTx, and PZTy) for the updates [194].

4.3.1.2 Leakage Beam

As discussed previously, the G0 experiment ran with a non-standard 31 MHz beam structure,

achieved mostly by the G0 source laser timing. However, the other experimental halls were using

the standard 499 MHz beam generated using their lasers. During much of the data-taking period

for G0, the accelerator was simultaneously delivering the standard 499 MHz beam to one or both

of the other halls. The timing of the three beams is determined by the timing of the pulses of the

three lasers for each of the halls, so the beam into any one of the halls can have a small fraction of

the beam from the other two lasers due to the fact that those lasers have a finite turn-off time and

have not completely turned off when the laser for that hall fires. In addition, there is also a DC

component of light caused by amplified spontaneous emission in the lasers. Due to these causes,

a small amount of beam with 499 MHz structure could pass the chopper and be delivered to Hall

C in addition to the desired 31 MHz beam. This small fraction of beam is referred to as “leakage

beam”, and since it originates from different lasers, it can have very different characteristics from

the primary desired beam. Because of the different time structure used for the G0 forward-angle
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running, this small fraction of leakage beam turned out to have a significant, but correctable,

impact.

The intensity of this extra beam was very low compared to the primary 40 µA beam, about

50 nA, although this varied significantly depending on the current being delivered to the other

experimental halls. Furthermore, the events caused by this beam were largely rejected by the ToF

cuts, so the rates from this beam were not a significant background to the experiment. However,

this beam carried a rather large charge asymmetry (of order 600 ppm), that differed from the

charge asymmetry of the 31 MHz beam. Because the signals from the beam current monitors

(BCMs) were digitized at 30 Hz, they recorded a charge asymmetry which was a combination of

the charge asymmetry from the 31 MHz beam and from the leakage beam. The beam feedback

system, which could only affect the 31 MHz beam, would then attempt to minimize the overall

asymmetry reported by the BCMs, inadvertently creating an unmeasured charge asymmetry in the

31 MHz beam in order to counterbalance the charge asymmetry from the leakage beam. This meant

the charge asymmetry measured by the BCMs was not the correct value needed to calculate the

asymmetry in the elastic peak in the ToF spectrum, since the peak was almost entirely associated

with the 31 MHz beam. This effect thus lead to a ToF-dependent false asymmetry.

Happily, this effect was correctable. The rate and the asymmetry of the leakage beam were

measured by analyzing the regions of the ToF spectrum that could not contain physical processes

caused by the 31 MHz beam, which meant that those regions were dominated by the leakage

background events. The validity of this procedure was checked with dedicated measurements of

the leakage beam using the luminosity monitors. In these measurements, the leakage beam was

measured by leaving the lasers to the other halls on with the G0 laser turned off. These studies

and corrections are discussed in detail in Section 5.3.3.
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4.3.2 Accelerator and Beam Transport

The electrons that are emitted from the GaAs crystal are longitudinally polarized. However,

as the electron beam is transported through the accelerator to Hall C, the beam is bent by a series

of dipole magnets that cause the beam polarization to precess relative to the momentum vector

due to the anomalous magnetic moment of the electron. This rotation happens because the gyro-

magnetic ratio of the electron is 2.0023193, instead of precisely 2. For the four-pass, 747 MeV/pass

beam, the total precession from the injector to Hall C was about 23π [203]. To compensate for

the g − 2 precession and ensure that the electrons that arrive at the G0 target are longitudinally

polarized, the beam passes through a Wien filter before the beam enters the accelerator. For the

primary measurement, the beam polarization needed to be longitudinally polarized, but for the

transverse systematic measurements, it had to be transversely polarized, and so the Wien was set

accordingly.

The Wien filter consists of a pair of electrostatic plates and a magnetic dipole. The electric field

from the plates is perpendicular to the magnetic field from the dipole, and both are perpendicular

to the beam velocity. The electric and magnetic fields are set to cancel each other out, that is, the

net Lorentz force on the electrons must be zero:

F = q(E + ~β × B) = 0,

where ~β = v

c
is the electron velocity, and E and B are the electric and magnetic field vectors,

respectively. Since there is no net force on the beam electrons, the trajectory of the beam is

unchanged as it passes through the filter. However, the spin vector of the electron will precess

about the magnetic field. The precession is given by [204–206]:

ds

dt
=

e

mc
s× B

[

g

2
(1 + β2) − 2

(

1 − 1

γ

)]

,

where m is the electron’s mass, s is the electron’s spin vector, g
2 is the magnetic moment of the

electron in units of Bohr magnetons
(

µB = e~

2me

)

, and γ = 1√
1−β2

. Assuming a perfect Wien filter
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of length L, the total spin rotation angle is given by

θ =
L

cβ

eB

mc

[g

2

(

1 + β2
)

− 2
]

.

The optimization of the Wien filter setting is done experimentally by using the Møller po-

larimeter to perform a “spin-dance” measurement, but it can be roughly set by using the knowledge

of the beam energy and precession through the accelerator.

4.3.2.1 Precession through the Møller Solenoid

The transverse polarization component of the electrons in the beam also undergoes spin pre-

cession as they pass through the solenoid that polarizes the target for the Møller polarimeter. The

interaction of the magnetic moment of the relativistic electrons with the electromagnetic fields it

encounters on its journey to the hall causes the spin vector s to undergo rotations described by

ds

dt
= Ω × s, (4.2)

where

Ω =
e

m

[(

a +
1

γ

)

B− aγ

γ + 1
~β

(

~β · B
)

−
(

a +
1

γ + 1

)

(

~β × E
)

]

(4.3)

where Ω is the angular velocity of the spin precession and s is the spin vector, and a = g/2 − 1

[197,204,205].

The magnetic field generated by the Møller solenoid is along the beam axis (B = Bz ẑ). As

the electron beam passes through the solenoid in the ẑ direction, the transverse component of the

polarization vector precesses around the velocity ~v. The transverse polarization precession angle

~η is

~η =
geBzl

2m~vγ
, (4.4)

where Bzl is the integral of the solenoid axial field
∫

Bz · dl [197, 206].

The direction of the rotation is given by the right hand rule. For example, for the polarization

vector ~P passing through a solenoid with a magnetic field of Bẑ as shown in Figure 4.3, the

transverse polarization component will rotate from x̂ to ŷ, changing in the azimuthal angle φ by the
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amount η [206]. For the G0 experiment, the solenoid was operated at 3 T, and so
∫

Bzdl = 0.92925

T·m, and therefore η = 0.09246 (5.30◦).

This effect is really only of concern for the transverse beam polarization measurement. In-

terestingly, if g = 2, in a purely magnetic field the spin would precess in such a way that the

longitudinal polarization would remain constant. For a relativistic particle, even the presence of

an electric field would only cause the longitudinal polarization to change very slowly, at a rate

proportional to γ−2 times the electric field component perpendicular to ~v. However, the real world

is more complicated, and g is not exactly 2, so the longitudinal polarization does change even in

a pure B field [204, 205]. However, the longitudinal polarization still changes very slowly as the

transversely-polarized beam traverses the solenoid, so we disregard it for this calculation.

y

z

x

P
φ

θ

FIG. 4.3: The coordinate system describing the beam polarization vector and the precession of the transverse
component in φ.

4.3.3 Electron Beam Polarimetry

Real-world electron beams are not polarized by 100%. Therefore, knowledge of the degree to

which the beam is polarized is very important so that the correction for this can be made on the

measured asymmetries. The accuracy and precision with which this measurement can be made is

an overall systematic uncertainty for the experiment, so it is important that it is done well.

For the G0 experiment, the polarization of the electron beam was periodically measured using

the Hall C Møller polarimeter [207]. Møller polarimetry is an elegant experiment in itself, and so
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the next sections are devoted to its description.

4.3.3.1 The Hall C Møller Polarimeter

The Møller polarimeter is used to measure the polarization of the electron beam entering Hall

C. To accomplish this goal, the polarimeter measures the spin-dependent asymmetry in the cross

section for the elastic scattering of polarized electrons from polarized electrons (~e + ~e → e + e),

or Møller scattering. The cross section asymmetry for Møller scattering can be calculated exactly

in quantum electrodynamics. For a longitudinally-polarized (in the z-direction) beam and target,

the cross section in the center-of-mass (CM) reference frame is given by [208]:

dσ

dΩ
=

dσ◦
dΩ

{

1 + PB
z PT

z Azz(θ)
}

,

where dσ◦

dΩ is the unpolarized cross section, Azz(θ) is the analyzing power, and PB
z and PT

z are the

beam and target foil longitudinal polarization, respectively.

The asymmetry for the cross-sectional difference between right-handed and left-handed inci-

dent beam electrons can be computed by the expression [208]

AMøller =

(

dσ
dΩ

)↑↑ −
(

dσ
dΩ

)↓↑

(

dσ
dΩ

)↑↑
+

(

dσ
dΩ

)↓↑ = |PB
z ||PT

z |Azz(θ),

At θ = 90◦ in the center-of-mass frame, the analyzing power is large (Azz(θ) = − 7
9 ), and

with a known target polarization PT
z , a determination of the beam polarization can be made by

measuring AMøller .

The Hall C Møller polarimeter [209] measures the absolute polarization of the electron beam

that arrives in Hall C with a statistical error of < 1% in about five minutes, and a systematic error

which has been quoted to be below 0.5%. The polarimeter is located in the Hall C beam alcove,

which is upstream of the entrance to Hall C, but downstream of the last dipole magnets that steer

the electron beam into Hall C from the beam switchyard. This location ensures that there will

be no further polarization changes due to spin precession caused by beam transport before the

electron beam reaches the G0 target in Hall C.
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A schematic of the polarimeter apparatus is shown in Figure 4.4. For the typical polarization

measurement in the experiment, a 4 µm thick iron foil target that was magnetized by a 3 T magnetic

field produced by the superconducting Møller solenoid was used. The high magnetic field ensures a

complete saturation, so the spin polarization of the outer shell target electrons in the target is well

known (8.036± 0.015%). The target foil is mounted in a remotely controlled target ladder that is

used to insert or retract the desired target into or out of the beam path. The Møller electrons that

scatter at 90◦CM (1.06◦ in the lab frame at the 3 GeV beam energy for G0) pass through a small

quadrupole, a series of densimet (a tungsten alloy) collimators, and a large quadrupole magnet to

achieve a satisfactory separation of the scattered Møller electrons and the beam line (a horizontal

spread of 49 cm). The system of movable collimators and the pair of quadrupoles allows the system

to be tuned for different beam energies from about 0.8 to 6 (GeV/c)2. In order to suppress the

Mott background, the Møller polarimeter uses two symmetric lead glass total absorption detectors

in coincidence. The narrow coincidence time gate (5 ns width) reduces the accidental background

and the shower counters, which provide energy information, allow the suppression of any low-

energy background. A Møller electron pair is defined as a coincidence between the left and the

right lead-glass shower counters. Møller electrons separated 43 to 55 cm from the beam line (which

corresponds to 83◦CM to 97◦CM) are accepted past the collimators that are placed directly in front

of the lead-glass detectors [208]. A diagram of the position of the collimators and quadrupoles is

shown in Figure 4.5.

4.3.3.2 Polarization Measurements

The majority of the measurements made with the Møller polarimeter were to determine the

longitudinal polarization of the electron beam. However, the Møller was also used to determine

the optimal Wien angle setting for the longitudinal running, as well as the optimal setting for the

transverse polarized running. From this, the transverse polarization could be indirectly determined.

Some polarization measurements of the leakage beam from the Hall A and B lasers were also

performed.
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FIG. 4.4: A diagram of the Hall C Møller polarimeter.

4.3.3.2.1 Optimizing the Spin Direction Because of the spin precession that takes place

during beam transport to Hall C, it is necessary to calibrate the Wien filter to the optimal setting

that will maximize the desired polarization (longitudinal or transverse) at the G0 target (see

Section 4.3.2). As the Møller polarimeter is located after the last of the major bending magnets

that steer the beam into Hall C, it is used to perform this calibration.

To perform the calibration, known as a spin dance, data were collected with the Møller

polarimeter for several Wien angle setting spanning about 200◦. The polarization of the beam

at each Wien angle setting was determined from the measured data, and then plotted versus the

Wien angles. The data showing the dependence of the measured polarization on the Wien angle

were fitted using

Pmeas = Pe cos(ηW ien + φ),

where Pe is the beam polarization amplitude, ηW ien is the Wien angle setting, and φ is the net spin

rotation between the Wien filter and the Hall C polarimeter. From the fit, the net spin rotation

φ at the maximum longitudinal polarization can be found, and the Wien filter can be set to the

negative of this value to compensate for the spin rotation. An example of the data and the fit

using the data from the February 10, 2004 spin dance is shown in Figure 4.6. After the spin dance,

the Wien angle was set to −12.62◦ to maximize the longitudinal polarization [210].

Ideally, the Wien filter setting should remain the same throughout an experiment if nothing
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FIG. 4.5: A diagram of the Møller lay-out and optics.

else changes in the beam path. However, due to a pass/energy configuration change and the

transverse data-taking, other spin-dance measurements were required through the span of the entire

running period and the Wien angle settings were adjusted several times during the G0 experiment,

as noted in Ref. [207]; tables therein list all of the spin-dance polarization measurements performed.

4.3.3.2.2 Longitudinal Polarization Measurements Typically, polarization measurements

were performed when the insertable half-wave plate setting was changed, or about every two or

three days in the G0 experiment. The procedure for taking data with the Møller polarimeter is

simple, and was even more so for the G0 experiment, since the experiment ran with the Møller

quadrupoles on as part of the nominal beam optics. Directly before a measurement, while normal

physics data-taking was proceeding, the injector parameters were recorded to verify that the Møller

data were taken in a state as close to normal G0 production data-taking conditions as possible.

After recording the injector parameters and the state of the beam to the other two experimental

halls, the G0 target would be retracted and the accelerator operators would tune the beam for a
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FIG. 4.6: A fit of the form Pmeas = Pe cos(ηW ien + φ) to the polarization data from the February 10
spin dance.

Møller measurement in Hall C. The Møller solenoid was usually left ramped up to the operating

field of 3 T for most of the data run, but if necessary, the Møller solenoid was ramped up to the

operating field at this point. In this interval, the high voltage to the G0 main detectors and halo

monitors would be turned off, the high voltage to the Møller detectors would be turned on, and

the gain setting for BCM2 (a beam current monitor) would be switched up to gain setting 4 from

3. The beam would then be tuned and the beam position adjusted for the Møller measurement.

After the beam positions were acceptable, the beam was turned off and Møller target 3 (the 4

µm thick iron foil target) was inserted into the beam path. The measurements were done with

2 µA of beam. For these measurements, the current was reduced using the chopper slit, so the

leakage fraction remained the same at 2µA and 40 µA. After verifying that the Møller scalers were

all counting at a coincidence rate of about 10 - 100 kHz, data would be taken with the Møller

data acquisition system, with a typical Møller data run being about 5 minutes long and having at

least 5 million coincidences. While the Møller data were being taken, the injector parameters were

recorded again to compare to the usual G0 running conditions. After taking two or three data runs,

the half-wave plate setting would be changed, and then two or three more Møller data runs were

taken. After each run finished, the Møller runs were replayed with the Møller analyzer to verify

that the beam polarization and the sign of the beam polarization were as expected. After finishing
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the measurement, the set-up steps were reversed to restore the normal running conditions and

the results of the measurement were recorded in the G0 electronic logbook, with the polarization

typically about 74%.

Tables of the polarization measurements performed during the second engineering run and

the forward-angle physics run of the G0 experiment can be found in Ref. [207].

4.3.3.2.3 Transverse Polarization Measurements The Hall C Møller polarimeter is unable

to directly measure the transverse polarization since it does not at present have the capacity to have

a transversely-polarized target. However, an indirect determination of the transverse component

of the polarization can be made using constraints set by a spin dance, by making the assumption

that a measurement of zero longitudinal polarization means that the beam is purely transversely

polarized.

By doing a sinusoidal fit to the measured polarization data at the different Wien angles

and solving for the zero-crossings, the two Wien angles for purely transversely polarized beam

were ascertained for the transverse running of G0. To verify the Wien angle setting, polarization

measurements were then taken. A longitudinal polarization measurement with the Hall C Møller

polarimeter that is consistent with zero implies that the polarization is purely transverse. In

the spin dance for the G0 transverse running on March 22, the measurements gave an optimal

longitudinal Wien angle of +3.69◦ and two zero-crossings for the optimal transverse polarization

at −84.99◦ and +93.90◦. The Wien was set to −85.23◦, which yielded a longitudinal polarization

measurement consistent with zero, as expected. However, it was found that in the four days

of transverse running, the spin direction of the polarization relative to purely longitudinal had

drifted 2.75◦ ± 0.50stat ± 0.55sys, when the March 26 spin dance measured a zero crossing of

−87.98◦ ± 0.71 [211]. Therefore, we take the error in θWien as 3◦.

Tables of the indirect transverse polarization measurements can be found in Ref. [207].
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4.3.3.2.4 Leakage Polarization Measurements During the experiment, polarization data

were taken to determine the effect of the leakage beam current from Halls A and B on the Hall C

polarization. These data were were taken at different slit settings and different configurations of

the other two halls, and were taken throughout the run.

One of the studies was performed to ascertain the worst-case scenario of the effect of the

leakage current on the polarization in Hall C. To do this, the current was changed using the laser

attenuator instead of the chopper slit, and the slit was set wide open. This gave the maximum

sensitivity to the leakage current from halls A and B. It was determined that even with Hall A

running at 120 µA and Hall B at 25 nA, the leakage current was quite small, about 50 nA. The

effect of this leakage was to drop the measured polarization by about 3% at 2 µA with the Hall C

slit wide open using the attenuator instead of the slit. From this information it can be determined

that when taking data at 10 µA, the leakage current decreases the beam polarization by about

0.6%, at 20 µA by 0.3%, and at 40 µA it drops by about 0.15%, assuming the the current is

changed using the attenuator [212]. Under normal data-taking conditions, using the slit instead of

the attenuator to change the current, the maximum possible effect from the leakage was taken to

be 0.2% (fractional) on the polarization.

Tables of the leakage beam polarization measurements can be found in Ref. [207].

4.3.4 Monitoring the Electron Beam Quality

As with all precision parity-violation experiments, it is essential for the beam properties to

be continually monitored so that the quality will be consistently high and so that corrections for

any residual helicity-correlated beam properties can be made to the measured asymmetries later.

Although ideally no other property of the beam should change when the helicity of the beam

electrons is reversed, many properties do change in practice. These changes that are correlated

with the helicity-flipping cause a false asymmetry that is described by

Afalse =
∑N

i=1

1

2Y

∂Y

∂Pi

∆Pi, (4.5)
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where Y is the detector yield (the number of detected scattering events), Pi represents the beam

properties of interest, and ∆Pi = P+
i − P−

i is the helicity correlation in those beam properties.

To keep the contributions of these false asymmetries small, active feedback systems are used,

as discussed previously in Section 4.3.1.1, and then the beam properties are monitored and recorded

throughout the injector, accelerator, and hall beamline. During the experiment, the beam current,

position, angle, energy, and halo were continuously measured in the experimental hall and in other

places around the accelerator. In this section, the beam monitoring systems required to accurately

measure the properties of the beam are discussed. These systems measure these properties so that

the ∆Pi values above can be determined continuously. This section also covers the beam control

systems that are used to make deliberate variations in the beam properties in order to measure

the yield slopes (∂Y/∂Pi) for corrections.

4.3.4.1 Beam Current Monitors

Experimental Hall C is equipped with two different types of monitors that allow for continuous

and non-invasive measurements of the beam current (or intensity). In the G0 experiment, the beam

current was primarily measured with two microwave beam cavity monitors known as beam current

monitors (BCM1 and BCM2) [213, 214]. These stainless steel, cylindrical cavities are resonant in

the TM010 mode at 1497 MHz, so as the electron beam passes through the cavity, it resonates. This

resonant mode was chosen because the spatial dependence of the electric field amplitude is nearly

constant in the center of the cavity, making the response relatively insensitive to the beam position

when the beam is in the center of the cavity [194]. The resonant frequencies of a cylindrical cavity

are given by

fl,m,n =
χl,mc

2πR2

√

1 +
nπR2

L2χl,m

, (4.6)

where l, m, n are integers, R and L are the radius and length of the cavity, and χl,m is the lth

root of the mth order Bessel function. Because the resonant frequencies depend so much on the

physical dimensions of the cavity, the cavities are thermally stabilized to reduce the temperature
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dependence of the current measurement [215]. They were located in the Hall C beamline a few

meters upstream of the G0 target, mounted so that the beam travels through on the axis of the

cavity.

The energy from the resonance of the excited modes is extracted from a wire loop antenna

installed in the cavity, where the power picked up by the antenna is proportional to the beam

current squared. This high frequency signal is then mixed down with downshifting electronics and

converted to a DC level, which is then passed to a voltage-to-frequency converter and then to a

scaler that is read out at the same rate as the rest of the data in the experiment [194].

These cavity BCMs only can give a relative measurement of the beam intensity because they

measure a signal that is proportional to the beam intensity. Therefore, they must be calibrated

using an absolute device. Once calibrated, they are very stable and linear. During the production

data-taking of the G0 experiment, the BCMs were calibrated about once a week.

Hall C is also equipped with a parametric current transformer (also known as the Unser moni-

tor) [216], which is basically a toroidal sensor that fits around the beampipe. As the electron beam

passes through, it induces a magnetic field in the toroid that is measured by a transformer. The

total flux in the toroid is then driven to zero with a second transformer. The precise compensation

of the magnetic field induced by the beam is used to determine the beam current passing through

the toroid. Like the beam cavity monitors, the Unser is quite sensitive to temperature changes, so

it is also thermally stabilized. The Unser has a very stable and well-understood gain, but it suffers

from large, unstable drifts in the zero offset. Therefore, it is not used in the primary data-taking

to measure the beam current. However, it is the only current monitor in the Hall C beamline that

can be calibrated absolutely (since it measures the beam current passing through the toroids).

Because it is an absolute measurement of the beam intensity, it is used to calibrate the other two

BCMs which are more stable and linear, but are relative devices.

The Unser was calibrated before the experiment by running known currents of various mag-

nitude from a very precise current source through a wire installed next to the beampipe that runs
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through the toroid to determine the gain of the monitor. During the production data-taking of the

G0 experiment, the BCMs were calibrated about once a week. This was done by taking data with

all the BCMs while alternately running with the beam on and the beam off in intervals of about

two or three minutes, with each beam current period at a different magnitude (10 µA, 20 µA,

etc.). The beam-off data were used to measure the zero offsets for the two types of monitors, and

the data taken with the beam on were used to determine the gains of the beam cavity monitors

by using the known Unser monitor gain.

For the G0 experiment, it was important that the random noise level of these beam current

monitors at the helicity-reversal rate of 30 Hz was small compared to the random fluctuations in the

beam current in each MPS data acquisition interval of 33 ms used for the asymmetry computation.

By comparing the measurements of the beam current by the two monitors, the upper limit on the

random instrumental noise at 30 Hz was determined to be about 40 ppm, quite small compared

to the usual random beam current fluctuations of about 500 - 1000 ppm [194].

4.3.4.2 Beam Position Monitors

Knowledge of where the beam actually is located is very important, so the beam positions were

measured at many places along the Hall C beamline and throughout the accelerator. The stripline

beam position monitors (BPMs) [217] continuously and non-invasively measure the position of the

electron beam in the beam pipe.

These monitors consist of a set of four thin wire antennae that are placed symmetrically

around the beam at 45 degree angles. Each of the wires has a length of one quarter wavelength

at 1497 MHz. These four antennae inductively pick up the fundamental frequency of the beam

as it passes through the device. The signals were then downconverted to about 1 MHz, filtered,

and converted to DC voltage signals that were then sent through voltage-to-frequency converters

and then recorded with scalers that are read out with the rest of the data from the experiment.

The beam position can then be calculated from the linear combinations of the signals with the

knowledge that the signals are proportional in strength to the distance from the antenna to the
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beam. Since the position of the beam is determined from the ratio of the signals from opposing

antennas, the measurement is essentially independent of the beam current (to first order).

The relative X ′ beam position can be calculated by using the equation

X ′ = k
(X+ − Xoffset+) − αX(X− − Xoffset−)

(X+ − Xoffset+) + αX(X− − Xoffset−)
, (4.7)

where Xoffset+(−) is the offset for the X+(−) antenna, k is the sensitivity of the BPM at 1497 MHz,

and αX is a measure of the possibly different gain between the X+ and X− antennae [218]. The

relative Y ′ beam position is computed in a like manner. The gain difference αX is defined as

αX =
X+ − Xoffset+

X− − Xoffset−
, (4.8)

and in a like manner for αY . The antennae within the BPMs are oriented at 45 degrees with

respect to one another, so the position of the beam is given by [218]
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To find the position and angle of the beam on the G0 target, two of the BPMs were used to

project the beam path to the target. These monitors were separated by 2.5 m with a midpoint

4.8 m upstream of the target [194].

As with the beam current monitors, the random noise level in the calculated position (or

position difference) due to both beam noise and electronic noise at 30 Hz was an important concern.

The noise can be determined by using three different BPMs that have no magnetic elements between

them. The first two BPMs are used to find the position of the beam in the third monitor, and then

the predicted behaviour can be removed from the measured signal, leaving behind only the noise.

By using this method, it was determined that the random noise fluctuations at the beam helicity

reversal frequency was less than 3µm, which was below the typical normal random fluctuations of

the beam position at that frequency, measured to be about 10µm [194].

As the BPMs are not intrusive to the beam, they are used to continuously monitor the beam

position. However, they need to be calibrated, which is done by using the harps and super harps



113

installed on the beamline in Hall C [219, 220]. These devices pass a set of thin tungsten wires

mounted in forks (looking rather like a harp or lyre) through the beam. The wires are attached so

that the signal from the wires as they pass through the beam give x and y profiles of the beam.

They give both beam profile and position information, and so are used to investigate the beam

spot size and position. However, their use is disruptive to the beam, so they are used to calibrate

the BPMs, which are used during normal running as they are non-invasive [215].

The BPMs were also used to measure the beam energy. To measure the electron beam energy,

the beam position in the accelerator plane was measured by a BPM located at the center of the

Hall C arc, where the beam dispersion was 40 mm/% [194]. The current of an arc dipole magnet is

adjusted to center the beam at the end of the arc, where the beam position is measured. Using the

dipole current, the beam energy can be calculated, assuming the beam follows the central path.

4.3.4.3 Beam Halo Monitoring System

The beam has yet another property that must be monitored carefully, the beam halo. The

term beam halo refers to stray electrons that move along with the primary beam, but are sufficiently

far from the beam center to be considered beam background. Beam halo can be generated by a

variety of effects, including (but not limited to) space-charge effects from the electrons repulsing

one another during bunching, scraping in the injector or accelerator, and poor vacuum in any

region of the accelerator. Beam halo is a concern for G0 because halo particles can interact with a

11mm diameter flange that is part of the G0 target cell, causing background events and possibly

a helicity-correlated false asymmetry in the G0 detectors.

In an effort to prevent a contribution from halo, the beam specifications for G0 required that

less than 1 × 10−6 (or 1 ppm) of the electrons in the beam be located outside of a 3 mm radius

from the center of the beam, a rather stringent requirement [221]. In addition, the halo needed to

be monitored continuously, which meant that the measurement had to be non-invasive.

To accomplish this, a system was designed that continuously measured the amount of beam

halo using an aluminum target with a circular hole in it and a series of detectors. This system was
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Halo Detectors

Halo Target

FIG. 4.7: A photograph of the halo monitoring system on the halo girder.

located on its own girder (called the Halo girder) on the beamline, about 8 m upstream of the G0

target, as seen in Figure 4.7.

The target for the system was a 2 mm thick aluminum plate with a 6 mm diameter hole,

which matched the specification. In addition, the plate also had an 11 mm diameter hole, which

matched the size of the target cell flange, that could be used for studies. The target was mounted

on a stepping motor (from a harp mechanism), so it could be inserted into the beam path in either

target position, onto the frame (for calibration runs), or out of the beamline altogether. Although

the beam was rastered in a square pattern, the areas of interest for halo interactions on the G0

target were round, hence the halo target holes were also round. For normal running, the 6 mm

halo target was used.

Particles scattered from the interaction of the beam halo electrons with the aluminum target

were detected in a primary set of detectors placed at large (∼ 15◦) and secondary sets placed at

small (∼ 3◦) angles. The primary detectors for the system were symmetrically placed in either side

of the beamline about 1 m downstream of the halo target. These Čerenkov halo detectors were

composed of 2 inch phototubes (identical to the ones in the G0 detectors) attached to cylindrical

pieces of Lucite. They were shielded from ambient radiation by lead bricks. Two secondary
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scintillation halo detectors, located on either side of the beamline just before the G0 target and

just after the harps, were made of different phototubes attached to small pieces of scintillator. A

third set of two halo monitors that consisted solely of phototubes were located with the secondary

set. These were all unshielded.

The system could be used for relative measurements by comparing measurements taken with

the halo target to measurements without the target. However, it could also be used for absolute

measurements in the halo rate. To accomplish this, the system was calibrated by measuring the

rate from 5 nA of beam on the 2 mm thick frame of the aluminum halo target in the halo detectors.

In addition to the halo monitoring system located in the hall on the halo girder, there were

two halo detectors located upstream by the Møller polarimeter in the Hall C alcove. These alcove

halos were used to monitor for poor beam quality as the beam entered Hall C from the beam

swtich yard.

During the regular running of the experiment, the halo specifications were met as discussed in

Section 5.4.3 [222, 223]. The halo monitor also served as a diagnostic of the general beam quality,

for a sudden increase in the halo rates indicated changes in the beam tune that were causing a

deterioration in the beam quality and thus needed to be corrected.

4.3.4.4 Luminosity Monitors

Another possible complication that could produce a systematic false asymmetry would be

variations in the target fluid density caused by the beam, such as target boiling. Short-term

fluctuations in the fluid density could cause nonstatistical fluctuations in the measured asymmetry,

causing additional width in the distribution of the parity-violating asymmetry measurement. To

prevent this, a raster system is used (see 4.3.4.7), and to monitor and study beam-induced variations

in the fluid density in the target, a set of eight luminosity monitors are installed downstream of

the G0 target [194, 224].

The luminosity monitors are constructed of synthetic quartz cubes that are coupled to low-gain

phototubes, except for Lumis 7 and 8, which were coupled to vacuum photodiodes (VPDs). The
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eight monitors were placed symmetrically in two different rings in the beamline after the target,

with Lumis 1 through 4 in the upstream ring (positioned 7.00 m after the target), and 5 through

8 in the downstream ring (1.074 m after the target), oriented as shown in Figure 4.9. They were

positioned at very forward angles, θlab = 1.98◦ with respect to the incident beam for the upstream

set, and θlab = 1.29◦ for the downstream set. At these angles, the dominant rate comes from

Møller scattering in the target (as can be seen in Figure 4.8), but e − p and e−Al scattering also

have significant contributions [224]. Due to the very high rates from these Čerenkov detectors, the

signals were integrated over the 30 Hz helicity window, converted to a voltage, passed through a

voltage-to-frequency converter, and then counted with scalers, similarly to the electronics of many

of the other beamline monitors.

The primary function of the luminosity monitors is to monitor the density fluctuations in the

target, as these monitors are extremely sensitive to small changes in the asymmetry widths (each

having a width of 200 ppm per quartet compared to the asymmetry width of each of the 15 rings

of the G0 FPDs of approximately 1200 ppm at 40 µA of beam current) [194].

In addition, the luminosity monitors are also sensitive to other small systematic effects such

as small changes in beam halo or scraping of the beam upstream of the target, and so give com-
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plementary information about the beam quality. The luminosity monitors were also used for

measurements of the leakage beam from the other halls. The procedure developed to correct for

this 499 MHz leakage beam made use of a region of the ToF spectra that was forbidden to processes

caused by the 31 MHz beam of the experiment, but to double check the rates measured in this

section of the ToF, the lumis were used to measure the leakage beam by turning off the G0 laser

and leaving the other lasers on.

4.3.4.5 Additional Beam Monitors

In addition to these monitors, a beam spill monitor lovingly referred to as “Herbert’s Paddle”

was used as a general beam quality monitor. It consisted of a paddle of scintillator coupled to a

photomultiplier tube, with the signals displayed on a pico-ammeter. It was positioned on the hall

floor under the Ferris wheel detector support structure, and was frequently used as a monitor of

the general beam quality before any of the more sensitive detector systems were turned on.

4.3.4.6 Beam Position Modulation and Energy Modulation

Although it is very important to continuously monitor the beam properties during the data-

taking, it is also very important to understand what effects changes in these beam parameters

(∂Y/∂Pi) have on the detector yields, and thus the physics asymmetry. Therefore, systems were

developed to vary the position, angle and energy at the target in a deliberate, controlled fashion

to measure these effects.

The coil-modulation system (also called coil-pulsing or dithering) varies the beam positions and

angles in a controlled manner using a set of six air-core steering coils that were positioned upstream

of the Hall C dispersive arc. The coils were positioned by using beam transport simulations so that

the modulation in x and y at the target adequately spanned the necessary positions and angles.

The beam positions were modulated for a complete pattern at the beginning of each run while

taking data, with occasional dedicated runs. The two modulation patterns used (a cross and a

square grid) modulated over a range of about ±0.5 mm in the position and ±0.5 mr in the beam

angle.
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The beam energy is also modulated periodically as part of the coil modulation procedure. This

is done using a vernier input on an accelerating cavity in the South Linac of the accelerator [194].

4.3.4.7 Beam Rastering System

At the usual running current of 40 µA for the G0 experiment, the electron beam only has a

diameter of about 200 µm, and deposits several hundred watts of power into the cryogenic target.

This would result in density-fluctuations in the target fluid caused by the beam actually heating

up and even boiling localized sections of the cryogenic target fluid, which would cause unwanted

fluctuations in the measured yield in the detectors (see Section 4.4.2.1).

To reduce this effect, the beam was rastered in a 2 mm by 2 mm square pattern for the

experiment, using two magnets located about 20 m upstream of the G0 target. The two magnets

of the fast raster system generate this pattern by sweeping the fields in x and y with triangular

waveforms of 24.96 kHz and 25.08 kHz respectively, which gives a pattern that has a 95% uniformity

in the beam density [194,225,226].

4.4 The G0 Target

The target for the G0 experiment is an unpolarized liquid hydrogen target. Due to the demands

of precisely measuring parity-violating asymmetries of only a few ppm, the target system had to

have a long target cell and be designed to handle large power depositions with the minimum possible

systematic uncertainties due to density fluctuations. The target system also had to be designed to

fit inside of the superconducting magnet system, not interfere with the magnet’s toroidal field, and

run reliably in continuous operation over the many months of the experiment since it could not

be removed from the magnet easily for maintenance. It also had to be able to handle both liquid

hydrogen and liquid deuterium, as the overall experimental program would make measurements

on both cryogens [194]. This section discusses how these challenges were met.
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FIG. 4.10: A schematic of the target loop. Figure from [227].

4.4.1 The Target System

The G0 cryogenic target is a closed loop recirculating system. The loop has a 20 cm long,

thin-walled target cell that resides horizontally within the vacuum enclosure of the superconducting

magnet. The target service module projects out of the magnet, holding all the lines and control

features needed to communicate with the target from the outside world. Using actuators, the

target type could be chosen: the hydrogen cell, one of the solid targets, or out of the beam path

entirely. The target could also be warmed up independently of the rest of the spectrometer. This

section describes the target system; for more detail, see References [194, 227,228].

4.4.1.1 The Cryogenic Loop

During the normal running of the forward-angle configuration, the experiment ran with the

liquid hydrogen at 19 K (2 degrees below the boiling point of the hydrogen) and a loop pressure of

1.7 atm. The temperature of the target loop is maintained by a proportional-integral-differential

(PID) feedback system that used a resistive heater, located just downstream of the target manifold

before the target fluid enters the circulating pump, to maintain a constant target temperature. A

gas handling system supplied the cryogenic loop with gases and monitored the target pressure.

The loop was connected to a 2500 gallon hydrogen ballast tank outside of Hall C that served as a

pressure buffer to maintain a constant pressure. The liquid hydrogen is circulated at a high rate

through the loop to facilitate mixing to dissipate the heat from the electron beam.
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The primary aluminum hydrogen target cell was soldered to the target manifold with a sec-

ondary helium cell inside of it that served as the entrance window to the hydrogen cell. The 23 cm

long primary cell was a thin-walled cylinder machined from one piece of Al-6061 T6, with an inner

diameter of 5 cm and an outer shell thickness of 0.178 mm. The downstream exit window of the

hydrogen cell was machined to a thickness of 0.076 mm over an 8 mm diameter nipple that was

centered on the beam axis. Placed upstream of the primary hydrogen cell, the downstream window

of the 16 cm long helium cell served as the entrance window to the hydrogen cell, machined to a

thickness of 0.228 mm. On its upstream end, the He cell was protected from the vacuum by an

0.178 mm thick aluminum window. This cell has two purposes. Maintained at the same tempera-

ture and pressure as the primary hydrogen cell, it has the same shape and radius of curvature as

the exit window of the hydrogen cell, reducing variations in the target length for different lateral

beam positions on the target, and the systematic effects resulting from this. The design also pro-

vided azimuthal symmetry for particles scattered from the hydrogen target. The distance between

the helium cell exit window and the hydrogen cell exit window defined the liquid hydrogen target

length of 20 cm, or 1.44 g/cm2 at the operating conditions of 19 K and 1.7 atm [227]. The total

amount of aluminum in the three thin windows traversed by the beam was 0.130 g/cm2 [194]. The

target cells were all pressure tested to 85 psid for safety reasons.

The liquid hydrogen flowed longitudinally through the center of the target cell, guided by a

thin-walled, perforated aluminum flow diverter that increased the flow speed as the liquid traveled

down the length of the target, which encouraged the mixing and turbulence of the fluid. The

holes in the diverter added even more turbulence and mixing to the longitudinal flow, enabled

the heated fluid to exit the beam path more efficiently, and provided mechanical stress relief for

the thin, conical flow-diverter. The holes lay in the shadows of the magnet coils, so they did not

interfere with the experimental acceptance.

Upon leaving the manifold, the liquid hydrogen flowed to the leg of the cryogenic loop that

housed both the cryogenic pump and the high-power heater (HPH). The target liquid was circulated
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by a vane-axial pump with two impellers in series, powered by a Barber-Nichols custom DC

brushless cryogenic motor. Just downstream of the pump was a conical aluminum flow diverter

which housed the tachometer that gave a measurement of the motor’s rotation. The motor is

nominally operated at about 30 Hz, but the maximum available torque in the liquid hydrogen was

found to be 23 oz·in at 42.7 Hz [227].

The high-power heater (HPH) is housed in a conical flow diverter located upstream of the

pump, where it regulates the temperature of the target in a feedback loop during normal running

conditions. It is a resistive heater made of three independent coils of Ni-Cr alloy ribbon wrapped on

a G10 support. Each coil has a resistance of 3.5 ohms, wired in parallel to give a total resistance of

1.15 ohms, and is driven by a 40 V, 25 A DC power supply. The HPH is usually controlled through

a Proportional-Integral-Differential (PID) feedback loop that tracks the beam current incident on

the target, subtracts the deposited beam power from the total target power, and then sets the

current on the heater to make up the deficit, thus keeping the temperature in the loop constant, as

read out by one of the temperature sensors in the cryogenic loop. Six sensors made of Lakeshore

Cernox CX-1070-AA resistors immersed in the cryogenic fluid monitored the temperature within

the loop, along with two other sensors that monitored the helium coolant temperature on either

end of the heat exchanger. Using this method, temperature excursions were smaller than 0.2 K

during beam trips. During the normal G0 running conditions, the heat load on the target was

approximately 450 W, coming from the electron beam, the heater, or a combination of both.

In the other leg of the cryogenic loop (the lower one in the diagram) resided a double coil

counterflow high-power heat exchanger that removed the heat from the beam from the liquid

hydrogen. On the hydrogen side, the coils were made of finned copper tubing to increase the area

for the heat exchange to occur; on the coolant side, cold helium gas from Jefferson Lab’s End

Station Refrigerator (ESR) at 15 K and 12 atm was used. Flow diverters were located along the

loop to guide the target liquid smoothly around the loop and to assure a high Reynolds number

in the target cell and heat exchanger, where turbulence facilitated heat transfer or removal and
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mixing. After leaving the heat exchanger, the target liquid then re-enters the target manifold and

then the cell again, restarting its endless journey.

During the G0 experiment, the target loop was also filled with gaseous hydrogen (GH2) in

order to study the background contribution from the aluminum target cell windows. Measurements

were made with the gaseous hydrogen target at two different temperatures, one at 28 K and one

at 33 K, both with the pressure in the target loop at 2.2 atm. The G0 target was also designed to

be filled with liquid deuterium, a feature that will be used in the backward-angle measurements.

FIG. 4.11: A schematic of the target manifold showing the hydrogen and helium cell. Figure from [227].

4.4.1.2 Solid Targets

The target system also had solid targets, in addition to the cryogenic loop, that were designed

to be used for various background, detector and beam studies. Several of these targets were

mounted on an 0.125 inch-thick aluminum frame mounted on the target manifold, just above

and 13.4 cm upstream of the center of the cryogenic target cell. At this position, the frame did

not interfere with the trajectory of the particles scattered from the cryogenic target, but it also

placed these solid targets on the upstream edge of the detector acceptance, allowing only the upper

detector octants to have an unobstructed view of them [194]. On this frame resided a 5 mm thick

Carbon target mounted over a 10 mm diameter hole, two hole targets used in beam halo studies,

and a section of the frame itself that was used as an aluminum solid target. In addition, the
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experiment made use of another Al solid target (see below) and a tungsten radiator that were not

positioned on this frame.

The experiment used two aluminum dummy targets: the aluminum frame target and an

aluminum foil target usually referred to as the “flyswatter”, due to its similar shape to that

household object. These two targets were used for studies of the contributions to the yield in the

detectors from the entrance and exit windows of the target cell, respectively (see Section 5.3.5.1).

The flyswatter consisted of a 0.76 mm thick aluminum foil on a supporting 20 cm long aluminum

handle that was not attached to the target loop, but instead on the inside of the magnet. The

handle was attached to beveled gears that acted like an elbow, allowing the target to be rotated

through 90◦ either into the beam path or out of it as needed (and out of the particle trajectories

from the cryogenic target). The beveled gears were attached to an approximately 6 m long rod

that connected to a knob on the upstream flange of the target, where the flyswatter was inserted

or retracted by hand. The flyswatter could be put in or out of the beam path independently of

the other targets. When in position, the flyswatter was 10 mm downstream of the exit window of

the liquid hydrogen target [194].

There were also two halo targets located on the solid target frame that were used for beam

quality studies, known as the small and large hole targets. These were circular hole targets in the

aluminum frame that were designed to study the beam halo at the helium cell inner diameter (12.5

mm), and at about half of that. The small hole target had a diameter of about 5.6 mm; the large

hole target was about 11 mm across, and had a copper collar with the same inner diameter mounted

behind it to match the radiation length of the aluminum flange that supported the vacuum window

of the upstream helium cell [194, 228].

The carbon target was about 5 mm thick to match the radiation thickness of the liquid

hydrogen target. This target was used during the first engineering run during the commissioning

of the focal plane detectors. However, it was removed for the second commissioning run and the

forward-angle measurement. The hole left from its removal allowed for the passage of a photon
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flux produced by the electron beam on a tungsten (W) radiator target that was added for the

second commissioning period. The tungsten radiator had a thickness of 0.0085 cm, chosen to

match the radiation length of the liquid hydrogen target, but was located outside of the detector

acceptance for elastic protons at 38.5 cm upstream of the flyswatter. The radiator was used in

conjunction with the flyswatter to study the contribution of inelastic protons due to photo- or

electro-production from the exit window.

4.4.1.3 Target Control and Instrumentation

The controls system monitored and recorded the target parameters, provided warnings of

critical conditions to the target operator, moved the target when required, and controlled the

PID feedback system to maintain target stability. The target electronics were based on a VME

processor and Greenspring ADIO modules that sent data to a monitoring computer in the Hall C

Counting House that was operated by a trained target operator whenever the target was operating.

Target data were recorded using the EPICS slow controls system [229].

The target loop is rigidly supported inside the SMS vacuum system on a cantilevered platform

connected to a service module, both of which were designed and constructed by Thermionics NW.

The service module provides mechanical support for the loop, provides motion control for the

target, and acts as the interface for gas lines for cryogens and electrical lines from vacuum to the

outside world. The service module is connected to the upstream end of the magnet with the target

cryogenic loop oriented so that the target manifold extends into the magnet cryostat and is the

most downstream part of the target system. The position of the target with respect to the beam is

controlled by four linear actuators, two vertical and two horizontal, placed in pairs in two vertical

planes along the beam axis. These actuators move the cantilever through ball joints, providing

pitch, yaw, and translation of the entire target loop vertically and horizontally. With this design,

the target could be placed in position and aligned to the magnet-beam axis to better than 1 mm

horizontally and vertically [194].
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4.4.2 Target Performance and Systematics Studies

As hydrogen and deuterium are explosive gases, the target system was thoroughly tested to

ensure safety. Tests were performed with cold helium gas to assess the performance of the cryogenic

pump and the heat exchanger, and with liquid neon to test the safety of the gas handling system in

the event of a catastrophic failure [194]. The details of these tests can be found in Refs. [227,228].

The target operated at 19 K, 1.7 atm smoothly for the entirety of the G0 forward angle data-

taking with no major problems. The pump rotated at 31 Hz with speed fluctuations of less that 0.1

Hz over the months of continuous running. The speed was chosen to be slightly different than the

30 Hz of the data-taking helicity signals to avoid any possible source of systematic uncertainty in

the asymmetry measurement due to the rotation of the pump. The hydrogen target cell vibrations

were measured to be less than 0.01 mm at the pump’s full rotation speed of 75 Hz, which was

negligible for the experiment since it is about 10 times less than the natural motion of the beam.

The liquid hydrogen relative density change due to beam trips is 0.3%, but the relative normalized

yield change in the detectors is about 1% because of beam position drifts while ramping back to

the nominal current. To avoid this problem, a beam trip cut was implemented to insure that data

taken before the beam was stable on the target were excluded. With relatively stable beam (40 ±

0.5 µA), the PID loop maintained the target temperature to within 0.02 K [227].

4.4.2.1 Target Boiling Studies

To assess the contributions from target fluid density fluctuations from beam heating in the

target, studies were performed by measuring the width of the asymmetry distribution in the

focal-plane detectors and in the luminosity monitors as a function of beam current, target pump

speed, beam raster setting and beam spot size. To improve the statistical precision, and thus the

sensitivity, of these tests, groups of detectors were averaged together. Fast scalers were used to

compute the detector yields (integrated over the ToF) to reduce the deadtime effects.

The results of the data analysis from these tests show that at the nominal running conditions

for G0 (40 µA of 3 GeV beam rastered over a square of 2×2 mm with the target circulating pump
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operating at 30 Hz), the maximum contribution to the asymmetry widths coming from localized

density fluctuations was 238 ± 65 ppm, which resulted in at most a 2% increase in the width of

the asymmetry in a Q2 bin of the G0 FPDs. This was a negligible effect for the experiment. The

investigations of global density reductions of the liquid hydrogen due to heat from the beam were

found to be less than 1.5% at the nominal operating conditions. For details of these studies and

the analysis of the data, see Refs. [227, 228]

4.5 The G0 Spectrometer

The spectrometer used for the G0 experiment consisted of a superconducting toroidal magnet

(the SMS) and segmented scintillation detector arrays arranged symmetrically azimuthally around

the beamline. For the forward-angle configuration, the detectors were located just downstream of

the SMS, as can be seen in the photograph of the spectrometer in Hall C in Figure 4.12.

FIG. 4.12: A photograph of the G0 spectrometer in Hall C.

The detectors were placed in the focal plane of the spectrometer, so as the particles traverse

the magnet, the field focuses the protons of a particular range of Q2 onto a detector. For the

forward-angle measurement, the entire range of Q2 was spread across the detectors, allowing a

simultaneous measurement of the full range. As the momentum of a recoiling proton increased
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(and its angle correspondingly decreased), its trajectory coincidenced with the focal surface further

from the beam axis and the target, allowing a separation of Q2 by segmenting each octant into

a number of separate detectors that follow the curve of a particular Q2 ring. Fifteen detectors

per octant were chosen in order to limit the rate in each one while providing a reasonable Q2

resolution. Because of the magnet optics, the proton trajectories turn around at the top of the

focal surface, and the higher Q2 protons start moving closer to the beam axis. Therefore, the top

two detectors contained multiple Q2 bins, which were obtained by separating the elastic protons

by ToF. Finally, a sixteenth detector was located at the top of the focal surface, outside of the

acceptance for elastic scattering, where it monitored backgrounds.

To separate the elastic protons from the background particles, time-of-flight is used to deter-

mine particle momentum. The time-of-flight of the elastic protons from the target to the detectors

is about 20 ns. Because of the spectrometer optics and the kinematics of the experiment, the

background particles in a given detector actually arrive earlier, pions at 7 ns after the beam passes

through the target, and inelastic protons after the pions but before the elastic protons.

The spectrometer can be broken down into two parts: the magnet, and the detectors. Both

of these systems were designed and built for the experiment, before being installed in Hall C.

4.5.1 The Superconducting Magnet System (SMS)

The first part of the the spectrometer is the superconducting magnet system (SMS) that does

the actual focusing of the elastic protons. Built by BWXT, the SMS consists of eights coils that are

arranged azimuthally around the beamline. The magnet was designed to be azimuthally symmetric,

as unobstructing as possible, and iron-free to prevent any false asymmetry in the detectors from

particles rescattering off magnetized iron. Since the target is so long, the SMS is designed so that

particles from different z locations along the target with the same momentum and angle are focused

onto the same location on the focal plane, thus allowing the magnet to sort the recoiling protons

into the detectors. Since the magnet is a toroid, the field at the target is zero, which avoids any

beam steering. The angular deflection of the elastic protons in the magnetic field ranges from 35◦
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to 87◦, with an azimuthal acceptance of about 0.44 · 2π. The cryogenic target system and magnet

share the same vacuum space (defined by gate valves on the beamline upstream and downstream

of the magnet), which has a total volume of about 19.3 m2 and a typical vacuum of 1.4 × 10−7

Torr. Overall, the magnet is 4 m in diameter and 2 m long. When cold, the axis of the magnet is

centered on the beamline (4 m above the floor of Hall C). The SMS was tested and field mapped

at UIUC, then shipped to JLab for installation in Hall C.

The complete initial cooldown of the magnet took about 21 days (from 300K to 4K). The

superconducting coils of the SMS are wound from NbTi superconducting wires and are cooled

with liquid helium delivered from the 4 K supply by the end station refrigerator (ESR) to a mean

coil temperature of 4.5 K. The volume with the coils and liquid helium is surrounded by a shield

filled with liquid nitrogen. Lead-alloy collimators placed in the space between the coils defined

the acceptance of the particles and block the line-of-sight view from the target to the detectors,

shielding against neutral particles. Scattered particles exit the magnet volume through eight thin

titanium exit windows about 0.020 inches thick on their way to the detectors.

The usual operating conditions for the magnet in the forward-angle data production required

a current of 5000 A. With this current, the magnetic field integral was
∫

B · dl = 1.6 T·m, and the

energy stored in the field when energized was 6.6 MJ [194]. The current to the SMS was supplied by

a Dynapower 8000 A silicon-controlled-rectifier-based supply jumpered for 20 V output. The leads

from the power supply to the magnet were water-cooled cables (low-conductivity water) until the

transitions to the superconducting buss, where vapor cooled leads (VCLs) from the helium reservoir

were used.

The magnet was controlled and monitored through a Programmable Logic Controller (PLC)

located in a heavily shielded area of the experimental hall that communicated with a dedicated

control console computer (running Windows) in the control center-counting house. Quench pro-

tection systems and other safety circuits could cause either a slow dump or a fast dump in the

case of problems. In a slow dump, the current in the magnet was brought to zero in 900 s by a
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powered discharge. This was used, for example, in a situation wherein the cooling cryogen levels

were dropping, but there was still enough cryogen in the reservoir to allow a safe, slow discharge.

In a fast dump, the magnet was disconnected from the power supply and the full energy of the

magnet was dissipated by the high-power dump resistor in 10.4 s. This made a spectacular racket

as the cryogens boiled off and whooshed out of the relief valves, but safely dissipated the stored

energy.

The SMS was installed on a platform on rails, so that it could be pushed out of the beam

path when not in use for G0. The magnet is also being used for the backangle measurements, after

having been turned around and set back onto its support structure. Overall, its performance has

been excellent during the long periods of continuous running of the experiment.

4.5.2 The G0 Focal Plane Detectors

The particle detectors for the experiment are contained in eight arrays, or octants, that are

symmetrically arranged around the beamline. In the forward-angle measurement, they detect

recoiling protons from small-angle elastic e−p scattering. In each of these octants, sixteen detectors

are placed in the focal plane of the spectrometer, and are thus called the focal plane detectors

(FPDs). They consist of plastic scintillator pairs that curve in the azimuthal direction to follow a

particular value of Q2.

The first 14 detector pairs each measure a narrow range of Q2 values from 0.12 to 0.55

(GeV/c)2. Detector 15 actually measures recoil protons with Q2 values from about 0.55 to about

0.9 (GeV/c)2, so for this detector the ToF is a measurement of the momentum of the proton.

Because of the spectrometer optics, the higher energy protons “fold over”, and the elastically

scattered protons with a Q2 near to 1.0 (GeV/c)2 actually fall on FPD 14. However they are at

a different location in the time spectrum, so are separate from the other elastic events. The last

detector, number 16, was used to monitor backgrounds and the spectrometer field.

The shapes of the arc-shaped scintillators were determined by using the TOSCA program to

trace the proton rays from elastic scattering through the SMS magnetic field. The detector sizes
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were determined by simulation to provide elastic scattering Q2 bins with decent resolution and

roughly equal count rates up to about FPD 11. For higher detectors, the elastic rates are reduced,

and the detector widths were chosen on the basis of momentum resolution.

Each octant has an azimuthal acceptance of φ = ±10◦, defined by the upstream collimators

in the SMS magnet (with 0.5◦ added on to account for possible misalignment of the collimators).

The scintillators range from 60 to 120 cm long, with widths of 5 to 10 cm. Detector 16 is identical

in shape and size to detector 15, as it serves as a monitor for backgrounds.

Each FPD consists of two identical scintillators mounted as a pair to reduce background

from neutral particles through the requirement of a coincidence between them. Each end of each

scintillator is viewed with a photomultiplier tube (PMT or phototube), so there are four PMTs per

FPD. As the low Q2 FPDs were rather close to the magnet, long light guides were used to conduct

the light from the scintillators to the PMTs, which were then mounted in a region of low magnetic

field. These light guides were as much as 2 m long for those low Q2 detectors, which caused

concerns about too much material bulk for the available space. To cut down on the material on

the sides of each detector, the light guides were designed to be relatively thin with rather complex

shapes. Because of concern that the length and thinness of the scintillators and light guides would

prevent the needed number of photons from reaching the PMTs, both simulations and experimental

studies were carried out before the costly and time-consuming fabrication of the detectors [194].

Upon assembly of the octants, the FPDs were aligned to 2 mm, and then the octants were

aligned relative to the magnet and electron beam when mounted around the beam line in Hall C.

This was done using adjustment degrees of freedom provided by the detector octant support frame

known imaginatively as the Ferris Wheel, because of its shape. Like the SMS, the Ferris Wheel is

mounted on a platform on rails, so that it can be pushed to the side of the experimental hall when

not in use by the experiment.

Because of budgetary constraints (among other things), the detectors and electronics were

built by two different groups within the collaboration. Four octants (labeled 1, 3, 5 and 7) were
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built by the North American (NA) part of collaboration (USA-Canada), and the other four (2,

4, 6 and 8) by the French part of the collaboration (IPN-Orsay and LPSC-Grenoble). They are

based on the same concept, but have differing design details. The octants were mounted into the

Ferris Wheel support structure in staggered fashion, with octants from the same group opposing

each other (i.e. 1 and 5) to reduce possible systematic errors.

4.5.2.1 North American Detectors

The scintillation detectors for the North American octants were fashioned from sheets of Bicron

BC-408. The scintillators were rough-cut by water jet, using sheets 1 cm thick for detectors 5–16,

and 5 mm thick for the low Q2 detectors 1–3. FPD 4 had a 1 cm front layer and a 5 mm back layer.

Groups of five were stacked and milled with a CNC (computer numerical control) machine on their

curved sides, and then polished by hand on these machined edges using gradually finer grades of

very fine sandpaper. The hand-polished surfaces were then quality tested using an automated laser

reflection technique. Any scintillators that did not pass the tests were re-polished to improve their

performance. The individual scintillators were then wrapped in strips of aluminized mylar and

mounted onto the octant support structure designed by the JLab design group and then aligned

by teams working in the Jefferson Lab cleanroom, as seen in Figure 4.13. The complexly-shaped

light guides were fabricated from UVT transmitting Lucite (Bicron BC-800) at Carnegie-Mellon

University using a series of jigs and bending techniques that were developed for this purpose. The

lightguides were then mounted onto the octant support structure and the ends were glued with

a UV-curing epoxy to the scintillators. On the far end, silicone cookies were used to couple the

light guides to the phototubes. The detectors were mounted with a 3 mm layer of black plastic

(polycarbonate) between the scintillator pair as an absorber to reduce any low-energy charged-

particle background entering the back scintillator created by neutrals in the front scintillator of

the pair.

After the assembly and alignment, the performance of each detector was measured by posi-

tioning a 155Ru β source at several locations along the length of the detectors and measuring the
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FIG. 4.13: A photograph of the the assembly of a NA octant in the cleanroom at Jefferson Lab. The
arc-shaped scintillators are clearly visible in the octant.

light output. The detectors were designed to yield greater than 100 photoelectrons for proton de-

tection and greater than 50 for electron detection in the worst case when the source was on the far

end of the scintillator away from the phototube. The results exceeded the design goal by at least a

factor of two in all cases. Other tests were also performed to monitor for possible deterioration of

the scintillators, light guides, and phototubes over time by taking cosmic ray data. After the com-

pletion of the tests, the entire octant support was lined with Tedlar to minimize the reflection of

light within the octant and covered by a Herculite cover to make the octants light-tight [230,231].

The photomultiplier tubes (PMTs) chosen by the NA collaboration were 12-stage Philips XP-

2262B phototubes (now Photonis). The phototubes were all tested for non-linearity and their

gains characterized, and then assigned an identifying bar code along with the bases. The passive-

design bases and plastic housings were designed and built by the TRIUMF/University of Manitoba

members of the collaboration. Made of resistors and Zener diodes, they include a Zener-assisted

front stage designed to maintain collection efficiency of the primary photoelectrons independently

of the PMT HV setting and are designed to handle the large dynamical range required by the

experiment. When mounted onto the octant support frame, the phototubes were surrounded with

µ-metal magnetic shields to prevent ambient magnetic fields from interfering with their perfor-

mance [194,232].
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The signals from the phototubes in the experimental hall have to travel through approximately

150 m of coaxial cable to reach the electronics in the counting house. This results in a tremendous

attenuation of the signals, so to ensure the signals arrived in a usable form either an extra stage of

amplification was needed or the PMTs had to be operated at a rather high gain. Raising the gain

of the PMTs would reduce their lifetimes due to high anode currents, and given the long running

time of the experiment, this idea was discarded in favor of adding extra amplification. Modified

Phillips model 776 amplifiers, used to increase the signals by a factor of about 20, were added in

the experimental hall, which kept the PMT anode currents at an acceptable level.

4.5.2.2 French Detectors

The detectors manufactured by the French collaborators were cut from scintillator BC-408

purchased from Eurisys, a European subsidiary of Bicron. The scintillators were cut and polished

to shape, using 1 cm thick scintillator for FPDs 4 – 16 and 5 mm thick for FPDs 1 – 3. The

long PMMA light guides were machined in straight sections by a contractor and then bent into

shape on the octant support structure directly. Other parts of the light guide system (such as

PMT adaptors) were fabricated separately and later glued to the light guides. After gluing, the

scintillators, light guides, and joints were wrapped in aluminum foil. Like the NA detectors, the

detectors were mounted with an absorber between the scintillator pair, in this case 3 mm thick

aluminum plates [233]. After the assembly test at LPSC Grenoble, France, measurements of the

photon yield were also performed for these detectors. These measurements were done at three

positions on the scintillators using light produced by cosmic rays. A light-emitting diode (LED)

was used for the absolute calibration of the signal, allowing the conversion into the number of

photo-electrons. The French detector design has comparable photoelectron yields for proton and

electron detection as the NA detectors (approximately 100 and 50 respectively) [194, 234–237].

The octants were then shipped across the Atlantic to Jefferson Lab, where the final gluing of the

delicate joints was done in the cleanroom, and the PMTs were attached to the light guides with

optical grease.
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The French detector arrays make use of lower gain, 8-dynode XP2282B phototubes, that were

specified to have small gain dispersion to simplify the gain adjustment through variation of the

high voltage. As with the NA PMTs, the characteristics of each PMT were recorded in a database.

The bases for these PMTs included a built-in amplifier of gain 20, so the anode currents could

be kept low enough to allow long-term operation, as well as a base-line restorer to avoid baseline

shifts from counting rate variations. The amplifier design used Zener diodes, chosen after a series

of irradiation tests showed they were more hardy than transistors. The phototubes were shielded

by both µ-metal and an electromagnetic shield made of a copper sheet wrapped around the plastic

housing to decrease the PMT signal noise.

The mechanical octant structure was designed in Orsay using finite element analysis to ensure

a strong, yet light design that met the specifications. As the weight was a consideration, the octant

support structure is constructed of welded aluminum tubes, with a backplane made of two 20 mm

thick beams that form a V-shape. It was designed to support the focal plane detectors and align

them to better than 2 mm. The octant structures were made light-tight by a Tedlar cover mounted

onto a dedicated aluminum structure [194].

4.5.2.3 Detector Protection Systems

As the lifetimes of the PMTs were a concern, the anode currents were measured continuously

to prevent unnecessary PMT aging. In the event of a sudden increase in anode current due to events

in the hall (for example, if the SMS current suddenly goes down), to protect the phototubes from

damage an electronic high-voltage shutdown circuit was designed and built. The “high-voltage

sniper” as it was known, took signals from eight of the PMTs, as well as signals from the SMS

and Møller polarimeter magnets. The threshold for the PMTs was set at about twice the desired

maximum anode current. Upon any of the input signals showing a bad condition, the shutdown

circuit shut off all the detector high-voltage power supplies [194].

Herbert’s paddle (see Section 4.3.4.5) and the beam halo monitoring system (see Section

4.3.4.3), were also used to monitor the impact of poor beam quality on the rates in the detector
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phototubes before turning them on.

4.5.2.4 The Gain Monitoring System

Due to the length of the data-collection period and the high rates involved, concerns were

raised about the long-term health of the scintillator-based detector system. Therefore, a Gain

Monitoring System (GMS) was devised to track changes in the pulse-height and time response of

the detectors. The basic concept is simple: a short photon burst is distributed to the scintillation

detectors by optical fibers and their response is measured.

Originally the system used a fast nitrogen laser, but the reliability was poor and short pulses

unnecessary, so a nitrogen gas plasma flashlamp was used instead. The light produced by the

flashlamp had a maximum intensity in the UV range near 350 nm, with wavelengths below 200 nm

cut off by the exit window of the lamp. UV light was chosen because the conversion into blue light

by the fluorescence effect when shining the light directly to the scintillator is similar to the process

of scintillation, and provides uniform illumination of the detector that is similar to the passage of a

charged particle through the detector. The distribution of light is done by a continuously rotating

mask that permits the light to fall upon 1 of 15 clusters of optical fibers that contained 19 fibers

each. A set of switches gives the mask location and the electronics control a signal to ensure that

the lamp only fired when the mask was in a valid position. The optical fibers were comprised of

pure silica in order to transmit the UV light over a long distance and to be resistant to the high

radiation in the hall.

The fibers were arranged so that either the left or the right end of each FPD scintillator fired

at a time. By comparing the response of the scintillators and PMTs for these left and right pulses,

changes in the scintillator condition could be determined separately from changes in the individual

PMT gains. However, the flash lamp varied significantly from pulse to pulse, so a reference system

of small scintillators that were illuminated with each flash were used as well. One scintillator in

the reference system used an source of about 0.6 nCi of 241Am to monitor the drift in the gain of

the reference system using the signals from the alpha decay of the source.
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The GMS provided a relative gain reference, so once the relationship between the GMS and the

detector responses were established in the commissioning, the GMS provided a way of monitoring

the state of the scintillator transmission length and PMT gains. It was also used for checks of

configuration changes to the detectors and DAQ during beam down periods [194,238].

4.6 The Electronics and Data Acquisition System

The electronics take the signals from the phototubes and process them to reconstruct and

record the time-of-flight information used to distinguish the elastic recoil proton events from the

background events. They also record the data from all the various subsystems and monitoring

systems. The data acquisition system (DAQ) controls the processing and acquisition of these

signals, recording them for later analysis. This section discusses the electronics and DAQ for the

G0 experiment; the curious can find many more details in Refs. [194, 239].

4.6.1 The G0 Electronics

Due to the high counting rates of the experiment, event-by-event recording with conventional

electronics could not be done, so custom-built time-encoding electronics were used to store his-

tograms of the particle ToF spectra for each MPS (1/30s). A diagram of the G0 forward-angle

electronics is shown in Figure 4.14. The French and North-American octants had different sets

of time-encoding electronics; the electronics for the NA detectors, in octants 1, 3, 5 and 7, were

built by a NA group (based at CMU); the ones for the French detectors, in 2, 4, 6, and 8, were

built by a French group in (based in IPN-Orsay, France). The two groups developed the two

independent systems based on completely different approaches, so the systems provide a powerful

cross-check between the two subsets of data to look for false asymmetries. As the results of the

forward-angle experiment from both sets were entirely consistent, which strongly suggests that no

false asymmetries were introduced from the electronics.

The signals from the detectors in Hall C are routed upstairs to be processed by the G0

electronics. Despite their differing designs, they both have the same overall concept and consist
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FIG. 4.14: A flowchart of the electronics for the forward-angle G0 measurement. Figure taken from [194]

of two subsystems: time-encoding electronics and monitoring Fastbus electronics. The signals

from the phototubes at the ends of each detector travel to a patch panel in Hall C through 36 m

RG58 cables, and then to the G0 electronics counting room through 107 m RG8 cables chosen for

low attenuation (due to the great length of cable the signals had to traverse). Upon reaching the

counting house, the signals were split into two independent copies: one that was sent to the Fastbus

monitoring electronics and the other to the time-encoding electronics that record the primary data

for the experiment.

The Fastbus data were taken by both the NA and French designs for the monitoring and

calibrating the detector system. They were based on commercial ADC and TDC units in Fastbus

crates and provided event-by-event information information on the pulse height and time response

of the detectors. However, these electronics were highly prescaled to reduce the rate to one that

the DAQ can handle (less than 1 kHz).

The time-encoding electronics (TEE) built the ToF spectra of the detected particles, enabling

the separation of the elastic protons of interest from various backgrounds. When an event occurred,
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the front-end electronics (consisting of constant fraction discriminators (CFDs), meantimers (MT),

and a coincidence unit) of the TEE only kept events from coincidences between front and back

scintillators to remove low-energy background. The two CFD output signals corresponding to the

left and right PMTs of a scintillator were mean-timed, which ensured that the timing of an event

delivered by the MT was independent of the hit location on the scintillator paddle’s length. An

event was accepted when a coincidence between the front and back MT is obtained; the event

timing was encoded and the corresponding bin of the ToF was incremented.

Of course, to measure the time-of-flight, there must be a start signal. The beam structure for

the experiment (forward-angle) was chosen to be 31.1875 MHz (499/16) to allow for the time-of-

flight of the particles, which corresponds to one beam pulse every 32 ns (micropulse). The start

of the ToF measurement was generated by the Y0 signal. This signal was synchronous with RF

picked up directly from the electron beam passing through a microwave cavity just upstream of

the target [240].

As discussed in Section 4.3.1, the helicity of the beam electrons was flipped at 30 Hz, so the

duration of one helicity state was 33 ms. These 33 ms periods were called macropulses MPS, and

were grouped into quartets of +−−+ or −++− for the asymmetry computation. The readout of

the ToF spectra from the time-encoding electronics takes place that the end of each MPS during

the 500 µs time period for the helicity flip and settling. The selection of the elastic events to

compute the asymmetries was done in the off-line analysis.

There was concern that possible 60 Hz noise could cause false asymmetries in the measurement.

To detect this, dedicated runs where the DAQ over-sampled the data at 120 Hz instead of 30 Hz

were taken occasionally. Analysis of these runs over the G0 production period showed negligible

60 Hz contributions [194].

The sustained rates in the detectors were several MHz, coming from elastic and inelastic

protons and pion. In addition, there was a large low-energy background from (mostly neutral)

particles that fired fewer than 4 phototubes and caused a large deadtime, which was comparable
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to (or larger than) the deadtime due to true events. As deadtime was such an important concern,

both designs included methods to reduce the helicity-dependent effects related to it: next-pulse

neutralization (NPN) and the buddy method. In the NPN method, after an event is detected

in an MPS, the encoding is disabled for the following micropulse (32 ns later). This ensures

that the signals completely clear the MT. Although this increases the deadtime by a few percent,

the introduced deadtime is well-known and precisely correctable. In the “buddy” method, the

frequency that each detector recorded a hit when its buddy (the same detector located in an

opposing octant of the array) was dead was recorded. These data were then studied for indications

of helicity-dependent structure in the beam intensity, which would be seen as a helicity-correlation

variation in the buddy rates. This method was used to monitor for helicity-correlated deadtime

losses that could introduce a false asymmetry. The French electronics had the capability to do this

for each ToF bin in the spectrum [194,239].

4.6.1.1 North American Electronics

The electronics used to process the signals from the NA detectors are primarily designed

to be be robust and modular, primarily composed of commercially available modules, using sep-

arate modules to perform the needed tasks of discrimination, meantiming, time encoding, ToF

accumulation, and generation of the clocking signals used by the time-encoding boards.

First, the phototube signals from the hall are split by a passive splitter, with 1
3 of the signal

going to the Fastbus monitoring electronics, and 2
3 going to the constant fraction discriminators

(CFDs) that are the first stage of the time-encoding electronics (TEE). The TEE used commercial

CFDs (LeCroy 3420) to make the timing independent of the PMT signal amplitude.The CFDs also

have a threshold on the signal amplitude to reject low-level noise, set to about 50 mV. From the

CFDs, the signals go to the mean timers (MT). The signals from the PMTs at the opposite ends

of each scintillator arrive at different times depending on where along the length of the detector

the particle passed; the signals are meantimed to make the timing independent of where along the

detector the particle passed through. The custom MTs were built by CMU and based on ASICs
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developed at LPSC-Grenoble. Copies of the CFD and MT outputs are also sent to the monitoring

electronics.

The MT produces a signal when a coincidence is detected between the two PMTs on a scintil-

lator, which then is sent to the time-encoding boards (TE), known as the latching time digitizers

(LTDs). To count as an event, a coincidence is required between each front and back scintillator

in the FPD pair, which is then encoded by its arrival time. To do this, a timing reference signal

is necessary. The NA electronics used two timing signals: the Y0, the 31 MHz start signal for the

ToF, and the CLK, the 499 MHz signal used to run the shift registers. They are both synchronized

the the passage of the beam through the G0 target, instead of the RF of the accelerator, in order to

prevent any helicity-correlated dependencies in transit time from the injector to the experimental

hall. To accomplish this, these signals were produced using feedback loops stabilized with respect

to a 1497 MHz RF cavity driven by the beam located upstream of the target [240].

The signals arriving at the LTDs are time-encoded using a gated clock signal generated by

turning off the 499 MHz clock signal for 8 ns. When a coincidence occurs between the front and

back scintillators, the shift register’s input is latched-on. The shift register then recorded this data

in its lowest bit, shifting the previous data to the next higher bits. The depth of the signal thus

depends on the time of the coincidence within the 32 ns ToF, encoding the time of the coincidence.

However, this only yielded a 2 ns timing resolution. To obtain a 1 ns timing resolution, the latch

input signal was sent to two 16-bit shift registers, one of which was clocked by the leading edges

of the clock train and one of which is clocked by the trailing edges. By taking the interleaved

differences between the scaler channels on the two shift registers, a 1 ns resolution was obtained.

Each LTD encodes times from two front scintillators (buddy pairs).

At the end of the gated clock train, the shift registers send their data to registers that are

read out by individual scalers that record the time spectrum. They are custom-built VME 32-bit

latching scalers that were designed by LPSC-Grenoble, based on a scaler ASIC developed there.

The scalers collect data for the 33 ms macropulse, and then the data is latched into on-board
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memory and the scaler channels cleared in the break between macropulses. The DAQ system read

out these latched data during the next macropulse while the scalers accumulate the next spectra.

At the end of the clock train, the latches are cleared and disabled for the duration of the next

clock train (NPN). This added deadtime improves the accuracy of the deadtime corrections by

reducing the dependence on the deadtime properties of the PMTs, CFDs, and MTs, which are less

well defined [194]. The NA electronics have a differential non-linearity, where the widths of the

timebins fluctuate slightly, but this was correctable.

4.6.1.2 French Electronics

The French took a different strategy and designed the system to be entirely custom-made with

a higher resolution of 250 ps. Unlike the NA design, everything was essentially on one board. The

French electronics design was fully integrated and therefore very compact, with all the electronics

for the four French octants fitting into a single VXI crate.

The entire system consists of a CPU board holding the read-out controller (ROC), a Trigger

Interface board connected to the Trigger Supervisor, and 8 custom mother boards that are con-

trolled by an interface box that provided signals such as the Y0 and MPS to the mother boards.

These mother boards were called DMCH-16X (discrimination, Mean-timing, time enCoder, His-

togramming, 16 mean timer channels with the VXI standard). Each of these DMCH-16X processed

32 phototube signals (half of an octant or 8 detectors). Each DMCH-16X board held all the elec-

tronics needed to process the signals from the phototubes.

The signals from the French detectors in the hall first are split by an active splitter that sent

exact copies of the original signals (at full gain) to the Fastbus monitoring electronics and to the

CFDs for the time-encoding electronics. Once the signal was received in a CFD, it was disabled

for the remainder of the meantiming sequence to prevent confusion. If the CFD for the other end

of the scintillator also received a signal, the signal was meantimed and sent to the EPLD-Trig

(electrically programmable logic device for triggering) chips. Otherwise, the MT reset and waited

for another signal. The deadtime from this was general about 37 ns. Like the NA CFDs, the
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thresholds for the CFDs were controlled by software, generally set to about 50 mV.

Once the EPLD-Trig received the signal, it generated a 7 ns coincidence window and looked for

a coincidence between the front and the back scintillator pair. Upon detecting a coincidence, the

time of the event was encoded by a custom numerical time encoder called the ASIC (Application

Specific Integrated Circuit) designed by the electronics department of IPN Orsay. The 128 bin

flash TDC TE had a 250 ps time resolution and was locked onto the Y0 reference signal for the

timing. The TE had nine independent channels: eight used for the MT signals, and a ninth was

used when running with either the internal signal generator (GDMCH) for testing the CFDs and

MTs or the with GMS, where it was used for an extra signal that controls the laser firing. The

data from the TE then went to the DSPs (Digital Signal Processors) that accumulated the ToF

spectra for each detector.

There was an additional daughter board (SDMCH) in each DMCH that was independent of

the time-encoding data system. It provided individual scalers for CFD and MT events, designed to

provide information about the deadtime from incomplete events (such as single CFDs) in addition

to that provided from the Fastbus monitoring data.

At the end of an MPS, the data from the DSPs and the SDMCH were transferred in 29 µs

to the DSP concentrator through link ports (40 MB/s) during the 500 µs for the helicity flip and

settle time. During the next MPS, the data (5 kB) was transfered from the DSP concentrator

to the ROC, and from there all the data from the DMCH-16X boards were gathered up with the

data from all the other ROCs into the CODA event builder for recording. The French data took

a lot of resources; the total flow was about 1.4 MB/s, which was about 2/3 of the total G0 data

transfer [194, 239–241].

In addition to the system for the coincidence logic, the system had other modes for testing

purposes. These modes allow configurations where spectra only contained signals from the front

or the back signals, signals from both, and the NPN and buddy schemes. The system also had

the capability of a differential buddy system, where the buddy scheme could be done timebin-by-
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timebin in a ToF spectrum. The TE had an inherent differential non-linearity (DNL), but this is

corrected for in the off-line analysis.

There were nine DMCH boards in all; eight that processed the signals from the French De-

tectors, and one that was used for the Franco-American Hybrid Electronics (see Section 4.6.1.3).

4.6.1.3 Franco-American Hybrid Electronics

In addition to the above, there was another, rather curious electronics arrangement. In an

effort to gain resolution in the higher-numbered NA detectors to make the background subtraction

easier, and as an additional cross-check of the two systems, copies of the signals from detectors 14

and 15 in the NA octants were processed by the French electronics in precisely the same manner

as the French TEE above (with no Fastbus). This gave ToF spectra from the NA detectors 14

and 15 with the French resolution of 250 ps. These electronics were referred to as the Franco-

American Hybrid Electronics (FrAm), and these spectra were used in the background correction

studies described in Section 5.4.5.

4.6.2 The Data Acquisition System

Disk Storage

EPICS

High Voltages, ...
Target, Magnet,
Slow Controls:

CODA
Event Transport
Buffer System

On−line
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Computer
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FIG. 4.15: A flowchart of the data-acquisition system for the forward-angle G0 measurement. Figure
from [239].

The data acquisition (DAQ) for the experiment used CODA (CEBAF Online Data Acquisition

system), which was developed and is used extensively at Jefferson Lab [242,243]. The CODA DAQ
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ran on a Linux computer in the Hall C counting house, and communicated with the electronics for

all the G0 subsystems, which were housed in crates in the electronics cage on the second floor of

the counting house. Each crate housed the modules forming a subsystem or a part of a subsystem,

along with triggering control and event readout boards. A conceptual flowchart of the system can

be seen in Figure 4.15.

The DAQ computer communicates with each of the electronic crates by sending the trigger

signals to a command module called the trigger supervisor (TS), which in turn passes the signal

to the readout controllers (ROC) that are located in each crate. The data acquisition software

on each ROC read out the data from the modules in the crate according to the trigger types and

parameters, and then shipped the data to the DAQ via ethernet.

For the forward-angle measurement, the experiment used five crates. The first crate contained

ROC0, along with the trigger supervisor (TS0), the scalers for the beamline monitors and the VME

TDC module that sampled the Y0 signals. The beam helicity information for the run was stored

in the input register of the trigger supervisor as well. The VME crates that housed the scalers for

the NA detectors (32 channels/module) also housed ROCs 1, 2, and 4. ROC3 was located in the

French VXI crates that read the data from the nine DMCH boards, and ROC5 was located in the

Fastbus crate that housed all the monitoring ADC and TDC modules.

The different trigger sources are passed to the trigger supervisor. If it is not busy upon

receiving the trigger signal, it registers the arrival of the signal and begins to process the event.

The trigger supervisor passes the information about the trigger type to the trigger interface module

in each of the other crates. The DAQ software on the ROC in each crate reads out the individual

front-end modules depending on the trigger type.

The experiment used three primary trigger types: 30Hz, 120 Hz, and Fastbus. The standard

30 Hz trigger (trigger type 1) was the one used for the primary production mode to take the data

needed to form the parity-violating asymmetry. For this trigger, the time-encoding scaler data

from ROCs 0,1,2,3 and 4 (the NA scalers, DMCH modules, and beamline instrumentation; no
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Fastbus crates) were read out at the end of each MPS, during the 500 µs window for the Pockels

cell to settle after flipping the helicity state.

The experiment also used a special trigger (type 2) where the DAQ over-sampled the data at

120 Hz to measure possible 60 Hz noise present in the electronics that could cause false asymmetries.

Two trigger types were used for this mode: one where the DMCH were read out at 30 Hz, and one

where the NA and beam scalers were read out for the three intermediate 120 Hz phases between

each MPS trigger [194]. (no Fastbus for any of these events) The analysis of the 120 Hz data

showed that the contribution of 60 Hz noise was negligible over the running period.

The monitoring Fastbus triggers (trigger type 4) used a hardware-prescaled copy of the Y0

signal to ensure only a small sample of the beam pulses were taken, giving a trigger input rate of

about 500 kHz. Additional prescaling was done in the trigger supervisor software, which gave a

trigger rate between 120-500 Hz for usual operating conditions. For these triggers, ROCs 1-4 and

the beamline scalers are not read out (only the Fastbus crate). During typical data-taking, the

time required to read out the Fastbus data was about 1 ms, which limited the trigger rate to only

a few hundred Hz.

To improve the trigger efficiency, some data-taking required a second level of triggering for

the readout of the monitoring electronics. In this case, a fast clear cleared all the channels unless

there was at least one good front-back coincidence hit from a particle during the ADC gate in one

detector pair in either the NA or French readout. If cleared, the triggering components were ready

for another gate in about ∼ 2 µs.

In addition to these primary three trigger types, there were triggers for GMS lamp events

(type 5) and GMS source events (type 6), in which the Fastbus crates were read out, but ROCs

1-4 and the beamline scalers were not.

In addition to these data, slow controls data (detector high voltages, beamline parameters,

target and magnet conditions, etc.) were monitored by the Experimental Physics and Industrial

Control System (EPICS) [229], written to the G0 data stream, and archived in the CEBAF EPICS



146

database.

The data were collected in runs of about one hour in length. As the data were collected for

each run, the data were written into a shared memory buffer by the DAQ called the event-transfer

buffer, which was read by the G0RealTimeMonitor, a program written in C++/ROOT to produce

realtime diagnostic plots of beam quality parameters, detector rates, and so forth. At the end of a

run, the CODA datafiles were copied onto a disk drive and to the JLab tape silo storage system.

After being written to the disk drive, the G0Analysis replay engine running on a dedicated analysis

computer in the counting house analyzed the datafile, producing ntuples and histograms in files

to be read by ROOT by the online analysis scripts written in C++/ROOT, and writing the data

into a MySQL database for later offline analysis. More details about the G0Analysis program will

be discussed in Section 5.1

4.7 Summary

Overall, the performance of the complex G0 apparatus was excellent, allowing the collection

of parity-violating asymmetry data over the span of several months. In this time, slightly more

than 700 hours of production data were taken, amounting to about 10 TBytes of data recorded

as CODA files. These data could be used to form a raw asymmetry directly. However, the road

from a raw measured asymmetry to the final physics asymmetry result is a long one, as will be

discussed in the next chapter on the data analysis.



CHAPTER 5

From Raw Asymmetries to

Physics Asymmetries

Once the data have been taken, there is a lot of work to be done before the measured raw

asymmetries become the final physics results. The raw asymmetries must be corrected for a variety

of systematic effects before they can be used to calculated the linear combination of the strange

electric and magnetic form factors. In particular, they must be corrected for electronics deadtime,

“leakage” beam, helicity-correlated beam properties, the asymmetry from background events, beam

polarization, and electromagnetic radiative corrections. In addition, the four-momentum transfer

Q2 of each of the detectors must be determined. This chapter summarizes how these corrections

were done.

5.1 Overview

The raw data is analyzed using the G0 analysis software (G0Analysis), which was developed

using C++ and ROOT, an object-oriented analysis toolkit developed at CERN. The analysis

software processes the raw data using the calibration values stored in a MySQL database, and

147
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then writes all of the results of the analysis into the database.

Cuts are applied on an MPS-by-MPS basis (see Section 4.3.1) to ensure that only high-quality

data are used for the physics results. Events with a beam current below 4 µA are removed,

along with the next 500 MPSs after a beam trip recovery to allow the beam and the target to

stabilize. Cuts are done to ensure that the data were taken at the proper magnet current and target

temperature; that there were no electronics malfunctions; and to ensure that the beam parameters

were all within the tolerances of the measurement (see Table 5.4). If any MPS in a quartet fails a

cut, the entire quartet is removed. Over 900 hours of data were taken in the experiment; a quarter

of it did not pass the cuts, leaving a dataset of 100.88 C of integrated beam current for the physics

asymmetry analysis.

The data that pass the cuts then moves on for further analysis. Any slight differential non-

linearity (DNL) in the timebin widths in the ToF spectra are corrected using measured calibration

files [244]. The deadtime corrections (see Section 5.2.1) are applied to the rates bin-by-bin for each

detector. These rates are then normalized by the beam current to obtain the yields as

Y (t) =
R(t)

I
, (5.1)

where Y (t) denotes the yield in a given timebin t, R(t) is the rate in that timebin, and I is the

beam current. The asymmetry in each timebin is then computed by

A(t) = h
Y1 + Y4 − (Y2 + Y3)

Y1 + Y4 + Y2 + Y3
, (5.2)

where Yi represents the yield measured in the ith MPS in the quartet, where the quartets have

the pattern + −−+ or − + +−. The variable h takes a value of 1 or −1, which is determined by

the helicity bit that sets the polarity of the helicity Pockels cell. The determination of the true

sign of the asymmetry is discussed in Section 5.2.2.3. Other asymmetries in the experiment are

calculated in the same manner. For the beam position, beam angle, and energy differences, the

helicity-correlated difference is used instead:

∆p = h
p1 + p4 − (p2 + p3)

2
, (5.3)
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where pi is that parameter in an MPS. The running averages of these values over an entire run are

also computed and written to the database. The correlation slopes for the beam parameters are

calculated (see Section 5.3.2), and then the means and uncertainties of the yields and asymmetries

for the detectors and beam parameters are written into the MySQL database.

To remove the possibility of the introduction of human bias during the analysis of the data,

what is known as a blind analysis was done. The analysis code was designed to apply a multiplica-

tive blinding factor (fblinding ≡ 0.805619), which was not known by any of the analysis team until

the end of the analysis. At the end of the analysis, this global blinding factor was removed.

This chapter describes the analysis of both the parity-violating asymmetry data taken with a

longitudinally polarized electron beam and the analysis of the transverse asymmetry data taken

with a transversely polarized beam. First, elements of the analysis common to both data sets are

covered, then the parity-violation data, and finally, the transverse asymmetry data set.

5.2 Analysis Common to Both Datasets

The result of the processing by the analysis software is a time-of-flight spectrum of the yield and

the asymmetry for each data run. An example spectrum can be seen in Figure 5.1. The spectrum

shows a pion peak at about 8 ns, a proton peak at 20 ns, and an inelastic peak in between. The

inelastic peak extends underneath the elastic peak of interest, and so the contribution of these

events must be removed from the elastic asymmetry.

Cuts were made for particle identification along the ToF spectrum, which were different for the

parity-violation and transverse datasets. In addition, the French and NA electronics have different

timing resolutions, so the cuts are not exactly the same width for each. An example of the elastic

proton cut is shown in Figure 5.1; for the cuts used the analysis of each dataset, see Sections 5.3.1

and 5.4.1.

The asymmetry reported for a run is the asymmetry integrated over the cut, weighted by the
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FIG. 5.1: Spectrum from the G0 forward-angle measurement showing the measured yield (histogram)
and raw asymmetry (data points) as a function of ToF for Detector 8. Figure from [245].

measured yield. The statistical asymmetry is calculated by counting statistics:

σAelas
=

σAqrt
√

Nqrt

≃ 1√
Nelas

, (5.4)

where σAelas
is the statistical width of the asymmetry distribution, Nqrt is the number of quartets,

and Nelas is the number of elastic proton events. The asymmetry distribution should have a

perfect Gaussian shape, and the NA G0 data behave in this manner, following counting statistics

as expected.

However, a problem was discovered for the French dataset. The French proton cut contains 17

timebins. There are two ways to calculated the mean and width of the asymmetry in the proton

cut. In the first, the yield can be integrated over all 17 bins to obtain the proton yield, which is

then used to calculate the asymmetry and its width. In the second case, the asymmetry and its

width can be calculated bin-by-bin, and then a weighted average can be done to get the proton

asymmetry and width. If the measurement of each timebin is independent, both methods should

be equivalent. However, in the French dataset the methods differed by about 20%, due to an

intrinsic jitter in the TDCs that introduced correlations between the timebins [228]. As the first

method is insensitive to this effect, this method was used to calculate the uncertainty.

Finally, the data were studied to investigate if there were any long term systematic drifts

or electronics false asymmetries by studying the behaviour under half-wave plate reversal. The
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asymmetry flipped sign with each half-wave plate state change, and averaged to zero as expected.

5.2.1 Deadtime Corrections

Deadtime in the electronics is an unavoidable systematic in a counting experiment [246]. The

electronics for the G0 experiment count the signals from the passage of particles through each of

the FPDs at a rate of about 2 MHz [239]. The electronics require a finite amount of time to process

the detection of a particle, which means that the electronics cannot process any other events that

take place during this period. This time period τ is the deadtime, and is a characteristic of those

electronics. Since protons that pass through the detectors are unrecorded, this deadtime affects

the measured counting rate, and thus the measured parity-violating asymmetry, and so must be

corrected for carefully.

The deadtime fraction fdt is the probability that a channel is dead upon the arrival of the

next event, and is proportional to the event rate, given by

fdt = τRmeas, (5.5)

where Rmeas is the measured detector rate, τ is the deadtime, which when using the NPN method

is the time-length of a 32 ns beam pulse. The measured rate will then by related to the actual rate

by fdt (to first order):

Rmeas = (1 − fdt)Rtrue, (5.6)

where Rtrue is the true rate. In the same manner, the measured charge normalized yield Ymeas is

also related to the true yield Ytrue:

Ymeas = (1 − fdt)Ytrue, (5.7)

where Ymeas = Rmeas

I
is the normalized raw yield and Ytrue = Rtrue

I
is the normalized true yield.

The rate is proportional to the beam current I, so a charge asymmetry present in the beam coupled

with deadtime effects can introduce sizable false asymmetries. The true asymmetry is related to
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the measured asymmetry through the deadtime fraction:

Ameas = Aphys −
fdt

1 − fdt

(Aphys + AQ) , (5.8)

where fdt is the deadtime fraction, Ameas is the measured asymmetry, AQ is the charge asymmetry,

and Aphys is the true asymmetry without deadtime effects.

In the G0 experiment, two different approaches were used to reduce helicity-dependent dead-

time effects [194,239], as discussed in more detail in Section 4.6.1. In the Next-Pulse-Neutralization

(NPN) method, if an event triggers the electronics, any events in the following beam pulse 32 ns

later in the same channel are ignored. This introduces a deadtime of known length that is well

understood. The other system to monitor and study deadtime effects is called the “buddy” system,

where a comparison of the deadtime in a detector is compared to the deadtime in the same Q2

detector in a diametrically-opposed octant (the detector’s buddy), as discussed in Section 4.6.1.

Both sets of electronics use these methods. In the G0 experiment, the correction for deadtime is

made MPS by MPS.

The true scattering rate is proportional to the beam current, so deadtime effects can be

determined from the correlation of the measured, normalized yield and the beam current. The

deadtime fraction is then the slope of the normalized yield versus beam current. In addition,

Equation 5.8 shows that fdt can be measured by artificially inducing a known charge asymmetry

and then observing the correlation between Ameas and AQ:

∂Ameas

∂AQ

= − fdt

1 − fdt

. (5.9)

The deadtime fraction determined by both methods were in good agreement. The deadtime

fraction at the standard beam current was about 10% for the NA electronics and 15% in the

French electronics. After the correction, the remaining asymmetry slope for the NA detectors was

negligible, but the French detectors had a slight residual slope of about ∼ −2.5%. The remaining

false asymmetry after the deadtime corrections are estimated from a knowledge of the electronics

themselves. The correction for any residual false asymmetry is made after the background correc-
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tion. A point-to-point systematic error bar of 100% of the correction was assigned to this final

correction.

5.2.2 Beam Polarization Correction

The correction to the raw asymmetry for the beam polarization is simply

Acorr =
Araw

Pb

, (5.10)

where Pb is the polarization of the beam, and Araw and Acorr are the raw and corrected asym-

metries. In addition to this correction, however, the uncertainty in the measurement of the polar-

ization is a global systematic uncertainty for the experiment, which makes a careful measurement

and understanding of the polarization measurements necessary [207].

5.2.2.1 Longitudinal Polarization Analysis

The beam polarization measurements for the experiment, as measured with the Hall C Møller

polarimeter as described in Section 4.3.3, are shown by IHWP state in Figure 5.2 for the pro-

duction running period. The measurements are shown grouped according to the configuration of

the polarized source and injector, with a constant fit shown for each grouping. The closed points

denote longitudinal polarization measurements; the open points represent the transverse polar-

ization values. The polarization was quite stable, on average about 74%. The polarization for

each configuration was used for the corresponding range of G0 data runs, with the asymmetries

and their uncertainties corrected on a run-by-run basis. The average polarization for the entire

experimental run, weighted by the physics production data, was 73.73%.

The statistical error for each polarization measurement is typically around 0.3%, which is

quite small compared to the systematic uncertainty. The systematic uncertainty of the polarization

measurement has contributions from the foil polarization, target heating and warping, and various

other errors in the set-up and tuning of the equipment. The contributions to the systematic

uncertainties are summarized in Table 5.1. The systematic errors due to potential mis-tuning
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FIG. 5.2: The beam polarization versus date for the forward-angle running period of the G0 experiment,
shown by insertable half-wave plate (IHWP) state. The measurements are grouped according to the
configuration of the polarized source, with a constant fit for each group. The closed points denote
longitudinal polarization measurements; the open points represent the transverse polarization values.
Error bars are statistical. Figure from [207].

or misalignment of the various parts of the polarimeter have been well studied before, as have

the contributions of the uncertainty of the beam position measurement, the corrections for the

Levchuk effect (the motion of the atomic electrons in the iron target), and the contribution of

multiple scattering [209,247].

For the G0 run, the Møller solenoid field was set to 3T instead of 4T, due to historical reasons.

This field setting gave a target polarization of 0.08036 ± 0.00015, so there is a +0.1% correction

to the beam polarization numbers, and a contribution of 0.19% to the uncertainty.1 At 3T, 2◦ of

target warping yields an uncertainty of 0.37%. For the measurement current of 2 µA, and a beam

spot size of 100 µm, the effect on the polarization of target heating from the beam on the iron foil

is 0.2%, with a random uncertainty of 0.1%.

Leakage beam from the other halls gives a contribution of 0.2% fractional error on the polar-

ization in the worst case scenario. The correction for the charge measurement is very small, at

most Q+/Q− ∼ 1.008, and usually smaller. The charge asymmetry is even smaller. The gain of

1For a 4T field, the target foil polarization is 8.043 ± 0.015%.
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Source Uncertainty Effect on A (%)
Beam position x 0.5 mm 0.15
Beam position y 0.5 mm 0.03
Beam angle x 0.15 mr 0.04
Beam angle y 0.15 mr 0.04
Current Q1 2 % 0.10
Current Q2 1 % 0.07
Position Q2 1 mm 0.02

Multiple Scattering 10 % 0.12
Levchuk Effect 10 % 0.30

Collimator Position 0.5 mm 0.06
Target Temperature 5◦ 0.2

Direction B-field 2◦ 0.06
Value B-field 5 % 0.03

Spin Polarization in Fe 0.19% 0.1
Target Warping 2◦ 0.37

Leakage 0.2
High-Current 1.0

Solenoid Monte-Carlo 0.1
Electronic Deadtime 0.04
Charge Measurement 0.02
Monte Carlo Statistics 0.28

Accelerator Configuration 0.5

Total Uncertainty 1.32

TABLE 5.1: Sources of error in the determination of the beam polarization (solenoid at 3T). The
percentages are fractional.

the BCMs is nonlinear at the 0.2–0.3% level, which is negligible for these measurements. Assuming

the offset is uncertain at the 10 kHz level (0.25 counts/MHz versus 0.24), this leads to a 0.02%

effect. For a typical Møller run, the rates are ∼ 25 kHz, and so the effect on the Møller asymmetry

of the electronic deadtime is 0.04%.

To be conservative, we have added two more sources of error: one for the high-current extrap-

olation, and another for accelerator configuration changes. Recall that the polarization measure-

ments are made at a beam current of 2 µA instead of the nominal 40 µA. Although the mechanism

is not known, it is conceivable that the polarization could change over this span. There is no current

dependence of the polarization measurement at the 1 % level up to 10 µA, verified by tests with

the Møller raster in 2003, and there is no convincing argument for a change in beam polarization

at higher currents. However, there have been no good measurements of the beam polarization in
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Hall C in this current range. Tests with the Møller kicker in 2004 suggest the extrapolation is valid

at the 1–2% level at 40 µA, but the polarized source was too unstable for a precise measurement.

In the interest of being conservative, a 1% fractional uncertainty is assumed for the extrapolation

from 2 µA to 40 µA. The 0.5% designated for accelerator configuration changes is meant to account

for any laser spot moves, quantum efficiency changes, or other accelerator configuration changes

that affected the polarization. This number was determined by observing the spread caused by

these changes.

The conservative number for the total systematic uncertainty, including the contributions from

the high-current extrapolation and the accelerator ambiguities, is 1.32% (fractional). This number

is assigned as a global systematic uncertainty for the physics asymmetry measurement. Tables of

the polarization measurements performed during the second engineering run and the forward-angle

physics run of the G0 experiment can be found in Ref. [207].

5.2.2.2 Transverse Polarization Analysis

The determination of the transverse polarization was done by assuming that the longitudinal

polarization measured for the spin dance on March 26 was the value of the polarization during the

transverse running. The transverse running was very short, and there was only one data set for

each IHWP setting. In addition, the stability of polarization during the months of longitudinal

running indicates that the polarization should remain stable over the few days of the transverse

measurement. The statistical error bars were assigned based on the interpolation between the two

spin dances on March 22 and 26, with some inflation due to the indirect nature of the determination

and the drift of 2.75 degrees that occurred during that period. The systematic error uncertainty of

1.66% (fractional) comes from the reported conservative systematic uncertainty of 1.32% for all the

forward-angle polarization measurements (see Ref. [207, 248]) with an additional 1.0% systematic

uncertainty combined in quadrature due to the indirect nature of the measurement. Based on the

constraints from the spin dance, the interpolated polarization values for the transverse running are

shown in Table 5.2. The data for the transverse running were corrected for the polarization using
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the average value for the period, which comes to 74.32± 1.34 (or a 1.80% fractional error bar).

Run Range Polarization (%) IHWP Time Period

20791− 20819 3/22− 3/23

20877− 20900
74.18± 0.74stat ± 1.23syst In

3/25− 3/26

20820− 20876 74.45± 0.74stat ± 1.24syst Out 3/23− 3/25

20791− 20900 (All runs) 74.32± 0.52stat ± 1.23syst Average 3/22 - 3/26

TABLE 5.2: The polarization for the transverse running period. The statistical error bars are quasi-
statistical with some interpolation error folded in, and the systematic error bars are from the systematic
study for the longitudinal polarization measurements for the G0 experiment inflated by another 1.0%.

5.2.2.3 Determination of Physics Asymmetry Sign

An insertable half-wave plate (IHWP) on the laser table is used as a systematics check in

the G0 experiment. The insertion of the IHWP reverses the helicity of the beam pulse electrons

with respect to the helicity signal sent to the electronics so that the electrons labeled as “h+” are

now actually in the opposite helicity state than they were formerly. The parity-violating physics

asymmetry reverses sign, but any electronics-related false asymmetry present does not. Since all

other aspects of the experiment have remained the same, any helicity-correlated differences in the

electronics become apparent when the physics asymmetry data from both IHWP states (“in” or

“out”) are summed together, as ideally they should sum to zero.

The physics asymmetries are calculated in the analysis assuming that the electron pulses

labeled as “h+” and “h−” contain positive and negative helicity electrons, respectively. However,

this is only true for one of the IHWP states, in or out, and the actual helicity is the opposite of the

designated helicity in the other IHWP state. The question then is this: how can the true electron

helicity designation be determined? There is no unbiased way to determine the correct helicity

designation for the calculation of the actual physics asymmetry from the physics data itself.

The polarization reported by the Møller analyzer is calculated from the Møller asymmetry

measured by the polarimeter, so the sign of the Møller asymmetry also changes with the IHWP

setting, causing the polarization to be reported as positive or negative. An understanding of the
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measured Møller asymmetry and the Møller polarimeter can therefore be used to determine the

actual electron helicity throughout the experiment by knowing the sign of the measured polarization

[249].

As mentioned before, the theoretical Møller asymmetry is defined as the cross-section asym-

metry

AMøller =
σ↑↑ − σ↓↑

σ↑↑ + σ↓↑ = |Pb||Pt|Azz (θ) , (5.11)

where σ↑↑ denotes that the electron spins of the beam and the Møller target are aligned, σ↓↑ denotes

that the electron spins of the beam and the Møller target are anti-aligned, Pb is the polarization

of the beam, Pt is the polarization of the Møller target electrons, and Azz (θ) = − sin2 θ (8−sin2 θ)
(4−sin2 θ)2

is the analyzing power [209]. At 90◦cm, Azz (θ) = − 7
9 . Note that the defined Møller asymmetry is

negative.

The Møller solenoid generates a ~B-field in the direction of the beam momentum (downstream).

However, even though the target magnetization is with the direction of the beam momentum, the

spins of the target electrons are anti-aligned with the magnetization. The magnetic moment of the

electron is defined as

~µ =
ge

2mec
~s, (5.12)

where ~s is the spin angular momentum, me is the electron mass, g is the electron anomalous

magnetic moment, e is the electron charge, and c is the speed of light [205]. Since the electron

charge is negative, the Møller target foil electron spins are pointing upstream.

The Møller analyzer calculated the measured Møller asymmetry by using the equation

Ameas =
“h+” − “h−”

“h+” + “h−”
, (5.13)

where “h+” and “h−” are the helicity states of the beam electrons labeled as positive and negative

from the Pockels cell. When the measured Møller asymmetry is negative, the beam electrons are

aligned parallel with the Møller target foil electron spins, which are pointing opposite to the beam

momentum. Therefore, when Ameas < 0, “h+” contains a true negative electron helicity state,
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h−, and when Ameas > 0, “h+” contains a true positive electron helicity state, h+. The beam

polarization is calculated using the equation

Pb = Ameas × beam polarization factor, (5.14)

where the beam polarization factor is defined as the inverse of the analyzing power of the system

and is positive by definition. Since the beam polarization factor is positive, a negative beam polar-

ization value implies a negative Møller asymmetry. Therefore, if the analyzer calculated a negative

polarization, the helicity state labeled as “h+” actually contains a true negative electron helicity

state (and “h−” a true positive helicity state). If the analyzer computes a positive polarization,

the opposite is true. When the IHWP is placed into or retracted from the laser beam path on the

laser table, the sign of the polarization that the Møller analyzer computes should clearly change

since the electron helicity states labeled “h+” and “h−” by the Pockels cell have been switched.

Since the physics asymmetry measured by G0 is defined as

Aphys =
h+ − h−

h+ + h− , (5.15)

the physics asymmetry over the entire running period should be the difference of the physics

asymmetries calculated for the two different IHWP states:

Aphysicsoverall =

{

h+ − h−

h+ + h−

}

IHWP state 1
−

{

h− − h+

h+ + h−

}

IHWP state 2
(5.16)

We know that the IHWP setting that has the state labeled “h+” containing the actual electron

helicity state h+ is the IHWP setting that has the positive measured polarization. Therefore,

Aphysicsoverall = {Aphys}+ − {Aphys}−, (5.17)

where {Aphys}+ is the asymmetry from the data taken in the IHWP with positive polarization,

and {Aphys}− is the asymmetry from the data taken in the IHWP with negative polarization.

The determination of the actual beam electron helicity must be redone each time that there

is any change on the laser table that might reset the Pockels cell, possibly swapping the way it

labels the helicity states. Such occurrences are usually obvious, since the sign of the measured
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Start Date End Date Run Range Physics Asymmetry

October 15, 2002 January 27, 2003 14152–16140 Aphys = Aout − Ain

November 17, 2003 December 9, 2003 (7:00) 17260–18090 Aphys = Aout − Ain

December 9, 2003 (16:00) March 8, 2004 18091–20568 Aphys = Ain − Aout

March 15, 2004 May 18, 2004 20589–22186 Aphys = Aout − Ain

TABLE 5.3: The actual beam electron helicity for the determination of the physics asymmetry sign for
the G0 experiment.

polarization in that half-wave plate setting should change, indicating that a swap has occurred.

However, as long as nothing on the laser table is disturbed and the beam itself is unchanged, the

polarization should keep the same respective sign in each of the two half-wave plate settings.

The determination for the G0 experiment is shown in Table 5.3. The helicity changed between

the polarization measurements in December, 2003 due to work on the laser table involving the

Pockels cell. It changed again in March 2004 when the accelerator changed configuration from

3-pass, 990 MeV/pass beam to 4-pass, 747 MeV/pass beam. As the total spin precession from the

injector to Hall C had changed by an odd multiple of π, the electron helicity was flipped and the

physics asymmetry changed sign.

5.3 Longitudinal Data Set

The raw asymmetries are corrected for electronics deadtime effects, the leakage beam asym-

metry from the other halls, any false asymmetry introduced by helicity-correlated beam properties,

and the beam polarization. Corrections are made to remove the contribution of background events

to the elastic proton asymmetry of interest. Radiative corrections are then done to account for

higher-order processes. Finally, the corrected final asymmetries are unblinded, and then used to

compute the strange form factors, which will be discussed in the next chapter. As a note, in this

chapter the asymmetries are usually blinded, unless indicated as otherwise.
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FIG. 5.3: Spectrum from the G0 forward-angle measurement showing the measured yield (histogram)
and raw asymmetry (data points) as a function of ToF for Detector 8.

5.3.1 Time-of-Flight Particle Identification Cuts

The result of the processing by the analysis software is a time-of-flight spectrum of the yield and

the asymmetry for each data run. An example spectrum can be seen in Figure 5.3. The spectrum

shows a pion peak at about 8 ns, a proton peak at 21 ns, and an inelastic peak in between. The

inelastic peak extends underneath the elastic peak of interest, and so the contribution of these

events must be removed from the elastic asymmetry.

Cuts were made for particle identification along the ToF spectrum. As the French and NA

electronics have different timing resolutions, the cuts are not exactly the same width for each. The

main ToF cuts used for the analysis were:

• pion cut: pion peak window,

• cut1: first window within the inelastic peak,

• cut2: second window within the inelastic peak,

• proton cut: the elastic proton peak window of interest,

• cut3: a window directly after the proton cut,

• total: the entire 32 ns spectrum.

These cuts are shown in the figure, and are mentioned to make later discussions simpler.
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5.3.2 Corrections for Helicity-Correlated Beam Properties

One of the primary possible sources of false asymmetries comes from helicity correlation in

the beam properties. The cross section depends on the beam energy, the detector sensitivities vary

with the beam position and angle, and the background levels can vary with the beam position and

halo, which makes careful monitoring and study of the beam quality important.

5.3.2.1 Helicity-Correlated Beam Parameters

The yield measured in the detectors is proportional to the scattering cross section and the

acceptance; both have dependence on the beam properties such as the incident beam positions,

angles, and energy. Because of this, helicity-correlated changes in these beam parameters will

cause a change in the yield δY that can be written in terms of the change in each of the beam

parameters δPi and the correlation slope ∂Y
∂Pi

that describes the response of the measured detector

yield to the changes in the beam parameters:

δY =

N
∑

i=1

∂Y

∂Pi

∆Pi, (5.18)

where δY ≡ Y −〈Y 〉 is the change in the yield and ∆Pi ≡ Pi−〈Pi〉 is the helicity-correlation in the

beam parameter Pi. Changes in the yield in turn affect the asymmetry, so any helicity-correlated

differences in the beam parameters will cause a false asymmetry described by [194]

Afalse =

N
∑

i=1

1

2Y

∂Y

∂Pi

∆Pi (5.19)

in the measured asymmetry, which must be corrected for.

Thus, it is important to monitor the beam parameters for quality and measure them for cor-

rections for residual effects in the physics asymmetry. To remove the false asymmetry, the ∆Pi

and the correlation slopes ∂Y
∂Pi

must be determined. The ∆Pi were monitored continuously with

the beam monitors during the measurement and their asymmetries calculated. To determine the

slopes, a standard multi-dimensional linear regression technique was used. A given beam param-

eter may be correlated with the others; this technique takes into account these correlations and
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accurately corrects for effects where the spectrometer sensitivity couples to the helicity-correlated

beam properties. The G0 experiment monitored six beam parameters for helicity-correlation and

recorded data for the physics asymmetry correction: the beam charge, the x and y positions, x

and y beam angles, and the beam energy.

Helicity-correlation in the beam originates in the polarized source at the helicity Pockels cell,

the optical element that determines the polarization state of the beam, and can be generated in

a variety of ways. One way that the Pockels cell can cause helicity-correlated effects is through

steering the beam. Crystalline materials that exhibit a Pockels effect are also piezoelectric, so the

application of a voltage across the crystal can cause a distortion of its shape, which in turn can cause

the laser to refract off of the beam axis by slightly different amounts for the two polarization states.

As the laser beam is then steered differently for the two helicity states, the beam will illuminate

the cathode in two different locations, causing the generated electron beam to have two originating

positions. This creates helicity-correlated position differences. These helicity-correlated steering

effects can also cause a charge asymmetry if the cathode has a significant quantum-efficiency (QE)

gradient across the surface. As the laser is incident on the cathode surface in two locations,

different amounts of charge will be photoemitted depending on this gradient, which creates a

helicity-correlated charge asymmetry. Charge asymmetries can also arise from the fact that the

Pockels cell does not create a perfectly circularly polarized light, and that the cathode has some

analyzing power. As the light has a small residual component of linearly polarized light, this light

will rotate when the handedness of the circularly polarized light is flipped, causing a helicity-

correlated photo-emission difference. A RHWP is used in the injector to minimize this effect,

and the IA and PZT feedback systems are used to minimize all these effects (see Section 4.3.1.1).

Helicity-correlated beam effects are further complicated by the transport of the beam (adiabatic

damping, beam scraping, betatron mismatch) [250].

The beam charge was measured using the two RF cavity BCMs (see Section 4.3.4) in Hall C.

The x- and y-positions and angles at the target were determined using stripline BPMs IPM3HG0
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Helicity-Correlated Beam Parameter Measured Value Specification

Charge Asymmetry Aq (ppm) −0.14± 0.32 < 1

x-position difference ∆x (nm) 3 ± 4 < 20
y-position difference ∆y (nm) 4 ± 4 < 20
x-angle difference ∆θx (nrad) 1 ± 1 < 2
y-angle difference ∆θy (nrad) 1.5 ± 1 < 2
Energy Difference ∆E (eV) 29 ± 4 < 75

TABLE 5.4: The measured helicity-correlated beam parameters during the G0 forward-angle production
running, along with the desired beam quality specifications [250].

and IPM3HG0B (G0 and G0B), which were located about 5 meters upstream of the G0 target,

separated from each other by about 2.5 meters, in the hall. As the two BPMs measured both

the x and y positions and had no steering or focusing magnets between them and the target,

the positions and angles at the target were extrapolated from these measurements (see Section

4.3.4). The beam energy was determined using the measured x position of the beam from a BPM

(IPM3HC12, called 3C12) located in a dispersive section in the Hall C arc (see Section 4.3.4). The

helicity-correlated differences in the beam parameters averaged over the entire experiment can be

seen in Table 5.4.

The other contribution to the false asymmetry in Eq. 5.19 comes from the slopes. Two

methods were used to determine the slopes ∂Y
∂Pi

during the experiment. The first method used

the natural beam motion (NBM) to observe how the detector rates varied as a function of the

beam parameters. This method yields a realtime measurement of detector response to changes

in the beam parameters; however, the NBM does not have a large dynamic range (a good thing,

actually, as it indicated a stable beam position), the typical range of motion being about 0.1 mm.

To study the detector responses over a larger dynamic range, a second method was also used.

This method uses a set of steering coils (see Section 4.3.4.6) upstream of the target to artificially

dither the beam position by about 1 mm in a grid or cross pattern to increase the dynamic range

of the parameters. This was called coil pulsing (CP) or beam modulation, and these data were

taken automatically for a short period (about a minute) at the beginning of most of the data

runs. The slopes for the experiment were then calculated three ways: two calculations based on
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measurements of the yield using NBM and CP, and a calculation of the position slopes using

a G0GEANT simulation [251, 252]. The yield slopes calculated from the NBM data were used

to determine the false asymmetry contribution for the experiment; the CP data were used as a

cross-check for the slopes from the NBM, as were the ones from the simulation.

Standard multiple linear regression techniques were used to calculate the slopes from the

measured data [250, 253]. This method takes into account the correlations between the beam

parameters and the yields as well as the beam parameters themselves:

〈δPjδY 〉 =
∑

i

∂Y

∂Pi

〈δPjδPi〉, (5.20)

where 〈δPjδY 〉 is the vector representing the covariance between the yields and the beam parame-

ters, and 〈δPjδPi〉 is the 6×6 matrix representing the correlation between the six monitored beam

parameters. If the beam parameters were 100% correlated, the matrix would become a singular

matrix, and could not be inverted; but in reality, due to noise in the devices, this is never the case.

The linear regression is done for each of the PID cuts (i.e. proton cut, etc.) for each FPD, and the

slopes and the uncertainties are calculated and written to the database. The yields can be then

corrected MPS-by-MPS during a second-pass replay with the analysis engine following

Y m
corr = Y m

meas −
∑

i

∂Y

∂Pi

(Pm
i − 〈Pi〉), (5.21)

where the m superscript denotes the MPS, Y m
corr and Y m

meas are the corrected and measured yields

of each MPS, ∂Pi represents the six beam parameters, and ∂Y
∂Pi

denotes the six calculated slopes

[250, 253].

The linear regression analysis determined the slopes quite accurately, and the dependence

of the corrected yield on the beam parameters are largely removed. Figures 5.4 and 5.5 show

the data before and after the linear regression correction, and how well the corrections remove

the beam position sensitivity for these detectors. Because of the azimuthal symmetry of the

spectrometer, octants that are diametrically opposed have sensitivities to the beam position that

are equal in magnitude, but opposite in sign, with those placed horizontally (3 and 7) having
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the most sensitivity in x and those placed vertically (1 and 5) having the most sensitivity to y.

This geometrical sensitivity can be seen in Figure 5.6, which shows the linear regression slopes

from both the NBM and the CP calculations during the production run period versus each octant.

The data are in excellent agreement with the beam position sensitivity study results [252] done

using the G0GEANT simulation. The slopes follow a sinusoidal curve. The advantage of having

an azimuthally symmetric spectrometer becomes obvious in this case, as the false asymmetry

contribution to the physics asymmetry largely cancels out when the slopes are summed over all

the octants. This is true for all the position and angle slopes. The charge slopes have a NA

versus French detector dependence due to the differing electronics deadtimes in the two sets of

octants. The yield slopes for all the octants and other information on the helicity-correlated beam

parameters can be found in [250,253].

By using the octant-summed slopes and the measured beam parameter differences, the false

asymmetry caused by the helicity-correlated beam parameters can be determined using Equa-

tion 5.19. The total helicity-correlated false asymmetries for each of the detectors over the G0

forward-angle measurement are shown in Table 5.5. As can be seen, the linear regression correc-
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tions give an average false asymmetry over all detectors of about −20 ppb, with an error of less

than 10 ppb for each detector. These corrections and their contributions to the overall uncertainty

of the measured asymmetry are negligible.

The statistical uncertainty in the slopes can be calculated in quadrature from the covariance

terms, but due to the high rates in the G0 detectors, the statistical uncertainty is very small com-

pared to the slopes themselves. However, the run-by-run fluctuations of the slopes are significantly

larger than their corresponding statistical uncertainties. This implies that the uncertainty in the

slopes is dominated by systematic effects that may come from beam instabilities (such as beam

halo) as well as the apparatus. When averaged over a time frame long enough to suppress short-

term systematic fluctuations, the slopes display the expected spectrometer sensitivity and seem

reasonably stable. Therefore, the standard deviation of the slopes over the entire production run

is taken as the uncertainty.

For more details about this procedure that in this summary, the reader is directed to the

dedicated analysis in Refs. [250, 253] by another G0 student.

5.3.2.2 Helicity-Correlated Beam Background Asymmetry

The beam halo can carry a helicity-correlated asymmetry, and was therefore monitored care-

fully by a beam halo monitoring system built for that purpose (see Section 4.3.4.3). The helicity-

correlated beam background asymmetry, or halo asymmetry over the production period was gen-
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Detector False Asymmetry (ppm) Detector False Asymmetry (ppm)

1 −0.017± 0.004 9 −0.029± 0.008
2 −0.019± 0.004 10 −0.026± 0.007
3 −0.018± 0.004 11 −0.032± 0.009
4 −0.021± 0.004 12 −0.013± 0.004
5 −0.026± 0.006 13 −0.027± 0.007
6 −0.024± 0.005 14 −0.022± 0.007
7 −0.028± 0.007 15 −0.006± 0.006
8 −0.024± 0.006

TABLE 5.5: The total false asymmetries from helicity-correlated beam parameters for each detector
calculated from multiple linear regression.

erally consistent with zero for the IHWP In state, within the rather large error bars (about 20

ppm) due to the relatively low rate in the halo detectors. However, it was observed that the halo

asymmetry for the IHWP Out state could become somewhat large, about −30 to −40 ppm for

extended periods. The origin of this halo asymmetry is unknown. Because of the concern that this

halo asymmetry could contribute a false asymmetry to the primary physics measurement, studies

were done to estimate the possible contribution.

Data were taken with the 5 mm hole target on the G0 target ladder with the beam at the

nominal halo conditions as measured with the 6 mm halo target by the halo monitoring system.

This set up reflects a conservative estimate of the halo effects, as the beam halo was generally

within the nominal specifications for the 6 mm halo target, and the 5 mm hole would certainly

yield higher halo rates in the detectors than the specifications at 6 mm or the aperture of the helium

cell (at 11 mm diameter). The rates from solely the beam halo in the G0 detectors using the 5 mm

hole target were then measured, and compared to the rates using the LH2 target in normal running

conditions. This gave a fractional contribution of the halo to the usual detector rates of ∼ 0.0002,

which is clearly an upper bound. Assuming the halo asymmetry to be the upper measured value of

−40 ppm, the upper limit of the halo asymmetry contribution to the measured elastic asymmetry is

only 0.008 ppm, which is negligible for this measurement. In addition, no correlation was observed

between the halo monitor signals and the yield in the primary G0 detectors during usual running.
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5.3.3 Corrections for Leakage Beam

The G0 beam is structured so that the beam bunches are separated by 32 ns to allow the

ToF measurements to be done; however, Halls A and B were not running with this structure,

but with the standard CEBAF beam structure with 2 ns between beam bunches. The accelerator

delivers beam to all three halls simultaneously by alternating the beam pulses to the halls at 499

MHz (3 × 499 = 1497 MHz fundamental frequency). Each hall has its own laser to generate its

beam; each laser turns off after a beam pulse to prevent it from interfering with the lasers for

the other halls. However, in reality the laser takes a finite amount of time to turn off, so some of

the light from a laser leaks into the pulses for the other halls, causing “leakage” beam with the

time structure of that laser. In addition, the lasers all have a DC component caused by amplified

spontaneous emission (ASE). This component does not modulate at 31 or 499 MHz, and creates a

DC component for all three halls.

Even though this is a problem that is common to all three halls, it is of particular concern

for the G0 experiment because of the unique beam structure needed for the ToF technique. As

the pulse frequency for G0 at 31 MHz is 1/16 of the usual 499 MHz, there should be no beam

at all for 15 of the 16 beam bunches. Leakage beam current at 499 MHz and the DC component

violated this and shows up as a global background underneath the 32 ns ToF spectra. During the

experiment, the leakage contamination of 499 MHz beam from Halls A and B was found to be

about 50 nA (compared to the nominal 40 µA Hall C beam). Although very small in current and

only about 0.1% of the total rate, the charge asymmetry of this leakage current turned out to be

quite large, about +600 ppm, and even more troublesome, not constant in time. The beam charge

monitors in Hall C were set up to measure the integrated beam charge every 1/30 s (i.e., at 30

Hz), which made them only sensitive to the combined average current of the G0 and the leakage

beam. The beam feedback system would attempt to minimize the large charge asymmetry from

the leakage beam, but as the system could only affect the G0 beam, not beam from other halls, it

inadvertantly caused a large charge asymmetry in the G0 beam to counterbalance the one from the
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FIG. 5.7: A G0 spectrum showing the cuts and the leakage beam spectrum. Figure from [254].

leakage beam [194]. This resulted in a significant ToF dependent false asymmetry, which clearly

had to be corrected for.

To correct for this leakage effect, the rate and the asymmetries from areas of the ToF spectrum

forbidden to physics events from the target were used. These regions, designated as “cut0”,

occurred very early and very late in the ToF spectrum, as can be seen in Figure 5.7.

To determine the beam leakage contribution to the measured asymmetry, the leakage current

and the charge asymmetry must both be taken into account. The measured yield is a combination

of both the G0 beam and the leakage current

Ymeas(t) =
Rm(t)

Im

=
YG0(t)IG0 + YL(t)IL

IG0 + IL

, (5.22)

where Rm(t) is the rate, YG0(t) and YL(t) are the yields from the primary beam and the leakage

beam, and IG0 and IL are the currents of the respective beams [224,254]. The measured asymmetry

can be written in terms of the G0 beam and the leakage beam:

Ameas(t) =
RG0(t)

Rmeas(t)
AYG0 (t) +

RL(t)

Rmeas(t)
AYL

(t)

+

(

RG0(t)

Rmeas(t)
− IG0

Imeas

)

AIG0 +

(

RL(t)

Rmeas(t)
− IL

Imeas

)

AIL
, (5.23)

where RG0(t) and RL(t) are the rates from the G0 and leakage beams, AYG0 (t) and AYL
(t) are the

asymmetries from these beams (in the detectors), and AIG0 and AIL
are the charge asymmetries

from these beams. The charge asymmetry measured by the BCMs is a weighted average of AI
G0
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and AIL
,

AImeas
=

IG0

Imeas

AIL
+

IL

Imeas

AIL
, (5.24)

so the measured asymmetry may be written as

Ameas(t) =
RG0(t)

Rmeas(t)
AY

G0 (t) +
RL(t)

Rmeas(t)
AYL

(t)

+

(

RG0(t)

Rmeas(t)

Imeas

IG0

− 1

)

AI
G0 −

IL

IG0
− RL(t)

RG0 (t)

1 + RL(t)
RG0 (t)

AIL
. (5.25)

As the leakage current (and thus the detector rate) is orders of magnitude smaller than the contri-

bution from the main beam, it is valid to approximate RG0 ≈ Rmeas, RL ≪ RG0 , and RL ≪ Rmeas.

With these approximations,
RG0

Rmeas

Imeas

IG0
− 1 ≈ 0, and RL

Rmeas
≈ 0, so our equation simplifies to

Ameas(t) ≈ AYG0 (t) − IL

IG0

(

1 − YL(t)

YG0(t)

)

AIL
= AYG0 (t) −

(

IL

IG0

− RL

RG0

)

AIL
. (5.26)

The false asymmetry contribution caused by the charge asymmetry of the leakage beam can then

be written in terms of the leakage (IL) and G0 (IG0) beam currents:

Afalse(t) = Am(t) − AYG0 (t) ≃ − IL

IG0

(

1 − YL(t)

YG0(t)

)

AIL
. (5.27)

The leakage currents and asymmetries from the A and B lasers were directly measured by

turning off the G0 laser and leaving the Hall C slit open, making the leakage beam the only

beam in Hall C. The current was then computed from the rates in the FPDs, and the luminosity

monitors were used to measure the charge asymmetry (as the statistical precision was higher due

to the higher rates). To measure the leakage beam due to the G0 laser itself (from ASE)), the G0

beam was diverted to the A or B slit, and the leakage beam in Hall C was studied as before. These

studies were used to characterize the leakage beam and its properties. However, these dedicated

runs are not enough to determine the contribution of the leakage beam over the entire period of

the measurement, due to the unstable nature of the leakage beam.

To have a run-by-run measurement of the leakage beam contributions, the leakage beam

asymmetry was measured in areas of the ToF spectra that do not contain any physics events from

the primary beam, and thus are predominantly from the leakage beam. These areas are defined
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by cuts and designated as cut0. Figure 5.7 displays a ToF spectrum taken at the nominal 40 µA

and showing the locations of several of the typical cuts for the experiment, including the cuts for

the proton peak, three cuts to study inelastic background events, and the location of the cut0

regions (note the log scale). Two values are extracted from the information in cut0: the current

of the leakage beam and its associated asymmetry (monitored on a run-by-run basis). The rate

measured in cut0 is a combination of the leakage and G0 background components, Rmeas,cut0 =

Rl,cut0 + RG0,bkg, where Rmeas,cut0 and Rl,cut0 are the measured and leakage rates in cut0 and

RG0,bkg is the background rate from the main G0 beam. These contributions can be measured by

turning off the G0 laser and observing the rates coming from the Halls A and B lasers; the DC

component was determined as described above. From these measurements, the total G0 background

rate of 3.5 ± 0.17 kHz at 40 µA was determined.

With the determination of RG0,bkg , the leakage rate can be determined on a run-by-run basis

from cut0. The leakage current is then described by

IL,deduced =

RL,cut0

wcut0

YG0

=

Rmeas,cut0−3.5kHz

wcut0

YG0

, (5.28)

where wcut0 is the total width of cut0 and YG0 is the ToF-averaged G0 yield. The charge asymmetry

in cut0 due to the leakage beam is then

AIL
=

Rmeas,cut0

RL,cut0
Acut0 =

Rmeas,cut0

Rmeas,cut0 − 3.5kHz
Acut0, (5.29)

where Acut0 is the measured cut0 asymmetry and AIL
is the leakage charge asymmetry. On

average, IL ∼ 50 nA and AIL
∼ +570 ppm, with a statistical uncertainty of ∼ 5% of AIL

(after

correcting for the beam polarization and the blinding factor) for the production period [224,254].

The leakage correction is additive,

AY
G0 (t) = Am(t) + ∆

∆ ≡ −Afalse ≃ IL

IG0

(

1 − YL(t)

YG0(t)

)

AIL
, (5.30)

where ∆ is the correction. The correction was done on a run-by-run basis, using the values

computed from the cut0 measurements from that run. Clearly, the size of the correction varies
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with the beam current, with the smallest correction being at the largest beam current. However,

if the corrections are ideal, the corrected asymmetries at all beam currents should converge to a

constant physics asymmetry. In this ideal case, a plot of the raw asymmetry versus the correction

at various beam currents should show the data following a straight line of slope −1 (a perfect

correlation). A more positive slope would indicate over-correction; a more negative one, under-

correction. Figures 5.8 and 5.9 show these plots for the proton cut and cut3, respectively. A linear

fit to the proton cut data agrees very well with −1, and the linear fit to the cut3 data agree to

within 20%, although with a suggestion of undercorrecting for the effect.

The systematic uncertainty of the correction was determined in several methods. A comparison

of the calculated IL and AIL
from cut0 and those directly measured in the beam leakage tests shows

an agreement of 22%, which is an estimate of the fractional uncertainty of the correction. The

second evaluation method makes use of the fact that cut3 is the most sensitive to the leakage,

other than cut0. After the correction, the statistical properties of the asymmetry data for cut3

were significantly improved, but the reduced χ2 after the correction was still about 2, which

indicates that there is a residual systematic fluctuation in the data samples roughly the same

size as the statistical uncertainty of ∼ 0.6 ppm (in one half-wave plate state). By assuming
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a systematic error of 0.6 ppm, we have a corresponding fractional error of 23%. In the third

approach, the leakage correction technique was applied to data taken at different beam currents

(10, 20, and 40 µA). As the leakage contribution is fractionally smaller at 40 µA than at lower

beam currents, the correction is also the smallest at the nominal current. The assumption is

made that at 40 µA the corrected asymmetry approaches the physics asymmetry. For the lower

beam currents, the correction is calculated that is needed to bring the measured asymmetry to

the physics asymmetry. The difference between this quantity and the calculated correction gives

an evaluation of the systematic uncertainty of the correction, about 17%. The calculations agree

to within 20% in all cases, so an uncertainty of 20% was assigned to the false asymmetries for the

leakage corrections.

The final correction to the elastic asymmetries for all the Q2 bins was 0.71±0.14 ppm, corrected

for the beam polarization and the blinding factor [224, 254]. The correction and the systematic

uncertainty are global (for all rings). The leakage beam also had the undesirable property of

large position differences amounting to hundreds of nm, but even with the assumption of position

differences of 1 µm from the leakage beam, the false asymmetry is about 1 ppb, which can be

safely ignored [254].

For more information on the beam leakage corrections for the G0 experiment than is included

in this summary, see the dedicated analysis in Refs. [224, 254].

5.3.4 Transverse Systematic Uncertainty

Even with the Wien filter calibrations (see Section 4.3.3.2.1), the beam may not be perfectly

longitudinally polarized. The predicted size of the transverse asymmetry for the forward-angle

kinematics is not enormous, ∼ 5 ppm (see Section 2.8.3), but as it is on the order of the parity-

violating asymmetry, it is an issue that must be addressed. This is a possible source of systematic

error for the experiment, as a false asymmetry can be introduced from the parity-conserving

asymmetry that arises from the interference of the single- and two-photon exchange amplitudes

in the scattering of transversely polarized electrons from nucleons [255, 256]. More about this
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particular bit of physics is discussed in Sections 2.7 and 5.4.

The transverse asymmetry contribution to the measured asymmetry in a parity-violation

experiment can be expressed by

Ameas(θ, φ) = Pb cos(θspin)APV (θ) + Pb sin(θspin) sin(φ − φspin)An(θ), (5.31)

where P is the polarization of the beam, APV is the parity-violating asymmetry, An(θ) is the

transverse asymmetry, and θspin and φspin are the polar and azimuthal polarization angles [257].

The value of θspin = 3◦ is the conservative estimate of the accuracy of the Wien filter calibration

to deliver longitudinal beam. For the G0 experiment, φspin does not need to be known because

of the azimuthal symmetry of the G0 spectrometer. Therefore, to estimate the effects of residual

transverse polarization in the beam, measurements of An(θ) must be done.

In order to minimize the effect of the transverse spin asymmetry on the parity-violating

asymmetry, the polarization was set to be longitudinal, verified by a spin-dance, for the G0 mea-

surements (Section 4.3.3.2.1). To put a constraint on the possible contribution of the transverse

spin asymmetry due to any residual transversely polarized beam, measurements of A⊥ were con-

ducted with a transversely polarized beam as well. About 30 hours of data were taken with a

transversely polarized beam. The asymmetry data were blinded in the same method as the lon-

gitudinal forward-angle data. The proton asymmetries measured in each octant were summed

over detectors 1–4, 5–8, 9–12, and 13–14, and then plotted versus octant. The amplitude of the

resulting sinusoidal dependence in φ was then determined via a fit of the form

Ameas
⊥ (θ) = An(θ) sin(φ + φ0). (5.32)

The average amplitude over all the detectors was An ≃ 2 ppm (blinded). For more details of this

analysis technique, see Section 5.4.

Assuming the maximum 3◦ mis-alignment of the Wien filter, the false asymmetry coming from

a residual transverse component of the beam is

Afalse
trans(θ, φ) = Pz sin(3◦) sin(φ − φspin)An(θ), (5.33)
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where Pz ≃ 0.74, and An(θ) ≃ 2 ppm was determined from the transverse asymmetry data.

Unblinded, this yields an amplitude of Afalse
trans(θ) = 0.096 ppm, which oscillates sinusoidally in

φ. This is a conservative estimate based on the maximum mis-alignment of the Wien; assuming

a 1◦ misalignment yields a value of 0.032 ppm (unblinded). The azimuthal symmetry of the

detectors greatly suppresses any contribution when the results from each detector in a ring are

averaged together, much like the corrections for beam position fluctuations. Taking the symmetry

of the spectrometer into account, the estimate for the false asymmetry contribution from residual

transverse polarization is of order 0.01 ppm.

The vertical polarization component is suppressed by the transport through the accelerator.

Furthermore, the vertically transverse component bounds were estimated to be ≤ Pz sin(11◦) using

the transverse asymmetry data, where Pz is the longitudinal polarization. In addition, dedicated

studies were performed for HAPPEX, and the vertical transverse component was found to be very

small [258].

5.3.5 Physics Backgrounds

A cursory inspection reveals that the peak associated with the inelastic protons extends under-

neath the proton elastic peak that the experiment is interested in. These are largely inelastically

scattered protons from the hydrogen target, and quasielastic and inelastic protons from the alu-

minum entrance and exit windows of the target cell. Clearly, this background must be corrected

for, both for its dilution of the elastic yield and for any false asymmetry that it introduces to the

elastic physics asymmetry. Studies were conducted to understand the source of these background

events and gain insight about its behavior. The elastic asymmetries were then corrected using the

measured background yields and asymmetries in the ToF spectra. A summary is presented here;

for extensive details, see the dedicated analysis in Refs. [224, 259]

5.3.5.1 Background Decomposition

The background is mostly made up of inelastic protons that come from the target (the alu-

minum windows and the helium in the upstream cell) and from processes in the hydrogen itself.
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As it is important to understand both separately, several methods were used. After determining

the sources of the background yields, the background asymmetries arising from them were studied.

Both empirical methods and simulations were used to study the background yields. Unfor-

tunately, the inelastic contribution from the target windows cannot be determined solely from

empty target measurements because the “empty” target has gaseous hydrogen (GH2) in it and

because the contribution from the aluminum windows is enhanced by additional photon radiation

in the LH2 in the full target. Therefore, a combination of measurements was used to determine

the inelastic contributions of the target windows and the helium cell. In addition to the measure-

ments taken with target full of LH2 and “empty” (filled with GH2), the tungsten (W) radiator and

aluminum dummy targets were used. The tungsten radiator was used to enhance the photon flux,

and was used with the aluminum flyswatter target to study the effect of the additional photon

radiation in the full LH2 target on the background yields (see Section 4.4.1.2). The aluminum

dummy targets were used to investigate the yield and asymmetry contributions from aluminum,

as can be seen in Figure 5.10. Another method used to empirically determine the contribution

of the three target windows was the comparison of empty target measurements taken at different

temperatures (and thus, different gas densities). The difference between the measurements gives

the combined contribution from the gaseous H2 and the gaseous helium in the upstream windows,

allowing the calculation of the contributions from the target windows [260].

Simulations were also used to study the composition of the yields. The G0GEANT simulation

[251] implements G0’s spectrometer geometry and field map and the target design into the GEANT

simulation program. The inelastic proton yields from the aluminum, hydrogen, and helium gas in

the upstream cell come from photo- and electro-production processes. To simulate the inelastic

protons and pions from the hydrogen, three different models of inelastic generators were used [261].

The first is a model by Lightbody and O’Connell [262], which is used to calculate the photo-

production cross-section from the aluminum windows and the helium. The inelastic protons and

pions coming from the hydrogen are simulated using MAID (the 2003 version) [155], ∆-resonance in
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the Lightbody and O’Connell model [262], and a generator that was developed at Orsay [263,264].

MAID, a unitary isobar model for pion photo- and electroproduction on the nucleon (developed at

Mainz), can be used for photon energies below 1 GeV. This corresponds to a maximum invariant

mass of ∼ 1.7 GeV; however, the acceptance favors inelastic protons with W > 2 GeV, especially

in the higher-numbered detectors, making any predictions by MAID in the region unreliable. The

Orsay model was based on a photo-production generator for the GRAAL experiment, and models

the pion photo-production up to 4 GeV.

An example can be seen in Figure 5.11. The three models are in good agreement for the

lower-numbered detectors; above Detector 6, the Lightbody and O’Connell and MAID generators

over-predict the yield in the inelastic region. All three models underpredict the yield in the cut3

(superelastic ToF) region. However, the models suggest a smooth falling off of the background

yield under the elastic peak.

The studies, both by empirical measurements and Monte Carlo simulations, led to a reasonable

understanding of the background yields from the target windows and the helium. However, neither

set of studies clearly showed how to separate the elastic and inelastic yields from the hydrogen.

The dilution of the elastic yields by the inelastic yields is not the only concern; the inelastic
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background events were also shown to have a significant asymmetry that extended underneath the

elastic peak. This can be seen in Figure 5.12. The background asymmetries are negative in the

ToF regions associated with the pions. A positive asymmetry peak is apparent in the inelastic

region of the ToF, located after the pion peak in the lowest-numbered detectors and that moves to

longer times-of-flight with increasing detector number, until it is beneath the elastic peak in the

highest-numbered detectors (12–15). However, the evolution of the background asymmetry in the

inelastic regions is smooth in a given detector, allowing the evaluation of the background asymmetry

contribution underneath the elastic peak using fits. Furthermore, the progressive change of the

background asymmetry with increasing detector number indicates that the underlying physics

varies smoothly. This positive background asymmetry is not significant for the lower-numbered

detectors, as it does not affect the elastic peak for these detectors, but it is very significant in the

higher-numbered detectors 12 and above, where it does overlap with the elastic peak.

Studies were then undertaken to understand the source of the positive asymmetry background.

Inelastic protons from the aluminum target cell and windows were at first suspected to be the source

of this asymmetry; however, the measured asymmetries from the “empty” (gaseous hydrogen)

target and aluminum dummy target data sets are negative in the inelastic cut. The background

asymmetry did not show a sinusoidal azimuthal dependence, and the measured asymmetry in

the inelastic cut in the transverse data set also failed to show a large positive asymmetry, ruling

out the possibility that the source was from single-spin asymmetries from a residual transverse

component of the beam. The measured asymmetries from both the NA and French data sets agree

overall, although there is some variation from octant to octant, and the asymmetries exhibit the

expected sign change with insertable half-wave plate reversal, which indicates the asymmetries are

not due to some electronic artifact. This all indicates that the background asymmetry arises from

a parity-violating process in the LH2 itself.

The positive background asymmetries in the inelastic regions of the ToF spectra (and the

variation seen in the background from octant-to-octant) can be explained by the production of
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hyperons (Λ, Σ+, and Σ0) in the hydrogen and their subsequent decay. Hyperons are baryons

containing strange quarks, and can be produced in electron-proton scattering by photo- or electro-

production, where a large fraction of the incident beam polarization is transferred to them [265].

For the forward-angle phase of the G0 experiment, the dominant hyperon channels are [266]

γ∗ + p → Λ + K+,

γ∗ + p → Σ+ + K0, (5.34)

γ∗ + p → Σ0 + K+,

where the γ∗ can be either a real or a virtual photon. The Λ and Σ+ hyperons decay through a

weak interaction process into protons and neutrons and pions; the Σ0 decays into a Λ, which then

also decays. These decay particles carry a large parity-violating asymmetry, and thus could be a

significant source of background for the experiment if these particles are seen by the detectors.

A detailed Monte Carlo study was done to understand the contribution from the weak decay

of hyperons produced in the hydrogen [224, 266]. To simulate the hyperon production yields, the

KAON-MAID model [267], an effective Lagrangian model for Kaon photo- and electro-production

on the nucleon, is implemented into the G0GEANT simulation to calculate the differential cross-

section of the photo-production of hyperons. The calculations from KAON-MAID agree fairly well

with data from SAPHIR [268,269], as can be seen in Figure 5.13.

The G0GEANT simulation of the detector rate is done by combining the differential cross

section with the detector acceptance. The simulation of the hyperon asymmetry is done by consid-

ering the electron plane, which contains the incident and scattered electron, the hyperon production

plane, which contains the virtual photon and the hyperon, and the hyperon decay plane, which

contains the nucleon and pion decay particles. The simulation estimates that about 100% of the

polarization of the photon gets transferred to the Λ [265]. The transferred polarizations for the

Σ0 and Σ+ have not yet been measured, so it was assumed that the Σ+ shares roughly the same

polarization as the Λ and that the Σ0 shares roughly the same polarization as the Λ with an
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FIG. 5.13: A comparison of the measured total photo-absorption cross section σtotal from SAPHIR
[268,269] with KAON-MAID [267] calculations as a function of invariant mass W . Figure from [266].

opposite sign, which fit the data rather well. The asymmetry can then be written as

A = αPbP
′
z cos

(

θRF

ẑ,~kN

)

, (5.35)

where α characterizes the parity-violating nature of the decay, Pb is the beam polarization, P ′
z is

the polarization transferred, and θRF

ẑ,~kN

is the angle between the decay-nucleon and the direction of

the photon (ẑ in the reference frame of the hyperon).

Rescattering from the lower primary collimator allows the particles from the decays to be

detected by the higher-numbered detectors. The simulated hyperon rate for the G0 kinematics is

very low, four orders of magnitudes smaller than the total rate in each detector; however, as a

small fraction of the particles make it to the detectors through rescattering, and these particles

have a large asymmetry, they cause a large background asymmetry. An example of the simulated

hyperon contribution from each of the three production channels to the background asymmetry

for Detector 14 is shown in Figure 5.14, where the solid black circles denote the contribution from

Λ, the solid red squares Σ+, and the open blue circles Σ0. The dashed histogram is the measured

yield spectrum. The total background asymmetry coming from hyperon production simulation,

which is obtained by summing the three production channels, is shown in Figure 5.15 compared to
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the measured asymmetry in Detector 14. These asymmetry spectra clearly show the large positive

contribution of the hyperon asymmetry in the region of the elastic asymmetry, ∼ 50 ppm, a clear

background to the small negative elastic asymmetry.

This study does reproduce the measured positive background asymmetry in the G0 data.

However, due to the limited accuracy of the simulation because of the lack of knowledge of the

transferred polarization of the Σ+ and Σ0 and the cross sections of these hyperon productions

with high invariant mass, these results were only used to understand the origin of the positive

background asymmetry and were not used to correct the measured data. The data were corrected

for the background by fitting/interpolating the measured data themselves.

5.3.5.2 Background Correction

The studies of the background yield and asymmetries were done to gain an understanding of

the source and behavior of the background that extends underneath the elastic peak. However,

the background correction itself was made only using the data measured in the experiment.

In any timebin t, the measured yield Ym(t) consists of both the elastic yield of interest, Yelas(t),
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and the yield of the background, Ybkg(t):

Ym(t) = Yelas(t) + Ybkg(t). (5.36)

The measured asymmetry, Am(t), can be expressed in terms of the elastic asymmetry, Aelas(t),

and the background asymmetry, Abkg(t), as

Am(t) =
(

1 − fb(t)
)

Aelas(t) + fb(t)Abkg(t), (5.37)

where fb(t) =
Ybkg(t)
Ym(t)

is the background fraction (or dilution factor) of the background yield in

the measured yield. The goal of the background correction is to determine Ybkg(t) and Abkg(t),

and then use Eq. 5.37 to determine the elastic asymmetry.

5.3.5.2.1 Detectors 1 through 14

In Detectors 1 – 14, the correction for the background was done using a two-step elastic

sideband fitting procedure. In this procedure, the elastic peak is fitted with a Gaussian, with

the background modeled with a polynomial function. With this information, the background

fraction fb(t) is determined. This background fraction is then used to do the fit to the measured

asymmetry. In this step, the measured asymmetry is fitted assuming a constant asymmetry over t

and a polynomial background asymmetry, which gives a simultaneous determination of the elastic

and background asymmetry. Examples of these fits are shown in Figures 5.16 and 5.17, where the

yield fit is on the left and the asymmetry fit is on the right.

Because of the high rate in the detectors, the uncertainty of the yield in each timebin is

dominated by systematics. The uncertainty is estimated by the variation in the yields over time

and in the different octants. This gives an uncertainty of 2% (fractional) for the bins inside of the

elastic peak, which is scaled in a statistical manner for timebins away from the elastic peak.

The yield is then fitted with the Gaussian for the elastic peak and the background function

(usually a quadratic), as can be seen in the example in Figure 5.16. The yields are fitted for

several nanoseconds on either side of the elastic peak in order to obtain a good characterization



185

Tof (1/4ns)
0 20 40 60 80 100 120

R
at

es
 (

kH
z/

u
A

/0
.2

5n
s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Octant 2 Detector 8

FIG. 5.16: The yield fit for Octant 2, Detector 8,
showing the combined fit (red) of a Gaussian for
the elastic peak and the fourth-order polynomial fit
to the background, which is shown individually in
green. Figure from [250].

Tof (1/4 ns)
60 70 80 90 100 110

A
sy

m
m

et
ry

 (
p

p
m

)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Octant 2 Detector 8

FIG. 5.17: The asymmetry fit for Octant 2, Detec-
tor 8, showing the quadratic fit to the background
asymmetry (green) and the combined fit of the con-
stant elastic asymmetry and the quadratic back-
ground (red). Figure from [250].

of the background shape. The background fraction fb(t) under the elastic peak is then calculated

by taking the extracted value of the background yield Ybkg(t) from the fit and dividing it by the

measured yield Ym(t). Once fb(t) is determined, the measured asymmetry can be fitted to extract

Aelas(t) and Abkg(t) simultaneously using Eq. 5.37. An example fit is shown in Figure 5.17. In the

asymmetry fit, the elastic asymmetry is assumed to be a constant, and the form of the background

is chosen based on the behavior of the background asymmetry, usually a quadratic.

The functional forms used for the background yield are chosen as the lowest-order polynomial

that gives a reasonable χ2. The asymmetry fits were less sensitive to the functional form chosen for

the background asymmetry; these fits were performed with various polynomials as the background

and the extracted elastic asymmetries for each were compared. The result in the center of the

spread was chosen as the best fit. The background was treated as being different for the different

octants, but as the elastic asymmetry should be the same in all eight octants for a given detectors,

this assumption was used as a constraint. However, relaxing this constraint and allowing the elastic

asymmetry to differ from octant to octant had little effect.

The value of the extracted asymmetries are shown with the final asymmetries in Table 5.8.

The results obtained by this method are in good agreement with those found in an independent
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analysis method using a simultaneous fit to both the yield and the asymmetry spectra [270].

The uncertainty in the elastic asymmetry can be written as [224,259]

σ2(Aelas) = σ2(A1) + σ2(A2) + σ2(A3) + ∆, (5.38)

σ(A1) =
σ(Ameas)

1 − fb

, (5.39)

σ(A2) =
|Ameas − Abkg |

(1 − fb)2
σ(fb), (5.40)

σ(A3) =
fb

1 − fb

σ(Abkg), (5.41)

∆ = 2
∂Aelas

∂fb

∂Aelas

∂Abkg

cov(fb, Abkg)

= −2
fb(Ameas − Abkg)

(1 − fb)3
cov(fb, Abkg), (5.42)

where fb, Ameas, and Abkg are the averages of fb(t), Am(t), and Abkg(t) over the elastic proton

cut; and σ(Ameas), σ(fb), and σ(Abkg) are the uncertainties on the measured asymmetry, the

background fraction, and the background asymmetry. The correlation term ∆ [271] takes into

account that the uncertainties in values of fb and Abkg are not independent, as a change in the

determination of fb will lead to a correlated change in the value of Abkg . The term cov(fb, Abkg)

is the covariance between fb and Abkg. This is evaluated using a Monte Carlo simulation.

σ(A1) is a purely statistical uncertainty resulting from the measured uncertainty in Ameas;

σ(fb) is a purely systematic error because the uncertainty in σ(fb) is dominated by the systematic

(model) uncertainty. However, the background uncertainty σ(Abkg) contains both statistical and

systematic components. Thus, σ2(A3) = σ2
stat(A3) + σ2

syst(A3), where σ2
stat is the statistical

piece that arises from the counting precision of the background events beneath the elastic peak

as σstat(A3) =
fb

1−fb
σstat(Abkg) =

fb

1−fb

1√
fb

σ(Ameas), and σsyst(A3) is the systematic piece that

comes from the choice of the model for the background asymmetry. ∆ is a systematic uncertainty.

Using this, σ(Aelas) can then be expressed in terms of the statistical and systematic components
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as [224,259]

σ2(Aelas) = σ2
stat(Aelas) + σ2

syst(Aelas), (5.43)

σstat(Aelas) =

√
1 + fb

1 − fb

σ(Ameas), (5.44)

σsyst(Aelas) =
√

σ2(A2) + σ2
syst(A3) + ∆. (5.45)

The statistical uncertainty σstat(Aelas) is evaluated in this manner because the error given by the

asymmetry fit depends on the precision of the asymmetry in the side bands of the fit as well as on

the measured asymmetry in the elastic peak itself.

The estimates of σ(A2) and ∆ were determined using a Monte Carlo simulation. The back-

ground yield Ybkg(t) was varied, which resulted in varying values of fb(t). The measured asymmetry

was then fitted with Eq. 5.37 using the values of fb(t) and assuming a quadratic background asym-

metry Abkg(t). Then the variance in the extracted values of Aelas was studied to determine the

covariance between fb and Abkg . The allowable range for Ybkg(t) was constrained by a parallel-

ogram (or lozenge) with a flat top and bottom, with the two slopes starting from the mid-point

of the elastic proton cut, and the ends fixed at the measured background yields at the end of the

elastic window, as seen in Figure 5.18. Large numbers of random points lying within the paral-

lelogram were chosen by the simulation; each point connected by straight line to the ends of the

parallelogram. The area beneath these lines was then used as the model of the background yield.

The term σsyst(A3), the systematic uncertainty associated with the systematic uncertainty in

the background uncertainty, is estimated by studying the effects on the extracted elastic asymme-

tries of making variations in the background asymmetry Abkg(t), both by using different functional

forms for Abkg(t) and by varying the range over t of the fits. For this study, the background yield

is fixed at its best fit value. The upper bound is formed by taking two lines that are tangential to

the background asymmetry fit in the sidebands, which defines a kink, as seen in Figure 5.19. The

lower bound is defined as the straight line that connects the the background asymmetry values

from the second-order polynomial fit ±3 ns from the elastic peak. The distribution of the elastic

asymmetries for each of the background asymmetry models, including the upper and lower bounds,
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FIG. 5.18: The lozenge shape chosen as the upper and lower bounds of Ybkg(t). Figure from [259].

are then studied to estimate σsyst(A3), as the variation is an indication of the model-dependency

of the uncertainty. The choice of the function forms used to model Abkg(t) is somewhat arbitrary,

however, which would make the simple option of using the half-spread as the uncertainty too

model-dependent. Therefore, the spread is calculated by weighting the extracted values of Aelas

by the χ2 of the fit. The results of this procedure are significantly smaller than the half-spreads,

and so the average of the two procedures is used as the estimate for σsyst(A3) for each detector.

The systematic uncertainty for Aelas can then be computed using Eq. 5.45.

The systematic uncertainties for Aelas contain components that are independent for each

individual detector, called point-to-point uncertainties, and uncertainties that globally affect all

the detectors in a correlated manner, or global uncertainties. An example of this would be if

the function form assumed for Ybkg(t) or Abkg(t) had a common bias that makes the uncertainty

correlated across the detectors. The estimate for this is done by changing the functional form for

Ybkg(t) or Abkg(t) globally, then studying whether there is a resulting global change in the extracted

elastic asymmetries. To study σ(A2), the polynomial used for Ybkg(t) was varied globally from first

to third-order polynomials. In all detectors, the first and third polynomials give the least and most

negative values of the elastic asymmetry, respectively, which gives the global change expected if

the background model where globally changed. The ratio of this separation and the total width of
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the distribution of all three background models is 0.58, which is the estimate of ratio of the global

component of σ(A2) [224, 259].

A very similar study was done to ascertain σsyst(A3). Again, the first and third-order poly-

nomial fits of Abkg(t) yielded the most and least negative values of the elastic asymmetry. Using

the elastic asymmetry extracted with the second-order polynomial as the reference point, the rela-

tive differences
|Apol3−Apol2|

|Apol2| and
|Apol1−Apol2|

|Apol2| were computed, where Apoln denotes the background

model used to extract that particular elastic asymmetry. The correlation coefficient between these

relative differences was 0.45, based on fourteen detectors. The global uncertainty estimate is then

0.45 × σsyst(A3) [271].

Given that the ratio of the global to overall systematic uncertainty is about 0.50 for both

σ(A2) and σsyst(A3), the systematic uncertainty for all detectors was determined to be

σglobal
syst (Aelas) = 0.50 × σsyst(Aelas), (5.46)

with a corresponding point-to-point systematic uncertainty of [224, 259]

σpt−pt
syst (Aelas) =

√

1 − 0.502 σsyst(Aelas) = 0.87 × σsyst(Aelas). (5.47)

The background-corrected elastic asymmetries and their uncertainties are listed in Table 5.8.



190

5.3.5.2.2 Treatment of Detector 15

Unlike the previously discussed detectors, Detector 15 has a very wide elastic peak correspond-

ing to a wider Q2 range from 0.41 < Q2 < 0.9 (GeV/c)2 due to the optics of the spectrometer. This

makes the extraction of the elastic and background yields and asymmetries more difficult because

simple fits can no longer be used effectively. Instead, to determine the background contribution,

the information about the background yields and asymmetries in Detectors 12, 13, 14, and 16 are

used to interpolate these values in Detector 15. These values are then used to obtain the elastic

asymmetries from the Q2 bins in Detector 15.

The resolution of the NA electronics is only 1 ns, which makes the Q2 separation in Detector

15 very difficult. For this detector, the data from the hybrid Franco-American system was used,

as these data had the finer resolution of 0.25 ns (signals from NA Detectors 14 and 15 were routed

though the French electronics). However, Detector 16 was not measured by the FrAm electronics,

so the 1 ns spectra were rebinned into 0.25 ns bins by assuming linearly varying yield in each 1 ns

bin. This approximation worked very well for the simple spectra from Detector 16.

The background yield in Detector 15 was determined from studying the behaviour of the fitted

background yields in Detectors 12, 13, and 14 and the measured background yield in Detector 16.

The background spectra from these detectors are shown in Figure 5.20, where the time-of-flight

spectra have been shifted relative to that of Detector 15 to align the spectra to a continuous

band in proton (p, θ) phase space and have been corrected for the varying acceptance of each

detector. The hierarchy of the background yield with detector number is obvious. The value of

the background in a particular timebin can be parameterized as a linear function across this group

of detectors. Figure 5.21 shows the fits of the background contributions in a given timebin versus

detector number. The linearly interpolated value can then be used for the value of the background

for those timebins in Detector 15. Other procedures were also used to study the background yield

in Detector 15. One approach determined the value of the background yield in a given timebin in

Detector 15 by averaging the background yield in that timebin in Detectors 14 and 16. A third
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approach used an interpolation in (p, θ) space to determine the differential cross section in (p, θ)

across the acceptance of Detector 15, which was then used as an event generator in G0GEANT to

calculated the background yield [224, 259]. All these approaches were in good agreement, as can

be seen in Figure 5.22. A simple parameterization of the background yield in detector 15 can be

obtained by scaling the measured yield in detector 16 by 1.3, which only has background events.

This is the method that was finally used to model the background yield.
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The systematic uncertainty for the interpolated background yield in Detector 15 Ybkg(15, t) is

done by calculating the upper and lower bounds from the yields in Detectors 14 and 16:

Y upper
bkg = 0.75 × Ybkg(14, t) + 0.25 × Ybkg(16, t), (5.48)

Y lower
bkg = 0.25 × Ybkg(14, t) + 0.75 × Ybkg(16, t), (5.49)

where Y
upper(lower)
bkg denotes the upper (lower) bounds and Ybkg(14(16), t) represents the back-

ground yields from Detectors 14 and 16. These ±1σ bounds (similar to using ± 1
2 detector as the

uncertainty), are shown in Figure 5.22.

The elastic peak in Detector 15 was divided into three Q2 bins along the time-of-flight spec-

trum, corresponding to Q2 = 0.511 (20.0 to 22.75 ns), Q2 = 0.631 (18.5 to 20.0 ns), and Q2 = 0.788

(GeV/c)2 (16.5 to 28.5 ns). The determination of the background asymmetry Abkg(t) in the three
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Q2 bins of Detector 15 was done in a similar manner to the background yield determination, by

studying the evolution of the background asymmetry across the higher-numbered detectors and

interpolating the value in Detector 15. The background asymmetries in Detectors 12, 13, and 14

were obtained as described in Section 5.3.5.2.1; the measured background asymmetry in Detector

16 was fitted with a fourth-order polynomial.

The background asymmetries from octants 2, 6, and 8 were combined to improve the statistical

precision; octant 4 was was fitted separately as the background asymmetry was somewhat different

from the others. These asymmetries are shown as a function of time-of-flight in Figure 5.23, where

the progression with detector number can again be observed. As with the background yields, a

linear interpolation is done for each timebin versus the detector number, with the interpolated

value taken as the background asymmetry for Detector 15.2 An example is shown in Figure 5.24,

where the measured asymmetries for octant 3 are shown with the best fits of the background

asymmetries.

A second method was done, where the background asymmetry was fitted in the same manner

as the second step of the two-step fitting procedure done for the lower-numbered detectors (see

Section 5.3.5.2.1), except that the interpolated background yield for detector 15 was used. The

background yield was modeled as a third-degree polynomial. The fit for octant 3 using this method

2This was done in all cases except for octant 4, where this value did not accurately reproduce the measured
asymmetry in the pure background region above 23 ns; the fit for 13 was used as the best fit instead.
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is shown as the dashed curve in Figure 5.24.
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ground asymmetries. The vertical lines delineate the
three Q2 bins. Figure from [224].

With the values of the background yields and asymmetries, the elastic asymmetry can be found

for each octant by fitting the measured asymmetry bin by bin according to Eq. 5.37, assuming

that the elastic asymmetry in each of the three Q2 bins is a constant for all eight octants. An

example of this fit, the fit for Octant 3, is shown in Figure 5.25. Allowing the elastic asymmetry
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to float for individual octants had a negligible impact on the extracted elastic asymmetry. The

elastic asymmetries were also extracted using the two-step method as a check, which were in

good agreement. Although the two-step method allows more flexibility to optimize the agreement

between the data and the fit, the interpolation method uses physical constraints from the other

detectors, and thus these are the results that are used for this detector.

As with the background yield, the systematic uncertainty for the background asymmetry

is done in what was called the “±1 detector” uncertainty, where the interpolated asymmetries at

detectors 14 and 16 were assigned as the upper and lower bounds. The uncertainty is then enlarged

so that it covers the variation when the background asymmetry is shifted in time by ±0.5 ns to

ensure a good match with the sideband asymmetries. The resulting ±1σ error band was shown in

Figure 5.24 as a gray band.

The systematic uncertainty for the elastic asymmetry can be divided into the contribu-

tions from the background yield (σ(A2)) and the contributions from the background asymmetry

(σsyst(A3)). Since the background yields and asymmetries are determined independently, the cor-

relation term ∆ is no longer a concern. A Monte Carlo simulation was used to vary the background

yield with a random scaling variable (common to all eight octants) between the upper and lower

bounds and the background asymmetry with a random scaling variable (common for 7 octants,

independent for octant 4) within the upper and lower bounds. A global random timing jitter of

0.5 ns was also introduced octant by octant to account for any possible effects coming from mis-

alignment of Ybkg(t) relative to Ymeas(t). The spread of the resulting elastic asymmetries gives the

overall systematic uncertainties, which are shown in Table 5.6. These uncertainties in the three

Q2 bins are almost 100% correlated.

To separate the point-to-point and global uncertainties, more variations are introduced in

the Monte Carlo simulation. The uncertainty due to the background asymmetry was estimated

by using a quadratic background asymmetry function with randomly varying curvature, where

the allowable range was determined by the curvatures from the two-step fits to the background
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〈Q2〉(GeV/c)2 σ(A2) (ppm) σsyst(A3) (ppm)

0.788 1.79 2.30
0.631 0.88 1.15
0.511 0.87 1.44

TABLE 5.6: The overall systematic uncertainties for the three Q2 bins in Detector 15 (blinded) [224,
259].

asymmetry, and varying endpoints, which are randomly chosen within the width of the error band.

The correlation coefficients between the elastic asymmetry in each Q2 bin and the average of the

other two were then calculated. The coefficients were found to be about 0.7. The value for the

middle Q2 bin was somewhat higher than the two other bins, which was expected since it is directly

adjacent to them both. This suggests that an equal division in quadrature of the point-to-point

and the global systematic uncertainties would be appropriate for σsyst(A3) [224, 259]. A similar

technique is used for the background yield, where the values of the background yield at the edges

of each Q2 bin were chosen randomly within the error band and connected with straight lines.

The calculated correlation coefficients of the elastic asymmetries between the bins was about

0.5, somewhat less than the background asymmetry; however, an equal division in quadrature

of the point-to-point and the global systematic uncertainties for σ(A2) was also adopted to be

conservative [224, 259]. It is expected that the systematic uncertainties for Detector 15 are more

globally correlated than the lower-numbered detectors because the three Q2 bins are taken from

the same time-of-flight spectrum and because the use of interpolation depends on the fits in the

lower-numbered detectors.

The elastic peak in Detector 15 has been divided into three Q2 bins along the time-of-flight

spectrum. However, this choice is somewhat arbitrary, as the peak could have been divided into

more bins or fewer. To study the sensitivity of the extracted results on the choice of how the

time-of-flight spectrum was divided into Q2 bins, the elastic peak was divided into 1, 2, 3, 4, and

5 bins, and the background correction procedure was repeated for each division scheme. Linear

fits were made for the elastic asymmetries extracted for each division set. The division sets with
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FIG. 5.26: Yield fit for the high Q2 peak of Oc-
tant 7, Detector 14. The two elastic peaks are fitted
with Gaussians (red fits) with a fifth-order polyno-
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from [224].
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FIG. 5.27: Asymmetry fit for the high Q2 peak of
Octant 7, Detector 14. The elastic asymmetry in
each peak is assumed to be constant, while the back-
ground asymmetry is modeled with a third-degree
polynomial over the entire range. The red line is the
fit to the measured asymmetries; the blue curve is
the fit to the background asymmetries. Figure taken
from [224].

only one and two Q2 bins did not have sufficient resolution to accurately reflect the variation of

the elastic asymmetry. However, the results for the sets with three, four, and five bins were in

excellent agreement, indicating that the choice of three bins accurately shows the evolution of the

elastic asymmetry in Q2 [224, 259].

5.3.5.2.3 High Q2 Peak of Detector 14

Because of the optics of the spectrometer (see Section 4.5.2) and the resulting “fold-over” of

the higher Q2 points, Detector 14 actually has two elastic peaks: a primary peak at a time-of-flight

of about 23 ns corresponding to Q2 = 0.41 (GeV/c)2 that was discussed earlier in Section 5.3.5.2.1,

and a smaller, secondary peak at about 17 ns corresponding to Q2 = 0.997 (GeV/c)2. The second

peak can be viewed in Figure 5.26, where it is located just after the pion peak in the ToF spectrum.

As with Detector 15, the data from the NA electronics do not have the resolution needed

for this analysis, so the data from the French detectors and the FrAm hybrid detectors was used

instead. The secondary peak was treated in much the same manner as detectors 1–14 (main

peak), this time with the background modeled as a 5th-order polynomial and the elastic peak as a

Gaussian for the yield fits. The primary elastic peak (at ∼ 23 ns) was fitted simultaneously with a
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Gaussian as the elastic peak with a linear background function in order to gain an understanding

of any correlation between the two peaks.

The asymmetry fit was done by assuming a constant elastic asymmetry in each Q2 bin and

using a polynomial for the background asymmetry Ab(t), which was fitted over the entire ToF, as

shown in Figure 5.27. The fit quality was not very sensitive to the polynomial function chosen for

Ab(t), so the results for the elastic asymmetry obtained from the fits using second, third, fourth and

fifth-order polynomials were combined in a straight average to obtain as result of Aelas = −30.56

(still blinded) [224].

As with the other Q2 bins, the statistical uncertainty of the elastic asymmetry was evaluated

based on counting statistics, with the background dilation (∼ 78%), deadtime effects (∼ 20%) and

beam polarization accounted for, giving a value of σstat(Aelas) = 5.83 ppm (still blinded).

To determine the systematic uncertainty arising from the uncertainty of fb, σ(A2), and ∆

(the correlation term), the Monte Carlo was used. First, the uncertainty of fb was estimated. The

octant to octant fitted elastic yield varied by about 12%, which gives an estimate of the fractional

uncertainty in Yelas. However, the fitted elastic yield is only about 54% of the yield predicted by the

simulation, probably due to the acceptance. This can also be expressed as G0Geant−Fit
Fit = 84%,

which gives an estimate of about 42% for the uncertainty. An average of these estimates has been

used as the fractional uncertainty for Yelas, 27%, giving fb = 78± 6%. In the Monte Carlo, fb was

varied from the best fit with a single random scaling variable within ±6% (stat). The values of

σA2 and ∆ were then calculated, which resulted in a (blinded) value of
√

σ2(Aelas) + ∆ = 5.72

ppm.

To evaluate the model uncertainty due to the background asymmetry, σsyst(A3), a ±1 de-

tector error band was put around Abkg, which was scaled randomly and then fitted with the

two-step procedure. This procedure over-estimated the uncertainty of the background asymme-

try in the primary peak by a factor of 3, so the uncertainty obtained for the secondary peak

was reduced by a factor of three. This yields a total systematic uncertainty of σsyst(Aelas) =
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√

σ2(A2) + ∆ + σ2
syst(A3) = 7.28 ppm. The secondary elastic peak is located at the pion peak

tail, outside of the fit range of the other detectors, so this systematic uncertainty is not correlated

with those from other Q2 bins, nor is it strongly correlated to the main peak in detector 14 (based

on the values), so this is regarded as a point-to-point systematic uncertainty [224,259].

5.3.6 Electromagnetic Radiative Corrections

There is another category of corrections that are required in elastic electron scattering ex-

periments: radiative corrections. Radiative corrections are required in these experiments because

the electron can radiate photons through various mechanisms. This causes a loss of energy in the

incident and scattered electrons, which affects the kinematics of the scattered particle. In this

measurement, the recoiling protons are detected from the interaction. Electromagnetic radiative

emission from the recoiling, non-relativistic proton is negligible due to its large mass, but the kine-

matics (e.g. the angle, energy, Q2) of the proton are affected by the radiative emission from the

electron. As the radiative emission from the incident electron changes the kinematics of the elastic

reaction, this changes the measured elastic asymmetry from that of the tree-level Born asymmetry

without photon radiation.

The radiative corrections must correct for changes in proton rate and asymmetry, as well as

the Q2. The electromagnetic radiative emission gives rise to a tail that extends to very low energy.

For G0, this emission is manifested in the yield spectrum as a tail toward the earlier ToF of the

elastic peak, increasing the average Q2 in each bin. This has the consequence of increasing the

magnitude of the measured elastic asymmetry from the anticipated Born asymmetry. A dedicated

GEANT simulation was developed to treat the radiative corrections for G0 [81, 272, 273]. Four

types of radiative corrections were considered for the measurement: ionization, external, internal

real and internal virtual radiative corrections.

The first type of correction, ionization, refers to electron energy losses in the beam line and

target material. Studies using G0GEANT to model this showed that the average energy loss at

the target mid-point was on the order of 5 MeV, although it could be as much as 15 MeV [272].
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FIG. 5.28: Feynman diagrams representing the amplitudes of various radiative corrections. Diagrams
a shows the tree-level (Born) term. Diagrams b through d represent the amplitudes for virtual internal
radiative corrections. The electrons emit and then reabsorb the virtual photons. The diagrams in e show
the amplitudes for real internal radiative corrections. In these, the emission of the real photon results
in a three-body final state that changes the kinematics of the recoiling proton. [272]

The second type, external radiative corrections, describes the energy loss from the emission of

Bremsstrahlung photons by incident beam electrons decelerated by nuclear interactions in the

ionization process. This results in a broad energy spectrum, with an average energy loss of 40

MeV, but which can reach a maximum of 3 GeV (the total beam energy) [272]. These effects from

external Bremsstrahlung radiation were also characterized using G0GEANT.

The last two types are internal radiative corrections, which correspond to the emission of

photons before or after the interaction between the electron and the proton in the target. The

first of these two types, virtual internal radiative corrections, deal with the case when a photon is

emitted, and then reabsorbed, leaving the final state similar to that from elastic scattering. This

does not modify the proton kinematics; however, it can affect the momentum transfer as well as

the polarization of the electron at the scattering vertex.

The last type, real internal radiative corrections, involve the emission of a real photon, resulting

in a three-body final state (e, p, and γ). This effect also takes place in the diagrams with the Z0,

which adds to the complication. This effect changes the momentum transfer, and in the case where

the photon is emitted prior to the scattering, can change the electron polarization at the scattering

vertex. The calculation of corrections from these internal radiative effects are done following the

framework of Mo and Tsai [46, 274].
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The calculations are done via simulation. Using the G0Geant simulation, the incident energy

of the electron was varied and the overall effect of energy loss on the elastic rate was observed.

In principle, the electrons in the beam can lose all their energy through radiation. However, the

probability that they lose 500 MeV or less is about 96%, and only about 60% of the electrons lose

1 keV or less [81]. The 4% of electrons that lose more than 500 MeV correspond to protons that

have times-of-flight outside of the G0 experimental cuts, and are therefore ignored. Therefore,

the simulations were done for incident beam energies that varied between 2.5 and 3.0 GeV. The

parity-violating asymmetry was calculated based on the kinematics at the reaction vertex after the

radiative emission and assuming that Gs
E = Gs

M = 0. The elastic asymmetry was then calculated

without the energy losses, under the same assumption. The calculated radiated asymmetries, Ael,

corresponding the elastic asymmetry from the measurement, and the Born asymmetries, ARC ,

corresponding to the radiatively corrected asymmetries (no energy losses) were averaged over the

elastic proton cut. The ratio R = Ael

ARC
for 17 of the detector bins is shown versus Q2 (the

average Q2 is computed based on the Born scattering cross section) in Figure 5.29. In general

the ratio R, which shows the effect of the correction on the asymmetries, is slightly less than

1. The radiative effects for the highest Q2 point from detector 14 are insignificant compared to

its statistical error bar, and is thus ignored. Following the increase in Q2, the effect is that the

radiative corrections increase the average asymmetry. The increase is of order 0.5 – 3.0% over the

range of the detectors [81].

The estimate of the uncertainty in the correction is based on the assumption that the elastic

cuts have a 10% uncertainty, which represents an upper limit on the uncertainty since the elastic

cuts are known to better than that. The corrections are then calculated using cuts that are 5%

larger and then 5% smaller than the standard elastic cut. In addition, another estimate of the

uncertainty was done by making a global fit of the ratio Ael/ARC with a polynomial and assuming

that the difference with the actual RC correction is due to systematics. The uncertainty varies

slowly and is of the order 0.1–0.3%, about 10% of the actual correction, depending on the detector



201

Detector Number
2 4 6 8 10 12 14 16

R
C

/A
el

A
sy

m
m

et
ry

 R
at

io
,  

A

0.94

0.96

0.98

1

1.02

1.04

1.06

Detector Number
2 4 6 8 10 12 14 16

R
C

/A
el

A
sy

m
m

et
ry

 R
at

io
,  

A

0.94

0.96

0.98

1

1.02

1.04

1.06

FIG. 5.29: The ratio of asymmetries Ael/ARC versus detector number where Ael is the elastic asym-
metry and ARC is the asymmetry corrected for radiative emission. Data points from [81].

bin [81, 272]. The correction was applied as an overall multiplicative factor, Aphys(Q
2) = R × Ae,

which gives back the Born asymmetry to be compared to theory.

5.3.7 Determination of Q2

An important part of the analysis is to determine the average four-momentum transfer (Q2)

value of the elastic protons measured in each of the detectors, as well as the uncertainty in this

value. For the G0 experiment, a 1% precision on Q2 for a relative contribution of 5% statistical

error was desired. In order to do this, the precise magnetic field produced by the SMS must be

determined very accurately, as the ~B-field dictates the particle trajectories, and thus the time-

of-flight and Q2 in each FPD at the chosen kinematics. However, the direct readout of the SMS

current (4991 A) is not precise enough to attain the desired precision. Thus, two methods to

accomplish this goal were developed, both requiring the comparison of the experimental data with

a simulation of the G0 spectrometer. The first method was used to obtain the magnitude of

the magnetic field generated by the spectrometer magnet; the second method was used both to

determine the magnetic field and the average Q2 value per detector [233, 275–277].

In the first method, the property that the absolute elastic proton rates in detectors 15 and 16

have a high sensitivity to the actual ~B-field strength is used to determine the magnetic field. At

the nominal magnetic field (i.e., at the nominal magnet current of 5000 A), there is no elastic rate
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in detector 16; however, the elastic protons lie at the very edge of Detector 16’s acceptance. By

varying the magnetic field (by varying the SMS current), the focusing of the spectrometer magnet

changes, changing the elastic Q2 of the detectors, most significantly for this, in Detectors 15 and

16. At fields lower than the nominal value, Detector 16 is in the acceptance region for elastic

protons. As the absolute rates in detectors 15 and 16 are the ones most sensitive to the SMS

field variations, one can fit these values as a function of the current and extract the value of the

field by a comparison to a simulation of the experimental apparatus. Of course, the quality of the

simulation then becomes very important.

Figure 5.30 shows the elastic proton rate as a function of the magnet current (which is es-

sentially the field strength as there are no ferromagnetic elements present) for Detectors 15 and

16 (French octants), along with the simulation (black curve). For detector 16, elastic protons are

detected at field values lower than the nominal, but as the current increases to about 4900 A, the

elastic protons are focused outside of the acceptance, leaving only the lower rates from background

particles. An increase in the magnetic field leads to an increase of the elastic Q2 and the elastic

acceptance in Detector 15, but a decrease in the cross section. The combination of these effects

causes the bump in the elastic rate in detector 15 at about 4880 A. The fits to the measured data

points (after the background correction) were compared to the fits to the simulation to extract the

field value. The actual magnet current was determined by this method to be 5003.5 ± 5 A [276]

for the first engineering run and 4985 ± 10 A for the production run [275, 276]. However, as this

method does not provide enough constraints to take into account any detector position offsets

from possible misalignment that would cause an effective variation in Q2, another method was also

developed.

The second method was used to determine both the magnetic field of the spectrometer and

the average Q2 value for each detector. In this method, the measured differences in the ToF

between the elastic proton and pion peaks ∆tπp in the data from each detector were compared

with the differences obtained from the simulation (∆tsim
πp ) at the nominal field at 5000 A. From
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FIG. 5.30: The elastic proton rates in Detectors 15 and 16 as a function of the SMS current. The
colored curves are fits to measured data; the black curve is from the simulation. Figure from [275].

this comparison, the actual ~B-field was determined. This magnetic field value is then used in the

simulation to determine the average Q2, 〈Q2〉, of the detectors. This method is relatively precise;

a measurement of ∆tπp to a precision of ∼ 50 ps allows a determination of the magnetic field to

< 0.2% and of the four-momentum transfer for each Q2 bin to < 1% [233, 277]. By using the

ToF separation ∆tπp, an absolute calibration of timing offsets in the electronics was unnessary. In

addition, ∆tπp is also sensitive to the potential longitudinal and radial offsets of the detetctors as

well as the magnetic field strength, so it also accounts for uncertainties coming from misalignments

in the detectors.

The ToF separation for each detector can be written to first order as [275]

∆t = ∆tnominal + αB
∆t

(

B

Bnominal

− 1

)

+ αX
∆t∆X + αZ

∆t∆Z, (5.50)

where ∆tnominal and Bnominal are the ToF separation and magnetic field at the nominal field of

5000A, ∆t denotes the measured time separation, B is the true field value, ∆X and ∆Z are the

radial and longitudinal positions of the detectors, and αB
∆t, αX

∆t, αZ
∆t are coefficients associated
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FIG. 5.31: The difference between the measured elastic proton ToF and pion ToF for each detector
(colored points), compared to the result from the simulation (black curve). Figure from [275].

with the expansion. Similarly, the difference in the Q2 can be expanded as

∆Q2

Q2
nominal

= αB
Q2

(

B

Bnominal

− 1

)

+ αX
Q2∆X + αZ

Q2∆Z, (5.51)

where ∆Q2 is the difference in the Q2, and Q2
nominal is the Q2 of the detector at the nominal

5000A. To reduce the number of unknowns so that the system of linear equations can be solved,

constraints were imposed, including a common ∆Z for all detectors, and that the longitudinal and

radial shifts average to zero.

Figure 5.31 shows the difference between the measured elastic proton ToF and pion ToF for

each detector, compared to the result from the simulation. By using this method, the magnet

current was found to be 5015 A for the first engineering run and 5025 A for the production

run [276]. The position offsets of the FPDs were determined to range from a few mm to about 1.5

cm detector by detector, within a precision of about 3 mm [233, 277] The extracted ~B-field value

was then used in the simulation to determine the average 〈Q2〉 of each the FPDs. The position

offsets that were determined from the fits had little impact on the average Q2 of the bins, ∼< 1%.

This value was used as a conservative estimate of the uncertainty of the Q2 [276].

By using the extracted ~B value in the simulation, a spectrum of Q2(t) was determined for
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each detector. This was integrated over the elastic proton peak, weighted by the yield:

〈Q2〉det =

∫

Q2(t)Ymeas(t)
∫

Ymeas(t)
, (5.52)

where 〈Q2〉det is the central value of Q2 for the elastic peak for a particular detector. The resulting

values of the Q2 for each detector can be seen in the Table 5.8 in Section 5.3.8.

The elastic asymmetry measured in each Q2 bin is an average asymmetry weighted by the

yield. The form factors do have a Q2 dependence; however, because A(Q2) is approximately linear

in Q2 to leading order, the approximation 〈A(Q2)〉 = A(〈Q2〉) is valid, with a small width of the

Q2 distribution in each Q2 bin, ranging from 5% (for Detector 1) to 10% (the three Q2 bins in

detector 15) of 〈Q2〉. Because of this, it is valid to interpret the measured elastic asymmetry of

each bin as the elastic asymmetry at the average 4-momentum transfer.

The magnetic field values that are determined by the two methods do not perfectly agree,

but have a reasonable agreement considering that the first method does not take into account

any offsets in the detector position (misalignments). For this reason, the results for the 〈Q2〉 and

its uncertainty of 1% from the second method of the ~B-field determination were used. The 1%

uncertainty is uncorrelated with the uncertainty of the measured asymmetry, but can be expressed

as an effective uncertainty of the asymmetry as

σeff (AQ2) =
∂A

∂Q2
σ(Q2). (5.53)

This 1% uncertainty in Q2 becomes a 1% uncertainty in the measured asymmetry.

5.3.8 The Physics Asymmetry

After all corrections to the measured asymmetries were performed, the blinding factor of

0.8056 was removed. The final physics asymmetries for the 18 Q2 bins are are shown in Table 5.8 as

published in [245]. The asymmetries are shown with the statistical errors and the point-to-point and

global systematic uncertainties. The systematic corrections and the uncertainty associated with

them are shown in Table 5.7. The background corrections and uncertainties are given as a range.

The uncertainties associated with the deadtime, helicity-correlated beam parameters, and radiative
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Source Correction Uncertainty

Deadtime 0.2 ppm 0.05 ppm
Helicity-correlated beam parameters 0.01 ppm 0.01 ppm

Ordinary radiative corrections 1% (fractional) 0.3%
Background correction 0.1–40 ppm 0.2 – 9 ppm

Beam polarization 1
73.7% (factor) 1.3% (fractional)

Leakage beam 0.71 ppm 0.14 ppm
Transverse polarization 0 0.01 ppm

Q2 0 1%

TABLE 5.7: Systematic uncertainties for the measured asymmetries.

corrections are average values, as the actual corrections were done detector by detector. These

uncertainties, along with the point-to-point component of the background correction, are treated

as point-to-point uncertainties. The systematic uncertainties arising from the beam polarization,

beam leakage correction, transverse polarization, the global component of the background, and

the Q2 are treated as global uncertainties. The uncertainties from the background correction

dominate both the global and point-to-point uncertainties, except for in detectors 1 through 4,

where the beam leakage uncertainty dominates the global systematic uncertainty. For comparison,

the measured (uncorrected) asymmetry and the extracted background asymmetry are also shown

in Table 5.8, along with the dilution factor.

These asymmetries can now be used to extract the linear combination of the electric and

magnetic strange form factors, Gs
E + ηGs

M . How this is done will be discussed in the next chapter.

5.4 Transverse Data Set

The transverse data collection took place from March 22 through March 26, 2006. After setting

up the beam tune to deliver transversely-polarized beam into Hall C, about 30 hours of data were

taken with the transversely polarized beam on the liquid hydrogen target. The experimental

configuration for the transverse measurement was identical to the usual G0 forward-angle running,

except that the electron beam was transversely polarized in the plane of the accelerator. For the
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Q2 Aphys ∆Astat ∆Apt−pt ∆Aglob Ameas Abkg f

(GeV/c)2 (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

0.122 -1.51 0.44 0.22 0.18 -1.38 ± 0.40 -3.69 ± 2.51 0.061

0.128 -0.97 0.41 0.20 0.17 -1.07 ± 0.36 -4.36 ± 0.78 0.084
0.136 -1.30 0.42 0.17 0.17 -1.34 ± 0.37 -5.49 ± 0.90 0.085
0.144 -2.71 0.43 0.18 0.18 -2.67 ± 0.38 -4.05 ± 2.81 0.077
0.153 -2.22 0.43 0.28 0.21 -2.46 ± 0.37 -6.13 ± 2.46 0.096
0.164 -2.88 0.43 0.32 0.23 -3.13 ± 0.37 -7.94 ± 2.82 0.100
0.177 -3.95 0.43 0.25 0.20 -4.47 ± 0.36 -9.76 ± 1.91 0.110
0.192 -3.85 0.48 0.22 0.19 -5.01 ± 0.41 -15.39± 1.66 0.110
0.210 -4.68 0.47 0.26 0.21 -5.73 ± 0.40 -13.53± 1.99 0.116
0.232 -5.27 0.51 0.30 0.23 -6.08 ± 0.41 -9.73 ± 2.06 0.136
0.262 -5.26 0.52 0.11 0.17 -5.55 ± 0.41 -5.35 ± 0.99 0.154
0.299 -7.72 0.60 0.53 0.35 -5.40 ± 0.46 8.33 ± 2.25 0.174
0.344 -8.40 0.68 0.85 0.52 -3.65 ± 0.51 18.37 ± 3.11 0.182
0.410 -10.25 0.67 0.89 0.55 -1.70 ± 0.51 36.49 ± 2.80 0.180
0.511 -16.81 0.89 1.48 1.50 -5.80 ± 0.79 40.86 ± 8.16 0.190
0.631 -19.96 1.11 1.28 1.31 -9.74 ± 0.94 31.54 ± 5.97 0.200
0.788 -30.83 1.86 2.56 2.59 -12.66± 1.01 15.65 ± 5.83 0.400
0.997 -37.93 7.24 9.00 0.52 4.21 ± 1.19 16.08 ± 2.22 0.780

TABLE 5.8: The asymmetries and uncertainties measured in the G0 experiment (forward-angle phase).

measurement, the experiment typically made use of 40 µA of a 3 GeV polarized electron beam

delivered into experimental Hall C by the accelerator at Jefferson Lab. This section describes the

analysis of these data looking for evidence of two-photon exchange effects.

The asymmetry data were blinded in the same method as the longitudinal forward-angle

data [224]. As the measurement has a much lower statistical precision than the primary longitudinal

measurement, a similar, but slightly different analysis method was employed. However, corrections

such as the ones due to leakage beam, deadtime effects, DNL, etc. were treated in an identical

manner to the primary longitudinal data set. The North American (NA) and French data sets

were treated in a similar manner, and in a similar analysis path as the longitudinal data. For more

information, see References [248, 278]
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FIG. 5.33: A picture showing the ToF spectrum
and the five defined PID cuts for Octant 2, De-
tectors 1–8.

5.4.1 Time-of-Flight Spectra and PID Cuts

Because of the low statistics of this measurement and because the data could not be summed

over the detector rings, many of the analysis techniques as the forward-angle data could not be

used effectively. In an effort to gain some statistical precision, the detectors in each octant were

binned into three Q2 bins: detectors 1 through 8, 9 through 12, and 13 and 14. Detector 15 was

left to itself, and will be discussed further later in Section 5.4.1.2 with Detector 16. Table 5.9

shows the average Q2 and center-of-mass angle θCM coverage for each of the bins, and with the

first fourteen detectors combined into one Q2 bin. After being summed, PID cuts were defined to

study both the elastic proton and the background asymmetries.

Detector Bin Q2 (GeV/c)2 θCM

1 - 8 0.15 ± 0.02 20.22◦

9 - 12 0.25 ± 0.03 25.91◦

13 - 14 0.38 ± 0.03 32.11◦

15 ∼ 0.6 37.4◦

1 - 14 0.20 ± 0.09 23.08◦

TABLE 5.9: Elastic proton kinematic coverage for the transverse data.
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FIG. 5.34: Raw Asymmetries versus Octant for the five PID cuts for Detectors 1–8 [note: asymmetries
are blinded].
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FIG. 5.35: Raw Asymmetries versus Octant for the five PID cuts for Detectors 9–12 [note: asymmetries
are blinded].
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tector 15, showing the three PID cuts for the
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FIG. 5.37: A picture showing the ToF spectrum
and three defined cuts for Octant 1, Detector 15
for the NA spectra.

5.4.1.1 Detectors 1 – 14

After the deadtime, DNL, and beam leakage corrections were applied to each detector as in

the longitudinal case (see Sections 5.2.1 and 5.3.3), the first fourteen detectors were binned into

three Q2 groups by shifting the time-of-flight spectra for each detector to align the elastic peaks.

Five time-of-flight cuts were defined for these summed spectra, as shown in Figures 5.32 and 5.33:

cut1, cut2a, cut2b, the elastic proton cut, and cut3. The asymmetries for each of the five cuts in

each detector bin are shown plotted versus the azimuthal angle of the octants in Figures 5.34, 5.35,

and 5.40 for detectors 1–8, 9–12, and 13–14 respectively. The asymmetries in these plots have been

corrected for deadtime, DNL (differential non-linearity), and beam leakage (see Section 5.4.3), but

have not yet been corrected for the background events (see Section 5.4.5). The asymmetries for

each cut are shown fitted with a sinusoidal fit, along with the reduced χ2 for the fit, the phase of

the fit φ0, the φ-independent global offset of the fit A0, and the transverse asymmetry amplitude

A⊥. For detectors 1–8, and to a somewhat lesser extent detectors 9–12, a smooth evolution of the

fits to the asymmetries for the background cuts (cut1, cut2a, cut2b, and cut3) can be seen, but

the poor statistical precision of the data for detectors 13 and 14 can be clearly seen.
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5.4.1.2 Detectors 15 and 16

For detector 15, because of the very wide Q2 acceptance and timing distribution, it is not clear

how a reliable background subtraction can be done, so a very basic analysis of the raw asymmetries

has been done and some limits have been determined. Detector 15 was divided into three broad

cuts: a pion cut, an elastic proton cut, and cut3. Detector 16 was treated in the same fashion.

Figures 5.36 and 5.37 show the yield ToF spectra with the defined cuts for detectors 15 for both the

NA and French detectors, and Figures 5.38 and 5.39 show the yield ToF spectra with the defined

cuts for the French and NA detectors 16. It is worth noting that the “elastic” cut for detector

16 has no actual elastic events since detector 16 is outside of the elastic proton acceptance. The

cut defined as “elastic” for this detector simply corresponds to the elastic proton cut for detector

15. The raw asymmetries versus azimuthal angle for detectors 15 and 16 for each of the three cuts

are shown in Figure 5.41. The asymmetries for each cuts are shown fitted with both a sinusoidal

fit (the solid black line) and a constant fit (the dashed black line), along with the corresponding

reduced χ2 values and values of interest such as the phase φ0, A0 (the φ-independent offset in

the fit from zero), and the transverse asymmetry A⊥. The plots also show a straight-line fit to

the data points for comparison (the dashed line). The data in these plots are corrected for beam

leakage and deadtime, but have not had the background subtracted. There is a sinusoidal shape

to the data for the elastic proton cut for detector 15, but the error bars are so large it is difficult to

infer much from the data. From the fits, it can be inferred that A⊥ is not large, probably between

-11 and +2 ppm in magnitude for these kinematics. It seems that it might admit a change in sign,

but this is of somewhat marginal significance.

5.4.2 Insertable Half-Wave Plate Reversal

The In+Out half-wave plate plots for the hydrogen data taken during the transverse running

period are consistent with zero within statistics, with no compelling azimuthal effect or other

indication of a systematic false asymmetry. The summed In+Out half-wave plate reversal plots for

Detectors 1–8 for all five cuts are shown in Figure 5.42 as a typical example. The data also showed
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tector 16, showing the three PID cuts for the
French spectra.
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FIG. 5.39: A picture showing the ToF spectrum
and three defined PID cuts for Octant 1, detector
16.

the predicted behaviour that averaging together the asymmetries from each of the eight octants

for a detector bin gave an average asymmetry value consistent with zero, since the sinusoidal trend

cancels itself out over the full 2π range.

5.4.3 Corrections for Helicity-Correlated Beam Properties: Beam Leak-
age, Beam Parameters and Linear Regression

The sinusoidal fits to the asymmetry data showed that there was a significant global φ-

independent offset A0 to the asymmetry data for the elastic cut, about −1.4 ppm over all (blinded

and not corrected for the beam polarization). An example of this can be seen in the fit to the

elastic asymmetries for detectors 1–8, shown in Figure 5.43, where there is clearly a global neg-

ative φ-independent offset of about −1 ppm (blinded, not corrected for beam polarization). The

correction for the beam leakage corrected this φ-independent offset, as can be seen in the fit to the

asymmetries for detectors 1–8 with the leakage correction applied shown in Figure 5.44. The cor-

rection due to the beam leakage was performed identically to the primary forward-angle data set as

described in Reference [224], and resulted in a correction of +1.27 ppm to each of the asymmetries

for detectors 1–8 and +1.46 ppm for the asymmetries of detectors 9–12, where these values are

blinded (0.805619) and not corrected for the beam polarization (0.7432). Over the two detector

bins, the average correction was +1.37. Interestingly, the leakage beam does not have much of an
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FIG. 5.40: Raw Asymmetries versus Octant for the five PID cuts for Detectors 13–14 [note: asymme-
tries are blinded].
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FIG. 5.41: Raw Asymmetries versus Octant for the five PID cuts for Detectors 15 and 16 [note:
asymmetries are blinded].
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FIG. 5.42: Linear fits to the summed in+out raw asymmetries versus octant for the transverse data set
on hydrogen in each of the five PID cuts for Detectors 1–8 [note: asymmetries are blinded].

effect on the amplitude of the azimuthal fits since it is a global, φ-independent effect, as can be

seen by the comparison of the An values in Figures 5.43 and 5.44.

Plots of the beam parameter asymmetries and the halo asymmetries from the transverse

data-taking period are shown in Figures 5.45 and 5.46. In general, the helicity-correlated beam

parameters were not as lovely as they were in the primary longitudinal forward-angle data-taking,

probably due to the very different optics for the transport of the transverse beam and the lack

of the time required to diagnose and resolve these issues. The charge asymmetry and the halo

asymmetries were the most significantly increased during this period. However, both were deemed

to be acceptable given the statistical precision of the transverse asymmetry measurement. In the

analysis, reasonable cuts were applied to exclude any runs with particularly poor-quality beam.

The regression correction for the helicity-correlated beam parameters cannot be directly ap-

plied trivially since the slopes were calculated for the cuts defined in the database for the longitu-

dinal forward-angle data set, not for the modified, detector-summed cuts we have defined for the
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FIG. 5.43: Raw Asymmetries versus Octant for
the elastic cut for Detectors 1–8 without the beam
leakage correction applied.
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FIG. 5.44: Raw Asymmetries versus Octant for
the elastic cut for Detectors 1–8 with the beam
leakage correction applied.

Detector Bin Unregressed Regressed
(DB Cuts) A⊥ A0 A⊥ A0

1-8 −2.25 ± 0.52 −1.19 ± 0.37 −2.18± 0.53 −0.91± 0.38
9-12 −1.67 ± 0.79 −0.69 ± 0.55 −1.63± 0.80 −0.46± 0.56
13-14 −1.32 ± 1.43 −0.55 ± 0.97 −1.57± 1.44 −0.30± 0.98

TABLE 5.10: The regressed and unregressed values for the database cuts.

transverse data set. However, as can be seen in Table 5.10, the effect on the extracted value for A⊥

is less than 0.1 ppm for detectors 1 through 12, and 0.25 ppm for 13 and 14, so this discrepancy

has been adopted as the systematic uncertainty in for A⊥ due to the helicity-correlated beam

parameters.

5.4.4 Luminosity Monitors

The luminosity monitors are also sensitive to the transverse beam asymmetry. These eight

quartz Čerenkov detectors are positioned at small angles where the dominant rate comes from

Møller scattering (as can be seen in Figure 5.47), but where e − p and e − Al scattering also have

significant contributions in order to make things more complicated to interpret [224]. Even so, the

azimuthal dependence of the lumi asymmetries gives a valuable cross-check as to the spin-direction

of the beam electrons.

The luminosity detectors are actually positioned in two different rings in the beamline after
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FIG. 5.45: The helicity-correlated beam parameter asymmetries during the transverse data-taking.
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FIG. 5.46: The asymmetries measured by the girder halo monitors during the transverse data-taking.
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the target, with lumis 1 through 4 in the upstream ring, and 5 through 8 in the downstream

ring, oriented as shown in Figure 5.48. Because of this, the lumis in principle are making slightly

different measurements due to their locations at slightly different scattering angles (θlab = 1.98◦

for the upstream set, and θlab = 1.29◦ for the downstream set), but this is neglected in this

study. Another consideration is that lumis 1 through 6 used photomultiplier tubes (two different

models), while 7 and 8 were equipped with vacuum photodiodes, but again, this is neglected, as

the asymmetries should be independent of the measurement devices.

The asymmetries measured by the luminosity monitors are shown for each lumi throughout the

transverse run period in Figure 5.49 by insertable half-wave plate state. Figures 5.50 through 5.53

show the asymmetries from the luminosity monitors plotted versus the φ position of the monitors

and fitted for their azimuthal dependence with a sine function. The azimuthal angle φ is defined

as before, with φ = 0◦ at beam left looking downstream, at the position of Lumi7, proceeding

clockwise from there. The lumi asymmetries in these plots are from the runs that have passed the

parity cut requirements, and have had the regression corrections applied. Figure 5.50 shows the fit

to the data points with all the fit parameters allowed to float. The phase from this fit gives us a

check of our calculated phase from the spin precession due to the field of the Møller solenoid. From

this fit, we find that the phase is φ0 = 0.062± 0.028 (3.55◦ ± 1.60◦), which agrees fairly well with
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FIG. 5.49: The helicity-correlated lumi asymmetries for the transverse running period (with regression
and parity cuts).

the calculated value of 0.092 radians, about 5.3 degrees. From this fit, we obtain an amplitude

An = −3.53± 0.17 ppm with χ2
ν = 1.140. Forcing the offset A0 to zero effectively forces the phase

φ0 to zero (φ0 = 0.008 ± 0.014) with a small increase in the χ2
ν of the azimuthal fit to 1.800 and

a slight decrease of the amplitude, as can be seen in Figure 5.51. Constraining the phase to the

calculated Møller precession improves the χ2
ν to 1.156, although the amplitude decreases a small

amount, as shown in Figure 5.52. Finally, constraining both the offset to zero and the phase to

the calculated precession of the beam electrons through the Møller solenoid causes the χ2
ν of the

azimuthal fit to deteriorate to 6.196, with a further small decrease in the amplitude. Figure 5.53

displays the fit and the extracted amplitude of the sinusoidal dependence with these constraints.

These plots are shown with a straight-line fit for comparison.

For further comparison, the lumi data for the longitudinal running show no clear azimuthal

dependence, which tells us that the spin direction of the electrons in the beam for these data was
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FIG. 5.50: A plot of the regression-corrected lumi
asymmetries versus the phi position of the lumi-
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data points. All fit parameters are allowed to
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FIG. 5.51: A plot of the regression-corrected lumi
asymmetries versus the phi position of the lumi-
nosity monitors with the best sinusoidal fit to the
data points. The fit has been constrained to zero
vertical offset.

mostly longitudinal. For an unconstrained azimuthal fit to the lumi asymmetries, an amplitude of

An = 0.25± 0.03 (χ2 = 7.37) was observed, and by using the same constraints as Figure 5.51, the

extracted amplitude becomes An = 0.00 ± 0.04 (χ2 = 32.22). The straight-line fit in these cases

was −0.164± 0.016 (χ2 = 17.21).

The rates in the lumis are predominantly from Møller scattering, and the amplitude of the

transverse asymmetry from Møller scattering in interesting in its own right. However, the con-

tributions from other scattering processes to the lumi rates make the interpretation of the trans-

verse lumi asymmetry somewhat difficult. The lumi asymmetries for the transverse running of

the backward-angle measurements are almost entirely from Møller scattering, and should contain

interesting physics.

5.4.5 Corrections for Physics Backgrounds

Because of the poor statistics of this measurement, the same background-correction method

used for the forward-angle longitudinal polarization data set described in [224] was unable to be

applied. However, simpler methods were used to great success.
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FIG. 5.52: A plot of the regression-corrected lumi
asymmetries versus the phi position of the luminos-
ity monitors with the best sinusoidal fit to the data
points. The fit has been constrained to the calculated
precession of the spin of the beam electrons through
the Møller solenoid.
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to the data points. The fit has been constrained to
both the calculated precession of the spin of the beam
electrons through the Møller solenoid and to zero
vertical offset.

5.4.5.1 Dilution Factors

In each timebin of the ToF histogram, the measured yield Ym(t) in it is a combination of the

yield from the elastic proton events we are looking for Yelas(t) and some unwanted background

events Ybkg(t). So, the measured asymmetry Ameas
⊥ (t) is also a combination of the sought-after

elastic asymmetry Aelas and the asymmetry due to the background events Abkg(t). The measured

asymmetry can be expressed as

Ameas
⊥ (t) = f(t)Aelas(t) + (1 − f(t)) Abkg(t), (5.54)

where f(t) = Yelas(t)

Ym(t)
is the fraction of the elastic yield in the measured yield.

Fits to the yield spectra for each of the Q2 bins were then used to determine the dilution factor

f(t) for each of the timebins, using the same technique as the forward-angle longitudinal analysis.

The elastic peaks of the ToF spectra were fitted with a Gaussian, and the background yields were

fitted with a fourth-order polynomial. From these two fits the fraction f(t) was determined for

each timebin. An example of this fit for octant 8, detector bin 1–8 is shown in Figure 5.54. The

dilution values averaged over the timebins in the elastic cut for each of the detector bins in each

octant are shown in Table 5.11.
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FIG. 5.54: The fit to extract the dilution factors for octant 8, detectors 1–8.

The timebin-by-timebin dilution factors were determined for each of the detector groups;

however, only the average dilution factor over a PID cut was used to correct the asymmetry for

that cut since the statistical precision of the bin-by-bin asymmetries was so poor that a bin-by-bin

fit to the asymmetries could not be done satisfactorily.

Dilution Factors f
Octant

Detectors 1–8 Detectors 9–12 Det 13–14

1 0.861 0.805 0.897
2 0.916 0.854 0.841
3 0.875 0.763 0.875
4 0.917 0.860 0.837
5 0.862 0.794 0.767
6 0.909 0.863 0.840
7 0.862 0.647 0.867
8 0.916 0.864 0.840

TABLE 5.11: Elastic cut dilution factors (signal/measured yield).

5.4.5.2 The Two-Step Method

To estimate the asymmetry contribution of the background underneath the elastic peak, the

asymmetries for cut1, cut2a, cut2b, and cut3 for each octant and detector bin were corrected for

the dilution of the asymmetry by the elastic events by using the formula

Abkg =
1

1 − f
(Ameas

⊥ − fAelas) , (5.55)
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since we know that the measured asymmetry Ameas
⊥ is a combination of the elastic and background

asymmetries (i.e. Ameas
⊥ = fAelas + (1 − f)Abkg , where f is the dilution fraction of the elastic

signal yield divided by the total measured yield). Since we do not actually know the precise elastic

asymmetry, for this we used the measured elastic asymmetry, since the dilution of the elastic peak

into the other cuts was in general very small. The background asymmetries were then fitted with

a background function that was linear in ToF. The background function was then evaluated at the

elastic peak to determine the background asymmetry. The fits to the background asymmetries for

the NA and French detectors can be viewed in Figures 5.55 and 5.56 respectively. In the plots,

the open blue circles are the original data points (shown for comparison only), the filled blue

circles are the points after the dilution correction for the elastic contamination that were fitted to

determine the background asymmetry, and the red square is the extracted background underneath

the elastic peak. The error bar on these estimated background values were determined by defining

the intercept to be at the elastic peak and then using the usual weighted error bars for the intercept

on a linear fit. For fits where the reduced χ2 was greater than 1, the error bars for the estimated

background under the elastic peak were inflated by multiplying them by the
√

χ2
ν to account for

any unknown systematic driving the poor fit. The elastic asymmetry was then corrected for the

estimated background asymmetry using the equation

Aelas =
1

f
(Ameas

⊥ − (1 − f)Abkg) . (5.56)

It is hard to tell if the background varies smoothly with detector number, since there are only

three points for each octant. The background asymmetries do not really display a particularly nice

sinusoidal shape, but interpretation is difficult due to the really poor statistics involved. These

plots can be viewed in Figures 5.57 and 5.58.

The contamination of the elastic events into the cuts defined for the background events was

very small due to the rather large width of the elastic cut. To better understand the effect of these

elastic events in the background cuts, the background fit was done and the background asymmetry

extracted both with and without applying the dilution correction for the elastic contamination
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FIG. 5.55: The Two-Step Method – The linear fit to estimate the background asymmetry for the NA
detectors. The estimated background asymmetry and the reduced χ2 of the fit are shown. The red square
is the estimated background asymmetry under the elastic peak, and the blue circles are the data points
for each of the five cuts (open circles are original data points; filled are dilution-corrected used in the
fits).
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FIG. 5.56: The Two-Step Method – The linear fit to estimate the background asymmetry for the French
detectors. The estimated background asymmetry and the reduced χ2 of the fit are shown. The red square
is the estimated background asymmetry under the elastic peak, and the blue circles are the data points
for each of the five cuts (open circles are original data points; filled are dilution-corrected used in the
fits).
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FIG. 5.57: The Two-Step Method – Azimuthal fits of the extracted background asymmetries for each
detector bin.
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FIG. 5.58: The Two-Step Method – Linear fits to the extracted background asymmetries for each octant.
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FIG. 5.59: The Two-Step Method, No Dilution Correction – The linear fit to estimate the background
asymmetry for the NA detectors without using the dilution correction. The estimated background asym-
metry and the reduced χ2 of the fit are shown. The red square is the estimated background asymmetry
under the elastic peak, and the blue circles are the data points for each of the five cuts.
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FIG. 5.60: The Two-Step Method, No Dilution Correction – The linear fit to estimate the background
asymmetry for the French detectors without using the dilution correction. The estimated background
asymmetry and the reduced χ2 of the fit are shown. The red square is the estimated background asym-
metry under the elastic peak, and the blue circles are the data points for each of the five cuts.
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Extracted Background Asymmetry Abkg (ppm)
Octant

Detectors 1–8 Detectors 9–12 Detectors 13–14

1 −1.92 ± 2.60 10.23 ± 7.34 −18.01 ± 9.34
2 −4.10 ± 6.46 0.01 ± 3.99 −11.43± 5.99
3 5.48 ± 3.21 5.88 ± 8.25 5.56 ± 5.53
4 0.16 ± 3.21 1.70 ± 3.99 −0.80± 9.10
5 −4.89 ± 2.81 −10.91± 7.29 6.72 ± 5.84
6 −4.94 ± 3.21 −2.59 ± 3.96 −4.07 ± 10.43
7 6.34 ± 2.54 1.25 ± 3.49 −20.25± 5.91
8 4.24 ± 4.07 1.03 ± 5.41 3.85 ± 7.65

TABLE 5.12: The extracted background asymmetries under the elastic peak for each detector bin and octant
using the two-step correction method.

into the other cuts. Cut3 had the most contamination from the elastic peak, so the effect of the

dilution correction is most evident for those asymmetries. In general, the cut3 asymmetries only

shifted a few ppm, although the largest shift in NA detector bin 13–14 was approximately 8 ppm

(although the error bars on these asymmetries are approximately 10 ppm, so they only weakly

constrain the fits). Linear fits to the asymmetries in the background cuts without the dilution

correction applied as shown for comparison in Figures 5.59 and 5.60.

5.4.5.3 Simultaneous Fit Method

Another method used to extract the elastic proton asymmetry and the background asymmetry

from the measured asymmetry was by fitting the asymmetries for all five cuts assuming a linear

background function in τ and a constant elastic asymmetry using the equation

Ameas
⊥ = fAelas + (1 − f)Abkg(τ ), (5.57)

where f is the dilution factor, Aelas is constant over τ , Abkg(τ ) is linear with τ , and τ is the average

time-of-flight for a particular cut, not the ToF for each bin as in the analysis for the longitudinal

forward-angle dataset. By doing this fit to the measured asymmetry, a simultaneous determination

of the elastic and background asymmetries can be made. The value of the pure elastic asymmetry

is then directly obtained from the constant function Aelas, and the value of the background asym-

metry under the elastic peak is obtained by evaluating the linear background function Abkg(τ ) at
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the elastic time-of-flight. The linear background fits are shown in Figures 5.61 and 5.62 for the NA

and French detectors, respectively. In the plots, the filled blue circles are the data points for the

five cuts that were fitted to obtain the elastic and background asymmetries, and the red square is

the extracted background underneath the elastic peak. As with the previous method, the error bar

on this estimated background values were determined by defining the intercept to be at the elastic

peak and then using the usual weighted error bars for the intercept on a linear fit. Background

fits that had a reduced χ2 > 1 were again inflated by the
√

χ2
ν . This method yields comparable

results to the first method for the extracted background under the elastic peak, shown in Table

5.13.

As with the previous method, it is difficult to infer much about the behaviour of the extracted

background asymmetry across the detectors since there are only three detector bins. Again, the

background asymmetry does not show a clear sinusoidal shape with the octants, but the precision of

the points is also rather poor. Both of these plots can be seen in Figures 5.64 and 5.63, respectively.

Extracted Background Asymmetry Abkg (ppm)
Octant

Detectors 1–8 Detectors 9–12 Det 13–14

1 −2.27 ± 3.25 10.50 ± 10.41 −15.85± 11.67
2 −4.02 ± 6.55 −0.01± 4.03 −11.60± 6.26
3 4.90 ± 3.67 3.37 ± 9.68 7.03 ± 7.88
4 0.14 ± 3.26 1.59 ± 4.08 −0.66 ± 9.28
5 −5.30 ± 3.52 −12.57± 8.38 7.13 ± 8.84
6 −4.92 ± 3.25 −2.60± 4.04 −3.98± 10.80
7 6.69 ± 3.06 1.25 ± 3.49 −24.23± 8.94
8 4.31 ± 4.10 0.90 ± 5.54 3.80 ± 8.04

TABLE 5.13: The extracted background asymmetries under the elastic peak for each detector bin and octant
using the simultaneous fit method.

5.4.5.4 Simple Monte Carlo

As a sanity check for the error bars for the background fits, a simple Monte Carlo was devel-

oped. In this Monte Carlo, the two-step fitting method was used. A point was randomly generated

for each of the four background cuts according to a Gaussian distribution centered at the mea-

sured asymmetry value for that cut and with a sigma equivalent to the error bar for that measured
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FIG. 5.61: Simultaneous Fit Method – The linear fit to estimate the background asymmetry for the NA
detectors using the simultaneous fit method. The estimated background asymmetry and the reduced χ2

of the fit are shown. The red square is the estimated background asymmetry under the elastic peak, and
the blue circles are the data points for each of the five cuts.
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FIG. 5.62: Simultaneous Fit Method – The linear fit to estimate the background asymmetry for the
French detectors using the simultaneous fit method. The estimated background asymmetry and the
reduced χ2 of the fit are shown. The red square is the estimated background asymmetry under the
elastic peak, and the blue circles are the data points for each of the five cuts.
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FIG. 5.63: Simultaneous Fit Method – Azimuthal fits of the extracted background asymmetries for each
detector bin.
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FIG. 5.64: Simultaneous Fit Method – Linear fits to the extracted background asymmetries for each
octant.



230

asymmetry. After the four background points had been generated, a linear fit was performed and

the value of the linear background fit at the proton peak ToF was evaluated and dumped into a

histogram. This process was repeated a few thousand times and then the resulting Gaussian peak

was fitted to obtain the mean and the sigma values. This was done for each of the detectors bins

for each octant. The results of the Monte Carlo simulation are displayed in Table 5.14. The Monte

Carlo gives very similar results and error bars to the background fits in the other methods (before

the inflation by the
√

χ2 for the poorer fits).

Estimated Background Asymmetry (Monte Carlo)
Octant

Detectors 1–8 Detectors 9–12 Detectors 13–14
1 −2.1 ± 2.6 10.4 ± 3.4 −18.0± 5.5
2 −4.2 ± 3.2 0.01 ± 4.0 −11.5± 5.8
3 5.5 ± 2.7 6.1 ± 3.2 5.6 ± 5.4
4 0.3 ± 3.3 1.8 ± 3.8 −0.7 ± 5.8
5 −5.0 ± 2.7 −10.7 ± 3.6 6.7 ± 5.8
6 −4.8 ± 3.2 −2.6 ± 4.1 −4.3 ± 5.8
7 6.5 ± 2.6 1.2 ± 3.4 −20.6± 5.4
8 4.2 ± 3.0 1.3 ± 4.0 3.6 ± 6.0

TABLE 5.14: The Monte Carlo results based on the two-step method. Asymmetries are in ppm.

5.4.5.5 Comparison of Extracted Background Asymmetries

The extracted background asymmetries for the events that reside underneath the elastic peak

that have been determined by these two analysis methods are summarized in Table 5.15. The

results from the two-step Monte Carlo are also shown for ease of comparison. The extracted

background asymmetries are very consistent between the two analysis methods. The Monte Carlo

also gives similar results, and error bars that are comparable (before the inflation of the fitted

results by
√

χ2
ν for the poorer fits).

For the purposes of publications and presentations of these data, the simultaneous fit method

was chosen due to its generally somewhat more conservative error bars. However, the good agree-

ment between the two methods is a good cross-check and implies that there are no dominant

unknown systematic errors in the background correction technique.
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Detectors 1–8
Octant

A2step
bkg (ppm) Asimul

bkg (ppm) AMC
bkg (ppm)

1 −1.92 ± 2.60 −2.27 ± 3.25 −2.1 ± 2.6
2 −4.10 ± 6.46 −4.02 ± 6.55 −4.2 ± 3.2
3 5.48 ± 3.21 4.90 ± 3.67 5.5 ± 2.7
4 0.16 ± 3.21 0.14 ± 3.26 0.3 ± 3.3
5 −4.89 ± 2.81 −5.30 ± 3.52 −5.0 ± 2.7
6 −4.94 ± 3.21 −4.92 ± 3.25 −4.8 ± 3.2
7 6.34 ± 2.54 6.69 ± 3.06 6.5 ± 2.6
8 4.24 ± 4.07 4.31 ± 4.10 4.2 ± 3.0

Detectors 9–12
Octant

A2step
bkg Asimul

bkg AMC
bkg

1 10.23 ± 7.34 10.50 ± 10.41 10.4 ± 3.4
2 0.01 ± 3.99 −0.01 ± 4.03 0.01 ± 4.0
3 5.88 ± 8.25 3.37 ± 9.68 6.1 ± 3.2
4 1.70 ± 3.99 1.59 ± 4.08 1.8 ± 3.8
5 −10.91 ± 7.29 −12.57 ± 8.38 −10.7 ± 3.6
6 −2.59 ± 3.96 −2.60 ± 4.04 −2.6 ± 4.1
7 1.25 ± 3.49 1.25 ± 3.49 1.2 ± 3.4
8 1.03 ± 5.41 0.90 ± 5.54 1.3 ± 4.0

Detectors 13–14
Octant

A2step
bkg Asimul

bkg AMC
bkg

1 −18.01 ± 9.34 −15.85 ± 11.67 −18.0 ± 5.5
2 −11.43 ± 5.99 −11.60 ± 6.26 −11.5 ± 5.8
3 5.56 ± 5.53 7.03 ± 7.88 5.6 ± 5.4
4 −0.80 ± 9.10 −0.66 ± 9.28 −0.7 ± 5.8
5 6.72 ± 5.84 7.13 ± 8.84 6.7 ± 5.8
6 −4.07 ± 10.43 −3.98 ± 10.80 −4.3 ± 5.8
7 −20.25 ± 5.91 −24.23 ± 8.94 −20.6 ± 5.4
8 3.85 ± 7.65 3.80 ± 8.04 3.6 ± 6.0

TABLE 5.15: The extracted background asymmetries under the elastic peak for each detector bin and octant
using the two-step method and the simultaneous fit method, as well as the results of the simple Monte Carlo.
The errors are the errors from the fits (all asymmetries are blinded).
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5.4.6 Corrected Asymmetries

The background-corrected, but still blinded elastic asymmetries for both analysis methods

with the errors from the fits are listed in Table 5.16, along with the uncorrected measured asym-

metries for comparison. The two methods yield results in excellent agreement.

The corrected elastic asymmetries for the two analysis methods are shown in Figures 5.65 and

5.66 plotted versus octant and fitted with the form

Ameas
⊥ = |A⊥| sin(φ + φ0), (5.58)

where φ is the azimuthal angle (following our defined coordinates where octant 7 is at 0◦, octant 1

is at 90◦, etc.), φ0 is the phase, and A0 is the offset. Both the phase φ0 and the φ-independent offset

A0 are allowed to be free in these fits. A constant fit is also shown in each plot for comparison.

The asymmetries in detector bins 1–8 and 9–12 show a distinct sinusoidal trend. The value of A⊥

from the fits for each of the detector groups is shown on the plots.

The azimuthal fits for detectors 13 and 14 are poor in both analysis methods. The wretched

statistical precision of these data prevents the detailed study of the background asymmetries needed

for these higher-numbered detectors, where the backgrounds from processes such as hyperon decay

became an issue in the primary forward-angle longitudinal analysis. Extensive investigation has

not revealed any problems with these data due to hardware, software, or beam issues, but the

statistics are so poor that it was not possible to pinpoint a particular set of runs or period of time

where the data might indicate that a problem arose. As with many measurements, more data

would have been useful. It is worth noting that although these data may show some evidence of a

sinusoidal trend, the constant fit also shown in the plots is somewhat better.

5.4.7 Aluminum Frame Data

There were a few hours (∼5) of data taken on the aluminum frame target. The data do not

indicate a significant transverse beam asymmetry contribution from the aluminum of the target

within the very poor statistics of these data. The “raw” asymmetries (corrected for deadtime,
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Detectors 1-8
Octant

Ameas
⊥ (ppm) A2step

elas (ppm) Asimul
elas (ppm)

1 −2.68 ± 1.01 −2.80 ± 1.25 −2.72 ± 1.61
2 −2.72 ± 1.25 −2.59 ± 1.49 −2.61 ± 1.64
3 −1.14 ± 1.00 −2.09 ± 1.23 −1.97 ± 1.52
4 1.50 ± 1.21 1.63 ± 1.36 1.63 ± 1.51
5 0.41 ± 0.99 1.26 ± 1.24 1.34 ± 1.61
6 1.98 ± 1.25 2.67 ± 1.42 2.66 ± 1.60
7 0.74 ± 1.00 −0.16 ± 1.23 −0.23 ± 1.56
8 −0.26 ± 1.17 −0.67 ± 1.33 −0.68 ± 1.49

Detectors 9-12
Octant

Ameas
⊥ A2step

elas Asimul
elas

1 −2.15 ± 1.54 −5.15 ± 2.62 −5.18 ± 3.85
2 −0.85 ± 1.70 −1.00 ± 2.10 −0.99 ± 2.56
3 −2.37 ± 1.69 −4.94 ± 3.39 −3.86 ± 4.59
4 3.11 ± 1.83 3.33 ± 2.22 3.38 ± 2.68
5 1.95 ± 1.58 5.28 ± 2.74 5.80 ± 3.69
6 0.22 ± 1.68 0.67 ± 2.04 0.67 ± 2.47
7 0.98 ± 1.56 0.83 ± 3.07 0.83 ± 5.01
8 −0.47 ± 1.81 −0.70 ± 2.26 −0.65 ± 2.70

Detectors 13-14
Octant

Ameas
⊥ A2step

elas Asimul
elas

1 2.85 ± 2.68 5.25 ± 3.18 4.83 ± 3.78
2 −0.44 ± 2.95 1.64 ± 3.68 1.71 ± 4.58
3 −6.21 ± 2.66 −7.90 ± 3.14 −8.18 ± 3.98
4 8.28 ± 3.53 10.06 ± 4.58 9.87 ± 5.60
5 −1.76 ± 2.77 −4.34 ± 4.02 −4.43 ± 6.72
6 1.17 ± 2.93 2.17 ± 4.01 2.13 ± 4.84
7 −2.16 ± 2.62 0.60 ± 3.15 1.39 ± 4.19
8 3.65 ± 3.56 3.61 ± 4.47 3.58 ± 5.50

TABLE 5.16: The corrected measured elastic transverse asymmetries for each detector bin and octant using
both the two-step method and the simultaneous fit method. The measured asymmetries before the correction
for the background are shown for comparison. Errors come from the fits (all asymmetries are blinded and are
not corrected for the beam polarization).
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FIG. 5.65: The Two-Step Method – Azimuthal fits to the corrected elastic asymmetries versus octant for
each of the detector groups using the two-step analysis method. A linear fit is also shown for comparison
[note: asymmetries are still blinded].
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FIG. 5.66: Simultaneous Fit Method – Azimuthal fits to the corrected elastic asymmetries versus octant
for each of the detector groups using the simultaneous fit analysis method. A linear fit is also shown
for comparison [note: asymmetries are still blinded].



235

 Summed FPD Asymmetry 1 - 8 vs Octant

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-15

-10

-5

0

5

10

15

Cut1

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-15

-10

-5

0

5

10

15
 2.457± = -5.119 0 0.378, A± = 0.129 φ

 = 0.300 ν
2χ 3.505, ± =   9.104 nA

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-30

-25

-20

-15

-10

-5

0

5

10

Cut2a

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-30

-25

-20

-15

-10

-5

0

5

10
 4.177± = -9.632 0 1.468, A± = 0.373 φ

 = 0.133 ν
2χ 5.906, ± =   4.023 nA

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-10

0

10

20

Cut2b

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-10

0

10

20

 2.969± = -4.316 0 0.598, A± = 1.292 φ

 = 2.119 ν
2χ 4.174, ± =   -7.066 nA

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-10

0

10

20

30

Elastic

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-20

-10

0

10

20

30
 2.939± = -1.696 0 0.607, A± = 1.051 φ

 = 2.237 ν
2χ 4.135, ± =   6.874 nA

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-40

-20

0

20

40

60

80

100

Cut3

Octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
p

p
m

)

-40

-20

0

20

40

60

80

100
 8.416± = 17.584 0 3.263, A± = -0.280 φ

 = 1.769 ν
2χ 12.210, ± =   -3.545 nA

FIG. 5.67: Azimuthal fits to the raw asymmetries versus octant for the aluminum data in each of the
five PID cuts for Detectors 1–8 [note: asymmetries are blinded].

DNL, etc., but not for background) for the five PID cuts for detectors 1 – 8 are shown in Figure

5.67. These data are also shown without any beam leakage corrections or parity-quality beam cuts.

The φ-independent offset A0 that is caused largely by the beam leakage is readily apparent. The

data are shown with a sinusoidal fit that is unconstrained in the phase and global offset A0.

Table 5.17 shows the results of the sinusoidal fit and measured linear fit to the measured

aluminum elastic asymmetries for the three detector bins. Within the pathetic statistics of the

measurement, the aluminum of the target cell does not appear to contribute a significant az-

imuthal component to the measured elastic asymmetry from the hydrogen target, although the

measurement is not very precise.
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Aluminum Elastic Asymmetry AAl
elas

Detector Bin
A⊥ (ppm) χ2

ν constant fit (ppm) χ2
ν

1–8 6.87 ± 4.14 2.237 −1.59 ± 2.93 1.993
9–12 −5.85 ± 6.15 0.855 −9.08 ± 4.34 0.740
13–14 −12.41± 10.53 1.065 −3.27 ± 7.50 0.959

TABLE 5.17: The comparison of the results from the sinusoidal and constant fits of the raw asymmetries
for the elastic cut of the aluminum transverse data.

5.4.8 Discussion of Systematic Uncertainties

The sources of systematic errors and their uncertainty for this measurement are summarized in

Table 5.18. All of the yield rates were corrected for electronics deadtimes of 10–15%, determined

by measurements of the yield dependence on the beam current, exactly as it was done for the

analysis of the longitudinal data set [194, 245]. The corresponding uncertainty in the asymmetry

is ∼ 0.05 ppm. The error bars on the dilution factors have been neglected because they were

insignificant compared to the statistical error bars. Likewise, the precision of the Q2 centroids for

each detector is washed out by the width of the present Q2 bins.

The effect of the linear regression correction for the helicity-correlated beam parameters on

the extracted A⊥ is small, less than 0.1 ppm for the first two Q2 bins, but it is ∼ 0.25 for the third

bin. These values were determined using the cuts defined in the database, as described in Section

5.4.3. As these cuts are somewhat different than those used for the actual analysis of these data,

and because the effects are so small, no correction was done, and the magnitude of the correction

was used as the systematic error only.

The beam leakage introduced a global negative offset to the asymmetries, about −1.3 ppm

overall, that was corrected when the beam leakage correction was applied. The uncertainty in the

elastic asymmetry due to the beam leakage correction is 0.33 ppm for detectors 1 – 8 and 0.38

ppm for detectors 9 – 12. These uncertainties were found following one of the methods used for

the forward-angle longitudinal data set [224]. Of all the ToF regions other than the cut0 one, cut3

is the most sensitive to the beam leakage. Figures 5.68 and 5.69 show the asymmetries for cut3
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FIG. 5.68: Raw cut3 asymmetries versus run for
all the detectors and octants without the beam
leakage correction applied.
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FIG. 5.69: Raw cut3 asymmetries versus run for
all the detectors and octants with the beam leak-
age correction applied.

by half-wave plate both uncorrected and corrected for the beam leakage, respectively. Although

the correction is significant, the reduced χ2 after the correction is still ∼ 1.4, which points to some

residual systematic fluctuation in the data. If we assume that the residual systematic uncertainty

is about the same size as the statistical uncertainty, about 2.607 ppm (a conservative estimate

since the reduced χ2 is less than 2 and is only for one half-wave plate state), which corresponds to

a fractional uncertainty of 25% relative to the size of the correction (-10.56 ppm for the out state).

This is similar to the 23% found by this method for the longitudinal case. To find the uncertainty

in the elastic asymmetry due to the leakage, we find the difference between the leakage corrected

and uncorrected elastic asymmetries , and multiply by our fractional uncertainty:

δ = Ae,corr − Ae,raw ∼ 1.3 ppm, (5.59)

σ(δ) = δ × 25% = 0.33 ppm, (5.60)

where +1.3 ppm was the average correction for the asymmetries for detectors 1–8. For detectors

9–12, the average correction was +1.5, and so the uncertainty due to the leakage correction is 0.38

ppm. This is a global systematic uncertainty.

The analysis of the transverse beam polarization data and the determination of the systematic

error bar of 1.7% on the polarization (1.8% total error for the measurement) was described in

Section 5.2.2.2. The large uncertainty in the beam polarization is largely due to the interpolation

necessary because of the indirectness of the measurement and the 3◦ shift in the zero-crossing.

There is the possibility of a small amount of residual longitudinal polarization, since there
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Source Uncertainty

Deadtime 0.05 ppm (not blinded)
Helicity-correlated beam parameters < 0.1 ppm for 1-12; 0.25 ppm for 13-14

Background correction 0.3 - 3.11 ppm

Leakage beam 0.33, 0.38 ppm
Beam polarization 1.8% (fractional)

Longitudinal polarization 0.002, 0.017, 0.166 ppm
Finite Q2 binning 0.03 ppm (not blinded)

TABLE 5.18: Systematic uncertainties for the measured asymmetries. The first three are point-to-point
systematic uncertainties; the last three are global systematic uncertainties. [Still blinded.]

was the shift in the zero-crossing of about 3◦; however, we are confident that the spin angle was

at 90◦ for the measurement, so we do not perform a correction for it, but do have an uncertainty

assigned for it. In assigning the uncertainty, we have assumed the maximum possible residual

longitudinal polarization. Any residual longitudinal polarization would manifest as a vertical

offset in the plots of Am versus φ. The amount that A0 would shift with the maximum amount of

residual longitudinal polarization was found by summing the elastic longitudinal asymmetries into

the appropriate detector bins, and then multiplying the summed asymmetries by sin 3◦ (about 5%

of A‖). These values were found to be 0.12 ppm for detectors 1–8, 0.28 ppm for detectors 9–12,

and 0.49 ppm in detectors 13–14. To find out how much these offsets could affect the extracted

asymmetry amplitude A⊥, the fits to the measured asymmetry data were performed with the offset

constrained to the maximum, minimum, and zero offsets (i.e. fits with A0 = +0.12, −0.12, and 0.0

for detectors 1–8), and the values of the extracted A⊥ were compared to obtain the dispersion of

the values. For detectors 1–8, the dispersion was found to be 0.002 ppm; for detectors 9–12, 0.017

ppm; and for detectors 13–14, 0.166 ppm. We then took this to be the systematic uncertainty

associated with any residual longitudinal polarization component in the beam.

For the systematic error on the extracted background asymmetries, the two independent

analysis methods were used as a measure of the systematic uncertainty. The dispersion between

the two methods was calculated for each octant and detector bin, which was added in quadrature

to the error bar obtained for the extracted background asymmetry from the simultaneous fit.
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The error on the elastic asymmetry can be written as

σ(Aelas) =
√

σ2
stat(Aelas) + σ2

sys(Aelas), (5.61)

σsys(Aelas) =
1 − f

f
σ(Ab), (5.62)

σ(Ab) =
√

σ2(Abkg) + δ2, (5.63)

where the statistical error σstat(Aelas) comes from the fits, σ(Abkg) comes from the background

fits, and δ is the dispersion between the two methods. The elastic asymmetries and the systematic

uncertainties on the elastic asymmetries are found in Table 5.19. The table shows the statistical

uncertainty, the point-to-point systematic uncertainty, and the global systematic uncertainty. In

addition, the table also displays the systematic uncertainty contribution from the background cor-

rection. Unsurprisingly, the background correction clearly dominates the point-to-point systematic

uncertainties for the data points.

A conservative model-dependent systematic error due to finite Q2 bin size is also indicated in

Table 5.18.

As a final note, because the octants are not exactly at a particular angle in φ but in actual-

ity cover a range of about 21◦ (±10.5◦ from their designated azimuthal position), the measured

asymmetries are in essence the average of the sinusoidal shape over that range. Therefore, the

asymmetries at the peak are slightly shifted down toward zero, and the sinusoidal effect is some-

what washed out. To determine if a correction should be done for this effect, the values over

an ideal sine curve with an amplitude of 1 ppm over eight 21◦ bins were averaged. The largest

variation between the ideal curve’s value and the average across an azimuthal bin was at the peak

(as predicted), and for an amplitude of 1 ppm, the value was shifted from an absolute value of 1

to 0.9941 ppm. The shift of 0.00585 multiplied by the extracted A⊥ amplitudes (unblinded) in

this data set yields that the data points at the maxima and minima of the sinusoidal shape have
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Detectors 1 – 8Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm) σsysbkg

(ppm)

1 -2.72 1.61 0.54 0.44 0.53
2 -2.61 1.64 0.61 0.44 0.60
3 -1.97 1.52 0.54 0.44 0.53
4 1.63 1.51 0.32 0.44 0.30
5 1.34 1.61 0.58 0.44 0.57
6 2.66 1.60 0.34 0.44 0.32
7 -0.23 1.56 0.50 0.44 0.49
8 -0.68 1.49 0.39 0.44 0.38

Detectors 9 – 12Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm) σsysbkg

(ppm)

1 -5.18 3.85 2.530 0.51 2.528
2 -0.99 2.56 0.70 0.51 0.69
3 -3.86 4.59 3.112 0.51 3.111
4 3.38 2.68 0.67 0.51 0.66
5 5.80 3.69 2.22 0.51 2.21
6 0.67 2.47 0.65 0.51 0.64
7 0.83 5.01 1.901 0.51 1.898
8 -0.65 2.70 0.88 0.51 0.87

Detectors 13 – 14Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm) σsysbkg

(ppm)

1 4.83 3.78 1.39 0.54 1.36
2 1.71 4.58 1.21 0.54 1.18
3 -8.18 3.98 1.18 0.54 1.15
4 9.87 5.60 1.83 0.54 1.81
5 -4.43 6.72 2.71 0.54 2.69
6 2.13 4.84 2.06 0.54 2.05
7 1.39 4.19 1.52 0.54 1.50
8 3.58 5.50 1.55 0.54 1.53

TABLE 5.19: Uncertainties for the extracted elastic asymmetries. Aelas is the elastic asymmetry, σstat

is the statistical uncertainty, σsyspt−pt is the point-to-point systematic uncertainty, σsysglobal
is the global

systematic uncertainty, and σsysbkg
is the contribution of the background systematic error to the point-to-

point uncertainty. [Everything is still blinded.]
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shifted about 0.024 ppm toward zero for detectors 1–8 and 0.028 ppm for 9–12, so the absolute

value of An for each should be increased by that amount. This 0.59% correction is pretty negligible

for this measurement given our statistical error bars; however, for the sake of completeness this

has been corrected for. The correction was actually applied multiplicatively (except for on the

points where the zero-crossing should occur, to prevent accidental forcing of the point to zero),

although the results were the same whether applied additively or multiplicatively. The corrections

calculated for each point have been applied to each point individually and then fitted, although

in principle one could just do the correction on the amplitude curve itself. This was done so that

the asymmetries listed in tables would already have the correction, avoiding confusion as to why a

fit to the listed points for detectors 1–8 differs from the reported fit by −0.024 ppm. Finally, this

effect is determined by how large a slice of the sine curve is accepted (i.e. an octant covering a

full 45◦ would require a larger correction), so assuming that the backangle measurements have the

same detector acceptance since they do make use of the same focal plane detectors (among other

things), the correction needed for the backward angle transverse measurements should be about

−0.59 ppm for an An of about −100 ppm.

5.4.8.1 Phase Sensitivity Study

The phase φ0 in Equation 5.58 depends on the direction of the beam polarization and de-

termines the overall sign of the asymmetry amplitude An. For this measurement, φ0 should be

equivalent to the calculated precession of the polarization as it traverses the magnetic field of the

Møller solenoid, but it is important to have a good understanding of the phase and the impact of

different phases on the extracted transverse asymmetry An.

As the phase takes into account the direction of the transverse polarization relative to the

orientation of the spectrometer, the possibility that the Ferris wheel is tilted with respect to the

plane of the accelerator (and to the transverse polarization of the beam) must be considered. A

back-of-the-envelope calculation shows that the Ferris wheel would have to be rotated by about 11

inches with respect to the plane of the accelerator and our polarization for the effect on the phase
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to be as large as the contribution from the Møller solenoid, about 5.3◦. Due to the unlikeliness

of this being unnoticed by the surveys, it was decided that this scenario probably would not be a

significant source of uncertainty in the phase φ0.

A study was conducted to ascertain any systematic effects due to the knowledge (or lack

thereof) of the phase φ0 that the sinusoidal fits are constrained to. To do the study, the final

corrected elastic asymmetries for each Q2 detector bin were plotted versus the azimuthal position

of each octant and fitted for their sinusoidal dependence as described in Section 5.4.6. However,

the fits were performed with the phase φ0 constrained to values from −90◦ to 90◦, in one-degree-

per-step intervals, with the reduced χ2 and the amplitude An recorded for each value of φ0.

The results are shown plotted in Figure 5.70. As expected, the blue curve of the reduced χ2

versus the constrained phase φ0 shows the value of χ2 reaching a minimum at the value of the

phase obtained in a free fit where all the parameters are allowed to float, about 22.1◦ for detectors

1–8, −5.8◦ for detectors 9–12, and −58.3◦ for 13 and 14. The same is true for the value of the

extracted asymmetry amplitude An, shown in the green curves, which attains a largest absolute

value at these values of φ0. The three-dimensional plot shows the relationship between all three

values: the phase φ0, the asymmetry amplitude An, and the reduced χ2. As a consequence of the

sinusoidal fit shape, the relationship of the three values forms a saddle shape, with the χ2 minima

and the An absolute maxima occurring at 180◦ out-of-phase. This is clearly seen in the red curves

for each detector bin, although only half of the saddle shape is visible in these plots.
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FIG. 5.70: Plots detailing studies of the effects of the phase φ0 on the extracted azimuthal amplitude of the sinusoidal fit the to asymmetries. The blue
curves show the effect on the reduced χ2 of constraining the fits to various azimuthal angles, the green curves show the effect on the asymmetry An of
constraining the fits to various azimuthal angles φ0, and the red curve shows the relationship of the phase φ0, the asymmetry An, and the reduced χ2.
[Note: Asymmetries are not blinded.]
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The calculated precession angle due to the beam traversing the field of the Møller solenoid is

about 5.3◦, which does not sit far from the χ2 minima and the An absolute maxima in the plots

for detector bins 1 – 8 and 9 – 12, and thus does not have much of an impact on the extracted An.

However, this is not the case with the results for detectors 13 – 14, which display a very different

trend with the minimum reduced χ2 at −58.3◦. This gives support to the suggestion that there

is something possibly amiss with the data from these detectors, as they favor a phase angle that

is so far out of agreement with the other detectors, the luminosity monitors, and the calculated

phase from the precession due to the Møller solenoid.

5.4.9 An Alternative Approach: Correcting via the Wiggles

As another consistency check, a relatively quick and completely different analysis of the data

was also made. In this method, the A⊥ values from each of the sinusoidal fits for the background

cuts (cut1, cut2a, cut2b, and cut3) where plotted versus the average ToF of the cuts for each of the

detector bins and fitted with a linear background function. The value of the background A⊥ under

the elastic peak was then evaluated at the elastic peak ToF from the background fit, and used to

correct the A⊥ from the sinusoidal fits to the measured elastic asymmetries using the elastic peak

dilution factors and the now-familiar equation

Aelas =
1

f
(Ameas

⊥ − (1 − f)Abkg) . (5.64)

The results of this procedure can be seen in Figure 5.71, where the background A⊥ fits are shown

along with a plot of the corrected elastic A⊥ for each center-of-mass angle using this method,

which are also listed in the first column of Table 5.20 (the asymmetries are still blinded). The

extracted background A⊥ values are consistent within the large error bars with the ones from the

other methods, and the corrected elastic A⊥ values are also consistent with the previous methods.

Figure 5.71 and the first column of Table 5.20 show the results of this method with no con-

straints placed on any of the fit parameters. For comparison, the second and third columns of

Table 5.20 show the results for the case where the phase φ0 of all the sinusoidal fits for the cuts are

constrained to the calculated precession of the polarization through the Møller solenoid, and for
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A⊥ (ppm)
Detector

Free φ0 = 5.3◦ φ0 = 5.3◦, Simultaneous Two-Step
Bin

A0 = 0 Method Method

1 – 8 −2.45 ± 0.63 −2.24 ± 0.63 −2.25 ± 0.63 −2.55± 0.80 −2.52 ± 0.66

9 – 12 −3.16 ± 1.36 −3.10 ± 1.33 −3.11 ± 1.33 −3.10± 1.52 −3.23± 1.18
13 – 14 2.14 ± 1.98 1.40 ± 1.96 1.41 ± 1.97 2.97 ± 2.40 3.04 ± 1.90

TABLE 5.20: The corrected elastic A⊥ using the “correction via the wiggles” method, where the amplitudes
for the detector bins are shown for sinusoidal fits where the parameters were not constrained, for fits where
the parameters were constrained to the calculated Møller phase, and for fits with the parameters constrained
to both zero offset and the calculated Møller precession phase. The extracted A⊥ for the simultaneous fit and
the two-step methods are also shown for comparison. [Asymmetries are all blinded.]

the case where the vertical offset is constrained to zero in addition to the Møller phase constraint.

The plots for this latter case are shown in Figure 5.72. As in the plots for the unconstrained case,

the three plots for each detector bin show the linear fit to the asymmetry amplitudes extracted

from the azimuthal sinusoidal fits from the background cut asymmetries for each octant. The

closed blue circles are the background asymmetry amplitudes that are used in the linear fit, the

open blue circle is the uncorrected elastic asymmetry (not in fit), and the red square is the value of

the background asymmetry at the elastic peak that is determined from the fit to the background

points. This value for the background asymmetry is also displayed at the top of the graphs. The

fourth and final graph shows the corrected elastic asymmetry amplitude for each of the three de-

tector bins versus their corresponding center-of-mass angle, with the values displayed at the top

of the plot. The values for both constrained cases are in good agreement with the unconstrained

case, expect for detectors 13 and 14, which was not unexpected. These values are also consistent

with those found by the more careful and thorough analysis.



246

Time-of-Flight (ns)
14 16 18 20 22 24

A
sy

m
m

et
ry

 (
p

p
m

)

-6

-4

-2

0

2

4

6

8

10

12

14
 = 0.842ν

2χ 3.426 ± = 2.123 
b

A

 Detectors 1-8 

Time-of-Flight (ns)
14 16 18 20 22 24

A
sy

m
m

et
ry

 (
p

p
m

)

-2

0

2

4

6

8

10  = 3.207ν
2χ 2.428 ± = 5.596 

b
A

 Detectors 9-12 

Time-of-Flight (ns)
14 16 18 20 22 24

A
sy

m
m

et
ry

 (
p

p
m

)

-15

-10

-5

0

5

 = 1.244ν
2χ 4.403 ± = -4.497 

b
A

 Detectors 13-14 

CMθ
20 22 24 26 28 30 32

A
sy

m
m

et
ry

 (
p

p
m

)

-4

-3

-2

-1

0

1

2

3

4  0.634±Dets 1-8: -2.452 

 1.357±Dets 9-12: -3.158 

 1.975±Dets 13-14: 2.143 

 versus CM angle n A

FIG. 5.71: Plots of the linear fits of A⊥ of each of the background cuts versus time-of-flight for each
detector bin. The value of the A⊥ asymmetry in the elastic cut extracted from the fit is shown as a
red square and is displayed at the top of each plot, along with the reduced χ2 for the fit. The open
circle is the measured elastic A⊥, which is included in the plots for comparison, but not included in the
background fits. The closed blue circles are the A⊥ data points for the background cuts: cut1, cut2a,
cut2b and cut3. The bottom right plot shows the corrected elastic A⊥ versus center-of-mass angle for
the three detector bins, with the values displayed at the top of the plot. [Note: Asymmetries are all
blinded.]
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FIG. 5.72: Plots of the linear fits of A⊥ of each of the background cuts versus time-of-flight for each
detector bin, where the sinusoidal fits were constrained to zero offset and the calculated Møller precession
phase. The value of the A⊥ background asymmetry in the elastic cut extracted from the fit is shown as
a red square and is displayed at the top of each plot, along with the reduced χ2 for the fit. The open
circle is the measured elastic A⊥, which is included in the plots for comparison, but not included in the
background fits. The closed blue circles are the A⊥ data points for the background cuts: cut1, cut2a,
cut2b and cut3. The bottom right plot shows the corrected elastic A⊥ versus center-of-mass angle for
the three detector bins, with the values displayed at the top of the plot. [Note: Asymmetries are all
blinded.]



247

5.4.10 Final Physics Asymmetries

The final elastic asymmetries from the simultaneous fit analysis method, corrected for the

multiplicative analysis blinding factor of 0.805619 and the beam polarization, are listed in Table

5.21 for each of the detector groups. The error bars on the asymmetries are the statistical and

systematic uncertainties discussed in Section 5.4.8 combined in quadrature. These asymmetries

can now be used to extract the transverse asymmetry An, which is the subject of the next chapter.

Detectors 1 - 8Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm)

1 -4.57 2.00 0.67 0.55
2 -4.39 2.04 0.76 0.55
3 -3.30 1.88 0.67 0.55
4 2.74 1.88 0.39 0.55
5 2.25 2.00 0.71 0.55
6 4.47 1.98 0.42 0.55
7 -0.38 1.94 0.62 0.55
8 -1.15 1.84 0.49 0.55

Detectors 9 - 12Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm)

1 -8.70 4.78 3.14 0.63
2 -1.67 3.18 0.87 0.63
3 -6.45 5.70 3.86 0.63
4 5.68 3.33 0.83 0.63
5 9.74 4.58 2.75 0.63
6 1.13 3.06 0.81 0.63
7 1.39 6.22 2.36 0.63
8 -1.09 3.35 1.09 0.63

Detectors 13 - 14Octant
Aelas(ppm) σstat (ppm) σsyspt−pt

(ppm) σsysglobal
(ppm)

1 8.11 4.69 1.72 0.67
2 2.88 5.68 1.50 0.67
3 -13.66 4.94 1.46 0.67
4 16.58 6.96 2.27 0.67
5 -7.44 8.34 3.36 0.67
6 3.58 6.01 2.56 0.67
7 2.33 5.21 1.88 0.67
8 6.01 6.82 1.92 0.67

TABLE 5.21: Systematic uncertainties for the extracted elastic asymmetries, corrected for the analysis blinding
factor of 0.805619.. σsysbkg

is the contribution of the background syst error to the pt-pt error.
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5.5 Analysis Summary

This chapter has described the analysis techniques used to correct the raw asymmetries mea-

sured in the parity-violating, forward-angle asymmetry measurement of the G0 experiment and

the parity-conserving transverse asymmetry measurement. These asymmetries can now be used

to extract the physics of interest, the linear combination of the strange form factors Gs
E + ηGs

M in

the former case, and the transverse asymmetry An in the latter. The next chapter is devoted to

this and to a discussion of these results.



CHAPTER 6

From Physics Asymmetries to

Physics Results

6.1 Longitudinal Data Set

6.1.1 Experimental Asymmetry Results

The final, published physics asymmetries that were measured in the experiment and analyzed

as described in Chapter 5 are presented in Table 6.1, along with their corresponding statistical

and systematic uncertainties (both point-to-point and global) [245]. These asymmetries are shown

along with the “no-vector-strange” asymmetry Anvs, that is, the calculated asymmetry assuming

no contribution from strange quarks (Gs
E = Gs

M = 0 for all values of Q2). For the calculation of

the NVS asymmetry, the electromagnetic form factors of Kelly were used [279].

These experimental asymmetries are shown plotted in Figures 6.1 and 6.2 (as linear and log

plots, respectively), along with the solid black line denoting the calculated values of the no-vector-

strange asymmetry using the Kelly form factor parameterizations. In the plots, the inner error

bar denotes the statistical uncertainty, and the outer one represents the statistical and point-to-

249
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Q2 Aphys σAstat σApt−pt σAglobal Anvs

(GeV/c)2 (ppm) (ppm) (ppm) (ppm) (ppm)

0.122 -1.51 0.44 0.22 0.18 -1.96

0.128 -0.97 0.41 0.20 0.17 -2.11
0.136 -1.30 0.42 0.17 0.17 -2.29
0.144 -2.71 0.43 0.18 0.18 -2.50
0.153 -2.22 0.43 0.28 0.21 -2.75
0.164 -2.88 0.43 0.32 0.23 -3.05
0.177 -3.95 0.43 0.25 0.20 -3.44
0.192 -3.85 0.48 0.22 0.19 -3.91
0.210 -4.68 0.47 0.26 0.21 -4.47
0.232 -5.27 0.51 0.30 0.23 -5.23
0.262 -5.26 0.52 0.11 0.17 -6.31
0.299 -7.72 0.60 0.53 0.35 -7.78
0.344 -8.40 0.68 0.85 0.52 -9.66
0.410 -10.25 0.67 0.89 0.55 -12.74
0.511 -16.81 0.89 1.48 1.50 -17.96
0.631 -19.96 1.11 1.28 1.31 -24.77
0.788 -30.8 1.9 2.6 2.59 -34.57
0.997 -37.9 7.2 9.0 0.52 -48.61

TABLE 6.1: The physics asymmetries and uncertainties measured in the forward-angle phase of the G0

experiment, as published in [245].

point systematic uncertainties combined in quadrature. The grey band at the top of the graph

is the global systematic uncertainty for the measurement. Although not very far from zero, the

asymmetries do show a systematic tendency to ride slightly above (positive) the line for no strange

quark contributions.

6.1.2 The Linear Combination Gs
E + ηGs

M

The linear combination of the strange electric and magnetic form factors is determined from

the difference between the measured experimental asymmetry Aphys and the no-vector-strange

asymmetry ANV S , which is calculated as described previously with Gs
E = Gs

M = 0 for all values

of Q2 and Kelly’s electromagnetic form factors [279].

Gs
E + ηGs

M =
4π

√
2α

GF Q2

ǫ(Gγ,p
E )2 + τ(Gγ,p

M )2

ǫGγ,p
E

(Aphys − ANV S) , (6.1)

where η(Q2) = τGγ,p
M /ǫGγ,p

E .
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• inside error bars: stat, outside: stat & pt-pt

http://www.npl.uiuc.edu/exp/G0Forward

FIG. 6.1: Aphysics (points) and ANV S (solid
line) versus Q2, shown in a linear scale. The
inner error bars represent the statistical error
bars; the outer error bars denote the statistical
and point-to-point systematic uncertainties com-
bined in quadrature. The grey band above the plot
shown the global systematic uncertainty.

• inside error bars: stat, outside: stat & pt-pt

http://www.npl.uiuc.edu/exp/G0Forward

FIG. 6.2: Aphysics (points) and ANV S (solid
line) versus Q2, shown in a logarithmic scale.
The inner error bars represent the statistical er-
ror bars; the outer error bars denote the statis-
tical and point-to-point systematic uncertainties
combined in quadrature. The grey band above the
plot shown the global systematic uncertainty.

The results of the calculation are shown in Table 6.2. Note that Gs
E + ηGs

M = 0 at Q2 = 0

and that η ∼ 0.94Q2 for our kinematics using the Kelly parameterization. The linear combination

Gs
E + ηGs

M is shown as a function of momentum transfer in Figure 6.3. The inner error bars

are the statistical uncertainty, and the outer ones are the statistical and point-to-point system-

atic uncertainties combined in quadrature. The grey error bands represent the global systematic

uncertainties. The upper band shows the ones from the measurement, and the lower band the

ones from the uncertainties in the quantities entering ANV S : the calculated value of the axial-

vector form factor normalization [85] (differing from gA/gV by electroweak radiative corrections),

the same dipole momentum transfer dependence for Ge
A(Q2) as is deduced for GA(Q2) [280], the

axial-vector strangeness contribution ∆s [281], and the electroweak radiative corrections [68].

These calculations have used the parameterization of the electromagnetic form factors by

Kelly [279]; however, the difference in using the parameterizations by Friedrich-Walcher [282] or

Arrington [283] is not large. These parameterizations are also shown in Figure 6.3, the green

dashed line representing the parameterization by Friedrich and Walcher [282] and the pink dotted

line denoting the combination of Arrington’s parameterization for the proton [283] and Kelly’s

neutron parameterization [279]. These lines represent the effective zero value of ANV S for these
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Q2 (GeV/c)2 η Gs
E + ηGs

M σstat σsys,pt−pt σsys,global σsys,model

0.122 0.098 0.037 0.036 0.019 0.015 0.003

0.128 0.103 0.090 0.032 0.016 0.014 0.003
0.136 0.109 0.074 0.032 0.013 0.013 0.003
0.144 0.116 -0.014 0.030 0.013 0.012 0.003
0.153 0.123 0.034 0.028 0.019 0.014 0.003
0.164 0.132 0.010 0.026 0.020 0.014 0.004
0.177 0.143 -0.028 0.024 0.014 0.011 0.004
0.192 0.156 0.003 0.025 0.011 0.010 0.004
0.210 0.170 -0.010 0.022 0.012 0.010 0.004
0.232 0.189 -0.002 0.021 0.012 0.010 0.004
0.262 0.214 0.038 0.019 0.004 0.006 0.005
0.299 0.245 0.002 0.018 0.016 0.011 0.005
0.344 0.283 0.033 0.018 0.022 0.014 0.005
0.410 0.341 0.053 0.014 0.019 0.012 0.006
0.511 0.431 0.019 0.014 0.024 0.024 0.006
0.631 0.543 0.060 0.014 0.016 0.016 0.007
0.788 0.700 0.036 0.018 0.024 0.025 0.008
0.997 0.932 0.076 0.052 0.064 0.004 0.008

TABLE 6.2: The linear combination Gs
E + ηGs

M from the G0 forward-angle measurement.

parameterizations; for example, the value of Gs
E + ηGs

M at Q2 = 0.63 (GeV/c)2 would increase

from 0.059 to 0.072 if the Friedrich-Walcher form factors were used.

Included on the graph are the data points from recent HAPPEX measurements [183–185],

which were made at nearly the same kinematic points (the points do include small corrections to

the asymmetries to adjust them to the same beam energy as G0, < 0.2 ppm). The points are in

excellent agreement with the G0 points.

The results are also displayed on the G0 website, along with other plots and information about

the measurement.1

6.1.3 Discussion of Results

The results for Gs
E + ηGs

M shown in Figure 6.3 suggest a systematic and intriguing Q2 de-

pendence. However, are these data consistent with zero, or do they reject this hypothesis that

Gs
E + ηGs

M = 0?

To characterize the results, the hypothesis that Gs
E + ηGs

M = 0 was tested using the classic

1http://www.npl.uiuc.edu/exp/G0/Forward/index.html
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FIG. 6.3: Gs
E

+ ηGs
M

versus Q2, calculated using Kelly form factors. Inner error bars denote the
statistical uncertainty; outer ones, the statistical and point-to-point systematic uncertainties combined
in quadrature. The grey error bands represent the global systematic uncertainties, the upper band the
ones from the measurement, and the lower band the ones from the uncertainties in the quantities entering
ANV S. The two lines correspond to the effective zero-line ANV S using different electromagnetic nucleon
form factor parameterizations. Figure from [245].

χ2 test. This test makes the assumption that the zero-line hypothesis is the correct physics, and

then evaluates the probability that a random data set would give χ2 values equal to or lesser than

the value obtained from the measured data set if the zero-line hypothesis accurately describes the

underlying physics. This was done using a Monte Carlo simulation, which generated randomized

data sets with the assumption that Gs
E + ηGs

M = 0 and which were distributed according to the

statistical and systematic uncertainties of the actual measurement (including correlated uncertain-

ties). The χ2 value for each generated data set relative to the zero-line hypothesis calculated and

then compared to the χ2 of the measured data (using Kelly’s form factors). The fraction of these

sets with a χ2 value larger than that of our data set was only 11% with the assumption that the

distribution is governed by the no-vector-strange hypothesis. Therefore, the nonstrange hypothesis

is disfavored by the G0 data with 89% confidence.

The Q2 dependence of the data is very intriguing. How does this dependence compare with

other measurements? A combined analysis using the world data for Q2 = 0.1, 0.23, and 0.477

(GeV/c)2 can be done by plotting the results from the various experiment discussed in Chapter 3
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FIG. 6.4: The world Data of Gs
E

+ ηGs
M

for Q2 = 0.1 (GeV/c)2. The inner and outer ellipses are the
1σ and 2σ error ellipses. Data from [178,184–186,189,245]

in (Gs
E , Gs

M ) space. In these plots, each measurement is shown as a linear band, defined as

Gs
E + ηGs

M = g ± σ(g), (6.2)

where the η, g, and σ(g) denote the values of η and the linear combination and its uncertainty

for each measurement. The bands should overlap where the most probable values of Gs
E and Gs

M

are located. Figure 6.4 shows this for Q2 = 0.1 (GeV/c)2, where the value for the G0 line is from

a linear interpolation between the lowest three measured Q2 bins (0.122, 0.128, 0.136 (GeV/c)2)

and the physical constraint that at Q2 = 0 the linear combination is zero. The inner and outer

ellipses are the 1σ and 2σ error ellipses. The best fit to the measurements yields a value of

Gs
E = −0.006± 0.016, Gs

M = 0.284± 0.200, (6.3)

which is consistent with zero for Gs
E , but perhaps slightly positive for Gs

M .

This technique can be done using the world data at Q2 = 0.23 and 0.477 (GeV/c)2 as well.

For these plots, three adjacent points of the measured G0 data are used for the interpolation,

Q2 = 0.210, 0.232, 0.262 (GeV/c)2 for the value at Q2 = 0.23, and Q2 = 0.410, 0.511, 0.631 for

Q2 = 0.477 (GeV/c)2. These values are shown in Figures 6.5 and 6.6, along with the data from
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FIG. 6.5: Gs
E

+ ηGs
M

at Q2 = 0.23 (GeV/c)2.
The magenta band shows the results from the
G0 experiment [245]; the green band is from the
PVA4 forward-angle measurement [188]. The
dashed and solid lines denote the statistical and
total uncertainties for each measurement.

FIG. 6.6: Gs
E

+ ηGs
M

at Q2 = 0.48 (GeV/c)2.
The magenta band shows the results from the G0

experiment [245]; the blue band is from the first
HAPPEX measurement [183]. The dashed and
solid lines denote the statistical and total uncer-
tainties for each measurement.

PVA4 [188] and HAPPEX [183], respectively. The best fit for Figure [188] at Q2 = 0.23 (GeV/c)2

yields [224]

Gs
E = −0.14± 0.16, Gs

M = 0.80 ± 0.81, (6.4)

which favors a negative Gs
E and a positive Gs

M (although both are still consistent with zero). At

Q2 = 0.477 (GeV/c)2, the kinematics for the two measurements were almost the same, making

the two lines parallel and unable to give an extraction for Gs
E and Gs

M . However, the agreement

between the two measurements is excellent.

What about the comparison of the points themselves in the G0 dataset? The initial rise from

0 to about 0.05 at low Q2 is consistent with the finding that Gs
M (Q2 = 0.1(GeV/c)2 ∼ +0.5

from the SAMPLE [178], PVA4 [189], and HAPPEX 2004 measurements [184, 185], although also

consistent with zero like the HAPPEX 2005 measurements [186]. The kinematic factor η increases

linearly throughout, so the apparent decline of the data in the intermediate region up to Q2 ∼ 0.3

could suggest that Gs
E may be negative in this range. This conclusion is also supported by the

combination of the G0 and PVA4 [188] results at Q2 = 0.23, as seen in Figure 6.5. At higher values

of Q2, there is the suggestion of a trend to positive values of Gs
E + ηGs

M . This is also consistent
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with the first HAPPEX measurement [183].

6.1.4 Summary

The first part of the G0 experimental program measured forward-angle parity-violating asym-

metries in elastic electron-proton scattering for eighteen Q2 points between 0.12 and 1.0 (GeV/c)2.

Using these measured asymmetries, we have determined the combinations of the strange-quark

contributions to these form factors, Gs
E + ηGs

M , over this Q2 range, which allows us to see their

dependence over this range. These results, along with other experiments, hint that both Gs
M and

Gs
E could be non-zero, especially at higher values of momentum transfer, although the final de-

termination of this rests with the separation planned using this data in combination with future

data. These results, in conjunction with other measurements, indicate that models that predict

large strange quark effects are strongly disfavored at Q2 = 0.1 (GeV/c)2. More experiments are

planned to investigate this situation, including G0 measurements at backward angles, PVA4 back-

ward measurements, and yet another HAPPEX measurement, HAPPEX III. The combination of

all these measurements should provide precise separations of Gs
E and Gs

M over a range of Q2, which

should shed some more light on this puzzle.

6.2 Transverse Experimental Results

The final elastic asymmetries from Table 6.3 can now be used to extract the transverse asym-

metry An, which then can be compared to calculations predicting the magnitude of the transverse

asymmetry at these kinematics. This section describes how the transverse asymmetry was obtained

from the data and discusses the comparison of these results to the theoretical calculations.

6.2.1 Extraction of Transverse Asymmetry An

After the final step of the removal of the analysis blinding factor of 0.805619, the final asym-

metries are obtained. The final, unblinded elastic asymmetries, A⊥ (the elastic asymmetry Aelas
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Transverse Asymmetries A⊥ (ppm)
Octant φ

Q2 = 0.15 (GeV/c)2 Q2 = 0.25 (GeV/c)2

1 90◦ −4.57 ± 2.00 ± 0.67 −8.70± 4.78 ± 3.14
2 135◦ −4.39 ± 2.04 ± 0.76 −1.67± 3.18 ± 0.87
3 180◦ −3.30 ± 1.88 ± 0.67 −6.45± 5.70 ± 3.86
4 225◦ 2.74 ± 1.88 ± 0.39 5.68 ± 3.33 ± 0.83
5 270◦ 2.25 ± 2.00 ± 0.71 9.74 ± 4.58 ± 2.75
6 315◦ 4.47 ± 1.98 ± 0.42 1.13 ± 3.06 ± 0.81
7 0◦ −0.38 ± 1.94 ± 0.62 1.39 ± 6.22 ± 2.36
8 45◦ −1.15 ± 1.84 ± 0.49 −1.09± 3.35 ± 1.09

TABLE 6.3: Measured elastic asymmetries and uncertainties vs. azimuthal scattering angle φ, published in
[278]. Uncertainties are the statistical and individual systematic uncertainties, respectively (summarized in
Table 5.18); global systematic uncertainties are not included here.

corrected for all effects, including beam polarization and the washing-out of the sinusoidal shape),

for each of the eight detector arrays in each Q2 bin were presented in Table 5.21 at the end of

the last chapter, along with their (statistical, point-to-point, and global) uncertainties. The final,

unblinded sources of systematic error are given in Table 6.4; the background correction dominates

and varies in φ, although the overall uncertainty in the measurement is clearly dominated by statis-

tics. A conservative model-dependent systematic error due to finite Q2 bin size is also indicated

in Table 6.4.

Of the systematic uncertainties shown in Table 6.4, the leakage beam, beam polarization,

longitudinal systematic uncertainties, and uncertainties from finite Q2 binning are treated as global

uncertainties, and are not included in the error bars for the sinusoidal fits. The uncertainties arising

from the background correction, deadtime, and helicity-correlated beam parameters are treated as

point-to-point systematic uncertainties, and thus are included in the error bars for the fits. Thus

we arrive at our published [278] asymmetry results in Table 6.3, which will be used to extract the

transverse asymmetry.

Detectors 13 and 14, as well as detector 15, have very poor statistical precision and are not very

definitive. These data perhaps show an azimuthal trend, but are also consistent with no azimuthal

effect. It was not possible to perform a reliable background correction due to the inability to extract

a meaningful background asymmetry. The lack of a reliable background correction precludes the
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UncertaintySource
Q2 = 0.15 Q2 = 0.25

Deadtime 0.05 ppm 0.05 ppm
False asymmetries 0.12 ppm 0.12 ppm

Background correction 0.37 - 0.74 ppm 0.80 - 3.86 ppm

Leakage beam 0.55 ppm 0.63 ppm
Beam polarization 1.8% 1.8%

Longitudinal polarization 0.002 ppm 0.021 ppm
Finite Q2 binning 0.03 ppm 0.03 ppm

TABLE 6.4: Systematic uncertainties in the asymmetries, published in [278]. The first three uncer-
tainties are treated as point-to-point; the last three are global.

determination of a transverse asymmetry from these data, and we have chosen not to publish these

results, but the analysis of these data are reported in Chapter 5.4. We can infer from these data

that the transverse beam asymmetry for these detectors is likely not huge, certainly less than 15

ppm.

The octants each span about 45◦ in φ, and the average azimuthal angles corresponding to each

octant in our coordinate system are shown in Figure 6.7. As the detector arrays are positioned at

evenly-spaced azimuthal angles φ around the beamline, the asymmetries should follow a sinusoidal

dependence in φ, viz.

A⊥ = |An| sin(φ + φ0) + A0, (6.5)

where the amplitude |An| is the magnitude of the transverse beam spin asymmetry, the phase φ0

depends on the direction of the transverse beam polarization, and A0 is any φ-independent offset of

the data points. The data were taken with the Wien filter set so that the electron polarization for

the positive (+) helicity is in the direction of the positive x-axis of a right-handed coordinate system

(positive x-axis to the beam left, positive y-axis up, and the positive z-axis in the beam direction,

looking downstream). The positive x-axis corresponds to φ = 0◦, and φ increases clockwise.

Using this convention, we obtain the final plots of the sinusoidal fits to the corrected elastic

asymmetries versus φ for each of the detector groups. This sinusoidal dependence is displayed

in Fig. 6.8, where the data are shown along with the best fit to Eq. 6.5. The error bars on the
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FIG. 6.7: The average azimuthal angle corresponding to each of the G0 octants following our defined coordi-
nates.

asymmetries are the statistical and point-to-point systematic uncertainties discussed in Section

5.4.8 combined in quadrature. The fits were constrained to φ0 as calculated from the precession

of the electron spin in the 3T solenoid used in the Møller polarimeter (5.3◦) and do not allow a

φ-independent offset, however, relaxing these constraints has negligible impact on the extracted

An, and causes only slight changes in χν and σAn
. The reduced χ2 values for the fits were 0.63

and 0.58 for Q2 = 0.15, 0.25, respectively.

However, the contributions of the statistical and systematic error bars must be unfolded from

each other, as the error bar from the fit is a combination of the statistical and point-to-point

uncertainties. To accomplish this, the sinusoidal fits were done for two cases: with the error bars

on the data points being purely the statistical error bars, and with the error bars on the data

points being the combination (in quadrature) of the statistical and point-to-point uncertainties.

From this, we obtain these two results: for purely statistical error bars:

Det 1 − 8 :An = −4.057± 0.985 ppm, χ2 = 0.700 (6.6)

Det 9 − 12 :An = −5.145± 1.869 ppm, χ2 = 0.717 (6.7)

and for error bars of the statistical and point-to-point uncertainties combined in quadrature:

Det 1 − 8 :An = −4.064± 1.031 ppm, χ2 = 0.630 (6.8)

Det 9 − 12 :An = −4.822± 2.014 ppm, χ2 = 0.578. (6.9)



260

T
ra

ns
ve

rs
e 

A
sy

m
m

et
ry

 (
pp

m
)

-6

-4

-2

0

2

4

6

T
ra

ns
ve

rs
e 

A
sy

m
m

et
ry

 (
pp

m
)

-6

-4

-2

0

2

4

6 2
 = 0.15 (GeV/c)

2
Q

 (Degrees)φAzimuthal Angle 
0 50 100 150 200 250 300

T
ra

ns
ve

rs
e 

A
sy

m
m

et
ry

 (
pp

m
)

-15

-10

-5

0

5

10

15

 (Degrees)φAzimuthal Angle 
0 50 100 150 200 250 300

T
ra

ns
ve

rs
e 

A
sy

m
m

et
ry

 (
pp

m
)

-15

-10

-5

0

5

10

15
2

 = 0.25 (GeV/c)
2

Q

FIG. 6.8: Measured asymmetry as a function of the azimuthal scattering angle φ for Q2 = 0.15 (upper
plot) and 0.25 (GeV/c)2 (lower plot). The curves are the best fit to Eq. 6.5. Error bars are the statistical
and individual systematic errors combined in quadrature.

By comparing these two cases and working backward with the knowledge that,

σsyst =
√

σ2
total − σ2

stat, (6.10)

we obtain that the point-to-point systematic uncertainties are 0.305 and 0.750 for detectors 1 –

8 and 9 – 12, respectively. Thus we obtain our final results, as shown in Table 6.5. For the sake

of publications and comparisons to theory, we can combine our systematic error to obtain the

following:

Det 1 − 8 :An = −4.064± 0.985stat ± 0.625syst ppm (6.11)

Det 9 − 12 :An = −4.822± 1.869stat ± 0.982syst ppm, (6.12)

which is further reduced to

Det 1 − 8 :An = −4.064± 1.167 ppm (6.13)

Det 9 − 12 :An = −4.822± 2.111 ppm. (6.14)
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Detector Bin Q2 (GeV/c)2 θCM An (ppm)

1-8 0.15 ± 0.02 20.22◦ −4.064± 0.985stat ± 0.305pt−pt ± 0.546global

9-12 0.25 ± 0.03 25.91◦ −4.822± 1.869stat ± 0.750pt−pt ± 0.634global

TABLE 6.5: The final results for An, from the sinusoidal fits constrained to the calculated Møller precession
and to a vertical offset of zero.

These values are shown plotted versus their center-of-mass angle, θCM in Figure 6.9, in the next

section.

The reduced χ2 (per degree-of-freedom) values for the fits were found to be 0.630 and 0.578

for the two Q2 points in order of increasing Q2, corresponding to 73.12% and 77.46% confidence

levels, respectively, that the data follow this dependence. In comparison, constant fits to these two

data sets give values of A = −0.444± 0.718 and A = 0.698± 1.464 ppm with reduced χ2 values of

2.795 and 1.365 and corresponding confidence levels of 0.66% and 22%.

6.2.2 Comparison with Theoretical Predictions
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FIG. 6.9: Published results for An as a function of center-of-mass scattering angle,
along with calculations from Refs. [140,148,149] (see text for explanation).

Including all corrections, we obtain An values of −4.06±0.99stat±0.63syst ppm for Q2 = 0.15

(GeV/c)2 and An = −4.82 ± 1.87stat ± 0.98syst ppm for Q2 = 0.25 (GeV/c)2 from the sinusoidal

fits, where the first error is statistical and the second is systematic in both cases. These are the
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results reported in [278]. Figure 6.9 compares these results to the available calculations by Afana-

sev and Merenkov [148], Gorchtein [149], and Pasquini and Vanderhaeghen [140] appropriate to

the kinematics of this measurement, as discussed in Section 2.8.3. The dash-double-dotted line is

a calculation of the two-photon exchange contribution solely from the nucleon intermediate state

(elastic contribution); the dash-dotted line represents the intermediate hadronic state for which

the elastic contribution ground-state nucleon has been combined with inelastic contributions from

excitation amplitudes to πN -intermediate states, both from Pasquini and Vanderhaeghen [140].

The solid line (Afanasev and Merenkov) [148] is a calculation using an optical theorem and param-

eterizations for the measured total photo-production cross sections (γ+p → X) on the proton. The

dashed line (Gorchtein) [149] represents a calculation where the imaginary part of the two-photon

exchange amplitude is found in terms of the electron phase space integral over DIS structure func-

tions. Clearly, the data show that the contribution of the inelastic hadronic intermediate state to

the two-photon exchange amplitude is significant and that the nucleon intermediate state alone is

not sufficient in calculations of the two-photon exchange amplitude. This conclusion is consistent

with those reported by SAMPLE [145] and PVA4 [156]; however, as the kinematics are different,

the data points cannot be compared directly.

6.2.3 Summary

These results are inconsistent with calculations using only the elastic nucleon intermediate

state, and are in general agreement with calculations with significant inelastic hadronic intermedi-

ate state contributions. The data reported here, along with other measurements, help provide

a valuable test of the theoretical framework of the two-photon contribution to the cross sec-

tion through a comparison of the experimentally measured imaginary part of the two-photon

exchange contribution to calculations of the real part, as the two are related through dispersion re-

lations [139]. Two-photon exchange and other box diagrams are important in the interpretation of

high-precision parity-violating electron-scattering experiments and in the radiative corrections for

other lepton scattering experiments, making an understanding of these contributions important.
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In addition, these asymmetries are potentially another tool to access information about hadron

structure.

The G0 experiment and other experiments [157] have recently obtained transverse beam spin

asymmetry data at various angles on hydrogen, deuterium, and helium targets at additional Q2

values, which will provide a further exploration of the imaginary part of the two-photon exchange

amplitude (See Section 7.1.2).

6.3 Conclusions

The forward-angle phase of the G0 experiment has measured and reported two different physics

results to date, each measurement adding to the knowledge of nucleon structure. The primary mea-

surement of the G0 experiment yielded the linear combination of the strange electric and magnetic

form factors Gs
E + ηGs

M for the range from 0.1 ≤ Q2 ≤ 1.0 (GeV/c)2. The data show an intrigu-

ing Q2 dependence that, although close to zero, disfavors the no-vector-strange hypothesis with

89% confidence. However, the backward-angle measurements are necessary to completely separate

the strange electric and magnetic form factors and thus answer the question of the magnitude

of strange quark contributions to these quantities. The results for the forward-angle transverse

beam spin data analysis show that the calculations using solely the nucleon intermediate state

are not sufficient, and that the intermediate hadronic states have a significant contribution to the

two-photon exchange amplitude. This conclusion is in agreement with other measurements of the

transverse asymmetry at other kinematics. Both of these measurements provide more pieces to

the puzzle of nucleon structure, and with future measurements (see Section 7.1), will help to form

a complete picture.



CHAPTER 7

Concluding Remarks

7.1 Prospects for the Future

Although both of these measurements are clearly important and add to the world data on these

topics, more work is needed in each case to fully understand and describe these phenomena. This

section presents the experiments that will provide the next steps, and discusses some speculation

regarding the future directions of these measurements.

7.1.1 The Future of Strange Quark Physics

With such intriguing results, but no definitive answers, clearly more must be done. As dis-

cussed in Section 2.3, to accomplish a complete separation of the strange form factors, measure-

ments at both forward and backward angles are necessary. The G0 experiment has recently finished

taking backward-angle data at Q2 = 0.23 and 0.62 (GeV/c)2 on both liquid hydrogen and deu-

terium targets. To make the measurement, the entire spectrometer was turned around, enabling

the detection of backscattered electrons at θ = 108◦, as can be seen in the diagram in Figure 7.1.

Time-of-flight could not be used to separate the elastically scattered electrons from the inelastic

ones, so arrays of nine cryostat exit detectors (CEDs) were installed for each octant of the Ferris

264
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electron beam

target
CEDs

FPDs

Cherenkov

FIG. 7.1: Schematic of the G0 backward-angle
measurement.

FIG. 7.2: Photograph of the detectors for G0

backward-angle measurement.

Wheel, along with aerogel Čerenkov detectors used to differentiate between pions and electrons.

A photograph of the detectors for the backangle measurement is shown in Figure 7.2. As time-

of-flight was not used for particle identification, the beam was the standard 499 MHz CEBAF

structure, greatly simplifying the beam delivery. The beam quality for both Q2 values (at 362 and

687 MeV) was very high, as was the polarization (∼ 85%), due to the use of the new superlattice

photocathode. New electronics were used that formed a CED-FPD coincidence matrix to identify

particles. Examples of the coincidence matrix pattern and electron data from LH2 at 687 MeV are

shown in Figures 7.3 and 7.4. For more information on the G0 backward-angle measurements, see

References [194, 284].

Using the data from these measurements, a complete separation of the strange electric, mag-

netic, and axial form factors (Gs
E , Gs

M , and Ge
A) will be done at Q2 = 0.23 and 0.62 (GeV/c)2.

These points were chosen for the backward-angle measurements as Q2 = 0.62 is in the range where

the measurement of the linear combination of Gs
E and Gs

M suggests that strange quark effects

could be sizable, and Q2 = 0.23 is in a region of higher precision and where the effects could be

cancelling each other out. As most of the world data is at Q2 = 0.1 and the form factors are not

expected to vary rapidly with Q2, these points should provide illumination on the Q2 behaviour
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FIG. 7.3: Schematic of the CED-FPD coinci-
dence matrix pattern for LH2 at a beam energy
of 687 MeV.

C
E

D

FPD

FIG. 7.4: LH2 electron coincidence data taken
at 687 MeV.

of these form factors. The data analysis for the G0 backward-angle data is underway, with results

possibly available within the next year.

The PVA4 experiment [285] has also taken backward-angle data at Q2 = 0.23 (GeV/c)2

[190, 191]. As with the G0 experiment, the entire detector system was repositioned to detect

elastically-backscattered electrons at 145◦ from the interaction of the 315 MeV beam with the

liquid hydrogen target. The analysis of these data is ongoing, and will provide further illumination,

especially as the data are at different kinematics than the Jefferson Lab measurements.

With the release of results that suggest there could be a non-zero contribution from the

strange sea to the nucleon’s properties at higher values of Q2, there is quite a bit of interest in

studying this range more thoroughly. HAPPEx III (E05-109) [286] in Hall A will measure the

parity-violating asymmetry in the elastic scattering of 3.4 GeV electrons from liquid hydrogen at

Q2 = 0.6 (GeV/c)2 to investigate the suggestion that the strange quark form factors could be

non-zero at higher Q2 values. A high-precision measurement in this region will help to constrain

the possible contributions of strange quarks to the linear combination of Gs
E and Gs

M , especially

in conjunction with the G0 backward-angle measurements.
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7.1.1.1 Other Measurements from G0

In addition to the above measurements, the G0 experiment is also simultaneously measuring

the parity-violating asymmetry in inclusive single pion electroproduction from the proton in the

range of 0.1 ≤ Q2 ≤ 0.6 (GeV/c)2, which will be used to extract the axial vector transition form

factor GA
N∆ for the N → ∆ transition as a function of Q2 [287]. The form factor GA

N∆ characterizes

the axial, or intrinsic spin response of the nucleon during the transition to its first excited state.

This measurement is the first determination of this form factor in the neutral current sector of the

weak interaction, and will help in the understanding of the ∆ resonance.

7.1.2 Explorations of Two-Photon Exchange

As a part of the systematics studies for the backward-angle measurements of the G0 experi-

mental program, more transverse beam spin asymmetry data were taken for both targets at both

the 0.362 GeV and 0.687 GeV beam energies. About 3.59 C and 2.69 C were taken at 0.23 and

0.62 (GeV/c)2 respectively on the LH2 target, yielding statistical uncertainties of ∼ 5–6 ppm and

∼ 15 ppm respectively, as summarized in Table 7.1. Both measurements were taken at θCM ∼ 130◦.

The transverse beam spin asymmetry A⊥ is predicted to be quite large for the kinematics of the

G0 backangle running (∼ −100 ppm for 0.3 GeV and ∼ −42 ppm for 0.570 GeV!), making the

measurement important for the constraint of the systematic errors from residual transverse polar-

ization in the parity-violating asymmetry measurement, but also allowing a clean measurement

at this precision. Plots of the calculations for the predicted transverse beam asymmetry by ref-

erence [140] with markers showing the anticipated G0 backangle precision for these data on LH2

are shown in Figure 7.5. Note that the calculations in the figures are not at precisely the same

beam energy as the G0 measurements; however, they serve to give a good estimate to the reader

of the magnitude of the measured asymmetry. These measurements on liquid hydrogen and liquid

deuterium will do much to add to the knowledge of two-photon exchange effects. In addition, these

data are also of interest as they can be used to study the transverse asymmetry for pions, as these
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Beam Energy 〈Q2〉 Target Accumulated

Charge

0.362 GeV 0.23 LH2 3.59 C
0.687 GeV 0.62 LH2 2.67 C
0.362 GeV 0.23 LD2 2.13 C
0.687 GeV 0.62 LD2 0.14 C

TABLE 7.1: The anticipated statistical precision of the G0 backward-angle transverse beam spin mea-
surements on LH2 at each beam energy and Q2.

data were taken along with the elastically scattered electrons.

Other forthcoming parity-violation experiments will make measurements of the transverse

beam spin asymmetry as part of their systematic studies, and will also extract the interesting

physics from these data. HAPPEx III (in the same manner as HAPPEx II) and QWeak will

certainly both study this effect at their respective kinematics.

In addition, there are several dedicated forthcoming experiments which will study two-photon

exchange effects in various ways. Currently running in Hall C is a measurement of two-photon

exchange effects in unpolarized elastic electron-proton scattering by JLab experiment E05-017

[288]. The goal of the experiment is to perform a series of high-precision Rosenbluth separation

measurements over the range 1 ≤ Q2 ≤ 6 (GeV/c)2. The experiment then will use these precise

Rosenbluth measurements to study the ǫ and Q2 dependence of two-photon exchange contributions

to the elastic e − p cross section by extracting the two-photon effects from the difference between

the measured Rosenbluth and existing polarization transfer measurements combined with limit

from existing position-proton data. This measurement studies the effects of the real part of the

two-photon exchange amplitude.

A measurement of the target normal single spin asymmetry in inclusive deep-inelastic n↑(e, e′)

scattering [289] will take place during the Hall A neutron transversity experiments (E06-010 and

E06-011) using a vertically polarized 3He target at Q2 = 1.3, 2.0, 2.6, and 3.1 (GeV/c)2. Like

the beam-normal transverse asymmetry, the target-normal transverse asymmetry arises from the

imaginary part of the two-photon exchange amplitude and is a good observable for two-photon
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N

–N

Total

FIG. 7.5: The anticipated G0 backward-angle results at θCOM ∼ 130◦ on LH2, statistical errors only, shown
with predictions of the transverse asymmetry magnitude. Note that the calculations are not exactly at the
G0 beam energies, but nevertheless give an estimate for the reader. The calculation with solely the nucleon
elastic state is designated as N, the calculation using the intermediate hadronic states is labeled as π–N, and
the combination of both is labeled as Total. Calculations from reference [140]; data from the A4 collaboration,
reference [156].

exchange effects; furthermore, in DIS the normal spin asymmetry probes helicity-flip amplitudes at

the quark level related to effects beyond the leading-twist description of DIS. The target single-spin

asymmetry for the neutron in inclusive quasi-elastic 3He(e, e′) scattering will also be measured

at Q2 = 1.0 and 2.3 (GeV/c)2 in Hall A using a vertically polarized 3He target [290]. This

measurement will provide new information on the dynamics of the two-photon exchange process

and give new constraints on GPD models.

In Hall B, a direct measurement of the two-photon exchange contribution to lepton-proton

elastic scattering is planned using the CLAS spectrometer [291] to explain the discrepancy between

the Rosenbluth and polarization transfer methods of measuring the GE/GM ratio of the proton.

The experiment will measure the cross section ratio of the elastic electron-proton and positron-

proton
(

σ(e−p)
σ(e+p)

)

, as a function of ǫ and Q2 for 0.5 < Q2 < 2.5 (GeV/c)2. From these data, the

two-photon exchange corrections to elastic scattering in this region can be extracted, and will

provide important constraints for models of two-photon exchange effects. This measurement is

sensitive to the real part of the two-photon exchange amplitude.
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Another experiment in Hall C is also planned to study the real part of two-photon exchange

effects. Experiment E04-019 [292] will measure the ǫ dependence at constant Q2 of the recoil

proton polarization in ep elastic scattering, measuring the polarization transfer components si-

multaneously. In the measurement, an ǫ-dependence that differs from the one-photon exchange

calculation is assumed to be due to the real part of the two-photon exchange amplitude, giving a

greater understanding of the effects of two-photon exchange in polarization transfer measurements.

7.1.3 The Future of PVES

In the future, PVES seems to be heading back to its beginnings, in fundamental symmetry

searches. The QWeak experiment (E05-008) [293] will measure the parity-violating asymmetry

in electron scattering on the proton at very low Q2 and forward angles in Hall C at Jefferson

Lab. The goal of this precision measurement is to test predictions of the Standard Model and

search for new physics by looking for a significant deviation of the running of the weak mixing

angle, sin2 θW , from the Standard Model prediction at low Q2. This will be the first precision

measurement of the proton’s weak charge, Qp
Weak = 1 − 4 sin2 θW at Jefferson Lab, and the most

precise standalone measurement of the weak mixing angle at low Q2. This experiment builds on

the technical advances made in JLab’s parity-violation program, as well as using the results of the

G0 and HAPPEx experiments to constrain corrections from contributions from hadronic structure

(including Gs
E and Gs

M ) in the measurement, making this experiment truly the next big step in

the parity-violation program at Jefferson Lab.

As with the G0 experiment and other precision parity-violation measurements, the QWeak ex-

periment will measure the transverse asymmetry to put constraints on the possible size of any sys-

tematic contributions to the parity-violating asymmetry due to any residual transversely-polarized

beam component. The azimuthally-symmetric, segmented design of the detectors allows for a

lovely measurement of the sinusoidal dependence of the transverse asymmetry, and will yield an-

other measurement of this asymmetry at a different kinematic setting.

The 12 GeV Upgrade to the accelerator at Jefferson Lab will provide the opportunity for new
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FIG. 7.6: A CAD drawing of the Apparatus for the QWeak Experiment in Hall C at Jefferson Lab.

precision parity-violating electron scattering experiments to further challenge Standard Model

predictions and search for physics beyond the Standard Model. Two types of experiments in

particular are envisioned: parity-violating deep inelastic scattering (PV DIS) and parity-violating

Møller scattering.

Parity-violating deep inelastic scattering with a deuterium target, first observed by Prescott

et al. [170, 171] in the mid-1970’s, could be used either to study higher-twist structure functions

or as a way of searching for new physics. Information on higher-twist structure functions could be

extracted from the Q2-dependence of the parity-violating asymmetry in the range made accessible

by the upgrade. In a sense, this could be viewed as an extension of JLab’s strange quark program,

as parity-violation is being used to study non-perturbative nucleon structure. In the search for

new physics beyond the Standard Model, PV DIS measurements would provide complementary

information about the Q2-dependence of sin2 θW in the deep inelastic domain to the work of the

NuTeV collaboration on deep inelastic ν (ν̄)-nucleus scattering from iron. The NuTeV results

for the Q2-dependence of the weak mixing angle indicate a 3σ-deviation from the standard model,

sparking debates as to the size of possible non-perturbative QCD contributions to this anomaly. As
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FIG. 7.7: Calculated running of the weak mixing angle sin2(θW ) as a function of Q2 in the standard model
(modified minimal subtraction scheme), where the black points are existing measurements from atomic parity
violation (APV), SLAC E158 (QW (e)), deep inelastic neutrino-nucleus scattering (NuTeV), and from Z0 pole
asymmetries (LEP+SLC); the red points show the future proposed measurements for the QWeak Experiment
in Hall C at Jefferson Lab and eD-DIS (at arbitrarily chosen vertical locations). Figure from Ref [293].

PV DIS measurements would involve differing systematic and non-perturbative QCD effects, such

measurements could help to resolve the discrepancy or verify a deviation from the Standard Model

[294–297]. This experimental program could also make measurements of the parity-conserving

transverse asymmetry. In deep-inelastic scattering, the collinear-photon enhancement [148] is

absent in the leading-twist parton calculation, but could appear at the higher-twist level or be

enhanced by nonpertubative QCD effects, and thus provide insight into QCD dynamics. QED

calculations of the transverse asymmetry on a muon from the 1960’s [66] can be applied to electron

scattering from a point-like quark and gives an estimated effect of a fraction of a ppm in the

kinematics for a JLab DIS parity experiment [297].

The parity-violating asymmetry in Møller scattering measures the weak charge of the electron,

and thus is very sensitive to the value of sin2 θW . The interpretation is much cleaner than for PV

DIS due to the lack of higher-twist contributions to the asymmetry, but the measurement is difficult

due to the tiny size of the asymmetry. A 12 GeV Møller experiment at Jefferson Lab could achieve

half of the anticipated uncertainty of the recent SLAC E-158 Møller experiment [168, 169], and

would be the best measurement of the electron’s weak charge at low energy scales [294]. Not
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only could this measurement search for new physics beyond the Standard Model by challenging

the prediction for the running of the weak mixing angle, but will have the precision to probe

aspects of supersymmetry, such as the existence of a viable supersymmetric candidate for cold dark

matter, the non-luminous and unexplained source of about 90% of the universe’s mass [298, 299],

by restricting the available parameter space for viable models. A 12 GeV Møller experiment would

also provide an opportunity to measure the transverse asymmetry in Møller scattering at these

kinematics.

Both the near future and the somewhat further future upgrade of the CEBAF accelerator to

12 GeV provide remarkable opportunities to build on the great success of previous parity-violating

electron scattering experiments. Although all of these experiments will measure sin2 θW , they are

sensitive to different possible Standard Model extensions, and provide the opportunity to search

for new physics.

7.2 Conclusions

This dissertation has presented the analysis and results of the forward-angle measurement of

the G0 experiment at Jefferson Lab, plus context for backward-angle measurements. The results

of this measurement, the linear combination of the strange electric and magnetic form factors

Gs
E + ηGs

M , suggest possible non-zero, Q2 dependent, strange quark contributions and provide

new information to understand the magnitude of the contributions. In addition, this dissertation

presented the analysis and results from the G0 measurement of the beam-normal single-spin asym-

metry in the elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons

at Q2 = 0.15, 0.25 (GeV/c)2. The results of the measurement indicate that calculations using solely

the elastic nucleon intermediate state are insufficient and generally agree with calculations that

include significant inelastic hadronic intermediate state contributions. These two measurements

have helped to further the knowledge of the nucleon, and have provided information for future

investigations to build upon.
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[275] Gilles Quéméner. Q2 Determination in the G0 Experiment. G0 Internal Document G0-doc-
548-v1, G0 Collaboration, January 2005.

[276] Serge Kox. Q2 Determination: Status Report. G0 Internal Document G0-doc-543-v1, G0

Collaboration, A Presentation at the January 2005 G0 Collaboration Meeting, January 2005.

[277] G. Batigne, C. Furget, S. Kox, F. Merchez, and J-S Réal. Q2 Determination in the first phase
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