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Abstract

Experiment E08-007 measured the proton elastic form factor ratio µpGE/GM in the
range of Q2 = 0.3−0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the
Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized
electron beam was scattered off a cryogenic hydrogen target. The recoil proton was
detected in the left HRS in coincidence with the elasticly scattered electrons tagged
by the BigBite spectrometer. The proton polarization was measured by the focal
plane polarimeter (FPP).

In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX)
along with various fits and calculations indicate substantial deviations of the ratio
from unity. For this new measurement, the proposed statistical uncertainty (< 1%)
was achieved. These new results are a few percent lower than expected from previous
world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic
interest in nucleon structure, the new results also have implications in determining
the proton Zemach radius and the strangeness form factors from parity violation
experiments.
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Chapter 1

Introduction

When the proton and the neutron were discovered in 1919 and 1931 respectively, they

were believed to be Dirac particles, just like the electron. They were expected to be

point-like and to have a Dirac magnetic moment, expressed by:

µD =
q

mc
|~s| (1.1)

where q, m, and s are the electric charge, mass and spin of the particle respectively.

However, later measurements of these nucleons magnetic moments revealed the exis-

tence of the nucleon substructure. The first direct evidence that the proton has an

internal structure came from the measurement of its anomalous magnetic moment 70

years ago by O. Stern [63],

µp = 2.79µB, (1.2)

where µB is the Bohr magneton. The first measurement of the charge radius of the

proton by Hofstadter et al. [64, 65] yielded a value of 0.8fm, which is quite close to

the modern value.

Starting from 1950s, electron scattering experiments were used to unravel the nu-

cleon internal structure. Through the measurements of electromagnetic form factors

and nucleon structure functions in elastic and deep inelastic lepton-nucleon scattering,

it’s commonly accepted that in a simplistic picture, a nucleon is composed of three

valence quarks interacting with each other through the strong force. The strong in-
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teraction theory, Quantum Chromodynamics (QCD) can make rigorous predictions

when the four-momentum transfer squared, Q2, is very large and the quarks become

asymptotically free. However, predicting nucleon form factors in the non-perturbative

regime is difficult due to the dominance of the soft scattering processes. As a conse-

quence there are several phenomenological models which attempt to explain the data

in this domain, and precise measurements of the nucleon form factors are desired to

constrain and test these models.

In the one-photon-exchange (OPE) approximation, the ep elastic scattering cross

section formalism is well known and can be parameterized by two form factors, GE

and GM which are functions of Q2. At low momentum transfer, the form factors can

be interpreted as the fourier transform of the nucleon charge and magnetic densities.

Earlier experiments measured the cross section of the ep elastic scattering which

contains information about the internal structure responsible for the deviation from

the scattering off point-like particles. However, after four decades of effort, there

were still large kinematic regions where only very limited measurements of the form

factors were possible, since the cross section of the unpolarized electron scattering

is only sensitive to a specific combination of the form factors and the lack of a free

neutron target.

In the last two decades, advances in the technology of intense polarized electron

beams, polarized targets and polarimetry have ushered in a new generation of electron

scattering experiments which rely on spin degrees of freedom. Compared to the cross

section measurement, the polarization techniques have several distinct advantages.

First, they have increased sensitivity to a small amplitude of interest by measuring

an interference term. Second, spin-dependent experiments involve the measurement

of polarizations or helicity asymmetries, and these quantities are independent of the

cross section normalization, since most of the helicity independent systematic uncer-

tainties can be canceled by measuring a ratio of polarization observable.

The first experiment to measure the recoil proton polarization observable in ep

elastic scattering was done at SLAC by Alguard et al. [66], but the impact of the

results was severely limited by the low statistics. Followed by that, the proton form
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factor measurements using recoil polarimetry were carried out at MIT-Bates [45, 67]

and MAMI [68, 69]. Due to limited statistics and kinematics coverage, the ratio

values were in agreement within uncertainties with the unpolarized measurements.

More recent measurements of the proton form factor ratio µpGE/GM using recoil

polarimetry at Jefferson Lab [16, 17, 18], which have much better precision at high

Q2, deviated dramatically from the unpolarized data. This has prompted intense

theoretical and experimental activities to resolve the discrepancy. The validity of

analyzing data in the OPE approximation has been questioned, and two-photon-

exchange (TWE) processes are now considered as an significant correction to the

unpolarized data and mostly account for the discrepancy at high Q2 [24].

While extending our knowledge at higher momentum transfer region is an ongoing

endeavor, the proton form factor ratio behavior at low Q2 has also become the subject

of considerable interest, especially, when potential discrepancy was observed from the

most recent high precision measurements for Q2 < 1 GeV2. BLAST [19] did the first

proton form factor ratio measurement via beam-target asymmetry atQ2 values of 0.15

to 0.65 Gev2, and the results are consistent with 1 in this region. LEDEX [20], which

used the recoil polarimetry technique, observed a substantial deviation from unity at

Q2 ∼ 0.35 GeV2 . However, the data quality of LEDEX was compromised due to the

low beam polarization and background issues [70]. Hence, it was necessary to carry

out a new high precision measurement to either confirm to refute the deviations at

low momentum transfers. Beyond the intrinsic interest in the nucleon structure, an

improved proton form factor ratio also impacts other high precision measurements

such as parity violation experiments (HAPPEX) [71, 72], deeply virtual Compton

scattering (DVCS) [73, 74], and also determination of other physical quantities such

as the proton Zemach radius.

This thesis presents the analysis and results of experiment E08-007, which was

conducted in 2008 at Jefferson Lab Hall A. In this experiment, the proton form

factor ratio µpGE/GM was measured at Q2 = 0.3−0.7GeV2 using recoil polarimetry.
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Figure 1-1: The leading order diagram of ep elastic scattering.

1.1 Definitions and Formalism

1.1.1 Exclusive electron scattering

When scattered off a nuclear target, the electron exchanges virtual photons with the

nucleus, which probes the electromagnetic structure of the nucleus. The electromag-

netic coupling is small enough (α = 1/137) that it is valid to only consider the leading

order. For the elastic scattering reaction off a proton, e(k) + P (p) → e(k′) + P (p′),

the leading order diagram is shown in Fig. 1-1. Initial and final electrons have four-

momenta k = (E,~k) and k′ = (E ′, ~k′) respectively, and the initial and final protons

p = (Ep, ~p) and p
′ = (E ′

p, ~p
′). The virtual photon has four-momentum q = (ω, ~q), and

the Lorentz-invariant four-momentum transfer squared Q2 is defined as:

Q2 = −q2 = −(ω2 − ~q2) = −(k − k′)2 ∼ 4EE ′ sin2 θe
2
, (1.3)

where the last expression is valid in the Lab frame by neglecting the electron mass.

The amplitude of Q2 is associated with the scale that the electromagnetic probe is

sensitive to.

For exclusive elastic scattering, the recoil proton is also detected, so that Q2 can
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be defined from the proton momenta:

Q2 = −(p′ − p)2 = −[(E ′
p − Ep)

2 − (~p′ − ~p)2]. (1.4)

In the Lab frame,the initial proton is at rest, and Eq. 1.4 becomes:

Q2 = −(E ′2 +m2
p − 2E ′

pmp − ~p2) = −(2m2
p − 2mpE

′
p) = 2mpTp, (1.5)

where mp is the proton mass and Tp = E ′
p − mp is the kinetic energy of the final

proton in the Lab frame.

1.1.2 Formalism

One of the advantages of the electromagnetic probe lies in the fact that the leptonic

vertex e(k) → e(k′) + γ∗(q) is fully described by the theory of the electromagnetic

interaction, Quantum ElectroDynamics (QED), and the information related to the

unknown electromagnetic properties of the nucleon are contained by only the hadronic

vertex γ∗(q) + P (p) → P (p′). From the Feynman diagram in Fig. 1-1, the amplitude

for ep elastic scattering can be written as:

iM = [iev̄(p′)Γµ(p′, p)v(p)]
−igµν
q2

[ieū(k′)γνu(k)] (1.6)

=
−i
q2

[iev̄(p′)Γµ(p′, p)v(p)][ieū(k′)γµu(k)], (1.7)

where γµ, µ = 0, 1, 2, 3 with the 0-th component as the time component, are the Dirac

4× 4 matrices in the chiral representation:

γ0 =






0 1

1 0




 , ~γ =






0 ~σ

−~σ 0




 (1.8)
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, and ~σ is the set of standard Pauli matrices:

σ1 =






0 1

1 0




 , σ2 =






0 −i
i 0




 , σ3 =






1 0

0 −1




 . (1.9)

u(k) and ū(k′) are the Dirac spinors for the initial and final electron, and v(p),

v̄(p′) are the Dirac four-spinors for the initial and recoil proton respectively. In

particular, the proton spinors enter in the plane-wave solution for a spin 1/2 particle

ψ(x) = v(p)e−ip·x which satisfies the Dirac equation:

(−iγµ∂µ −m)ψ(x) = 0, (1.10)

and one can write:

v(p) =






√
p · σχ

√
p · σ̄χ




 (1.11)

with σµ ≡ (1, ~σ), σ̄ ≡ (1,−~σ) and χ is a normalized two-spinor, such that

χ†χ = 1. (1.12)

While the leptonic current jµ = ieµ̄(k′)γµu(k) is fully described by QED, the hadronic

current J µ = iev̄(p′)Γµv(p) involves the factor Γµ, which contains the information

about the internal electromagnetic structure of the proton. In general Γµ is some

expression that involves p, p′, γµ and constants such as the proton massm, the electric

charge e. Since the hadronic current transforms as a vector, Γµ must be a linear

combination of these vectors, where the coefficients can only be function of Q2. It is

convenient to write the current in the following way:

J µ = iev̄(p′)Γµv(p) = iev̄(p′)[γµF1(q
2) +

iσµνqν
2m

κF2(q
2)]v(p), (1.13)

where σµν = i
2
[γµ, γν ], κ ≃ 1.793 is the proton anomalous magnetic moment and

F1,2(Q
2) are the proton elastic form factors. They contain the information about the

electromagnetic structure of the proton.
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1.1.3 Nucleon Form Factors

F1(Q
2) and F2(Q

2) are distinguished according to their helicity (~σ · ~p/|~p|) character-
istics, the projection of electron intrinsic spin ~σ along its direction of motion ~p/|~p|.
F1(Q

2) is the Dirac form factor; it represents the helicity-preserving part of the scat-

tering. On the other hand, the Pauli form factor F2(Q
2) represents the helicity-

flipping part. F1 and F2 are defined in a similar way for the neutron. The form

factors are normalized according to their static properties at Q2 = 0. For the proton:

F1p(0) = 1, F2p(0) = 1, (1.14)

and for the neutron:

F1n(0) = 0, F2n(0) = 1. (1.15)

For reasons that will soon become obvious, it is more convenient to use the Sachs

form factors [75]: GE(Q
2) and GM(Q2), which are defined as:

GE = F1 − τκF2

GM = F1 + κF2, (1.16)

where τ = Q2

4m2 is a kinematic factor. The Sachs form factors also have particular

values at Q2 = 0 according to the static properties of the corresponding nucleon:

GEp(0) = 1, GMp(0) = µp (1.17)

GEn(0) = 0, GMn(0) = µn, (1.18)

where µp = 2.79 and µn = −1.91 in units of nuclear magneton.

1.1.4 Hadronic Current in the Breit Frame

In the Breit frame, which is defined as the frame where the initial and final nucleon

momenta are equal and opposite, the hadronic current has a simplified interpretation.
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A definition of variables in the Breit frame, which are noted with a subscript B, is

elaborated in Appendix A. Using the Gordon identity [76]

v̄(p′)γµv(p) = v̄(p′)[
p′µ + pµ

2m
+
iσµνqν
2m

]v(p) (1.19)

similarly, we can write:

v̄(p′)Γµv(p) = v̄(p′)[(F1 + κF2)γ
µ − (p+ p′)µ

2m
κF2]v(p). (1.20)

In the Breit frame, the explicit expression of the hadronic current J = (J 0, ~J ) is

simplified:

J 0 = iev̄(p′)[(F1 + κF2)γ
0 − EpB

m
κF2]v(p) (1.21)

~J = ie(F1 + κF2)v̄(p
′)~γv(p), (1.22)

where EpB is the Using v̄(p′) = v†(p′)γ0, the time component J 0 can be expressed

by:

J 0 = ie[(F1 + κF2)v
†(p′)v(p)− κF2

EpB

m
v†(p′)γ0v(p)]. (1.23)

By the definition of v(p) and γ0 in Eqs. 1.11 and 1.8, we now have:

J 0 = ie(F1 + κF2)χ
′†
(√

p′ · σ,
√

p′ · σ̄
)






√
p · σ

√
p · σ̄




χ

− ieκF2
EpB

m
χ′
(√

p′ · σ,
√

p′ · σ̄
)






0 1

1 0











√
p · σ

√
p · σ̄




χ. (1.24)

Then, by the expressions:

√

p′ · σ√p · σ =
√

p′ · σ̄√p · σ̄ = m (1.25)
√

p′ · σ√p · σ̄ +
√

p′ · σ̄√p · σ = 2EpB (1.26)

τ =
Q2

4m2
=

~qB
2

4m2
=

E2
pB −m2

m2
, (1.27)
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we can finally get the simple relation:

J 0 = ie2mχ′†χ(F1 − τκF2) = ie2mχ′†χGE. (1.28)

The vector current ~J can also be expressed in a similar way in the Breit frame:

~J = −eχ′†(~σ × ~qB)χ(F1 + κF2) = ieχ′†(~σ × ~qB)χGM . (1.29)

Therefore, in the Breit frame, the electric form factor GE is directly related to the

electric part of the interaction between the virtual photon and the nucleon, and the

magnetic form factor GM is related to the magnetic part of this interaction. The

electric and magnetic form factors can be associated with the Fourier transforms of

the charge and magnetic current densities in this frame in the non-relativistic limit.

The Fourier transforms can be expanded in powers of q2:

GE,M(Q2) =
∫

ρ(~r)ei~q·~rd3~r (1.30)

=
∫

ρ(~r)d3~r − ~q2

6

∫

ρ(~r)~r2d3~r + . . . (1.31)

Notice that the first integral gives the total electric or magnetic charge, and the

second integral defines the RMS electric or magnetic radii of the nucleon. However,

the Breit frame is a mathematical abstraction, and for different Q2 value, the Breit

frame experiences relativistic effect which is essentially a Lorentz contraction of the

nucleon along the direction of motion. This results in a non-spherical distribution

for the charge densities, and complicates the Fourier transform interpretation of the

form factors in the rest frame.
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1.2 Form Factor Measurements

1.2.1 Rosenbluth Cross Section

The differential cross section for ep scattering in the lab frame can be written as:

dσ =
(2π4|M|2)
4(k · p) δ4(k + p− k′ − p′)

d3~k′

(2π3)2E ′
d3~p′

(2π3)2E ′
p

, (1.32)

where we have neglected the electron mass, andM is the amplitude defined in Eq. 1.7.

Integrating over ~k′ and ~p′ gives:

dσ

dΩe
=

|M|2
64π2

1

m2

(

E ′
p

Ep

)2

, (1.33)

where Ωe is the solid angle in which the electron is scattered, and |M|2 has the form:

|M|2 = [J µ−i
q2
jµ][J ν−i

q2
jν ]

∗ =

(

1

q2

)2

[J µJ ν∗][jµj
∗
ν ] =

(

e2

q2

)2

W µνLµν . (1.34)

The hadronic and leptonic tensors are defined respectively as:

W µν =
1

e2
J µJ ν∗ (1.35)

Lµν =
1

e2
jµj

∗
ν . (1.36)

For unpolarized cross section, W µν and Lµν are averaged over the incident particle

spin states, and summed over the final particle spin states. Since the contraction of

these two tensors is a Lorentz invariant, they can be calculated in any frame, as long

as they are both calculated in the same frame.

In the single-photon exchange (Born) approximation, the formula for the differ-

ential cross section of electron scattering off nucleons is given by [77]:

dσ

dΩe
=

(

dσ

dΩ

)

Mott

E ′

E
{F 2

1 (Q
2) + 2(F1(Q

2) + F2(Q
2))2 tan2 θe

2
}, (1.37)
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where
(

dσ

dΩ

)

Mott

=

(

e2

2E

)2 (
cos2 θe

2

sin4 θe
2

)

(1.38)

is the Mott cross section for the scattering of a spin-1/2 electron from a spinless,

point-like target, and E
E′

is the recoil factor. This is the most general form for the

electron elastic scattering cross section. Using Eq. 1.16, we can rewrite Eq. 1.37

without the interference term:

dσ

dΩe

=
α2

Q2

(

E ′

E

)2

[2τG2
M +

cot2 θ
2

1 + τ
(G2

E + τG2
M )], (1.39)

where α = e2/4π ∼ 1/137 is the electromagnetic fine structure constant, and this

expression is known as the Rosenbluth formula.

Rosenbluth Separation

The Rosenbluth cross section has two contributions: the electric term GE and the

magnetic term GM . As noted earlier, there is no interference term, so that the two

contributions can be separated. We define the reduced cross section as:

σred =
dσ

dΩ

ε(1 + τ)
dσ
dΩMott

= τG2
M + εG2

E, (1.40)

where ε = (1 + 2(1 + τ) tan2(θe/2))
−1 is the virtual photon polarization parameter.

The quantity ε can be changed at a given Q2, by changing the incident electron

beam energy and the scattering angle. Therefore, at a fixed Q2 by varying ǫ, one can

measure the elastic scattering cross section and separate the two form factors using

a linear fit to the cross section. The slope is equal to G2
E and the intercept is equal

to τG2
M .

This method has been extensively used in the past 40 years to measure the elastic

form factors and proved to be a very powerful method to measure the proton and

the neutron magnetic form factors up to large Q2. However, there are practical

limitations. First, the neutron electric form factor is normalized to the static electric

charge of the neutron, which is 0, and the cross section is completely dominated by
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the magnetic form factor. For the proton, the magnetic term will also dominate at

large Q2, since the factor τ = Q2

4m2 increases quadratically as Q2 increases. As an

example, at Q2 = 2GeV2 the magnetic term contributes about 95% of the total cross

section. On the other hand, in the low Q2 region, the magnetic term is suppressed for

the same reason and the electric term becomes dominant. Besides the difficulties from

the physics side, the precision of Rosenbluth separation is also limited by the cross

section measurements due to a widely different kinematic settings in order to cover

a wide range of ε. Systematic errors are introduced by the inconsistent acceptance,

luminosity, detector efficiency between different kinematics.

1.2.2 Polarization Transfer Measurements

In 1974, Akhiezer and Rekalo [78] discussed the interest of measuring an interference

term of the form GEGM by measuring the transverse component of the recoiling

proton polarization in the reaction ~e+ p→ e′ + ~p′. Thus, one could obtain GE in the

presence of a dominating GM at large Q2. Instead of directly measuring the separate

form factors, the ratio GE/GM can be accessed by measuring the polarization of the

recoil nucleon. The virtue of the polarization transfer technique is that it is sensitive

only to the ratio GE/GM and does not suffer from the dramatically reduced sensitivity

to a small component. Another way of measuring the interference term would be to

measure the asymmetries in the scattering of a polarized beam off a polarized target.

By measuring the polarization Pû of the recoil nucleon along a unit vector û, we

measure a preferential orientation of the spin along û. In this case, when we average

over initial proton spin states and sum over final proton spin states, the completeness

relation
∑

s=1,2

χsχ†s = 1 (1.41)

no longer holds. Instead we have to use:

∑

s=1,2

χ′sχ′†s = 1 + ~σ · û (1.42)
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so that the hadronic tensor becomes:

W µν =
1

2
Tr[Fµ(1 + ~σ · û)Fν†] = W µν

u +W µν
p , (1.43)

where W µν
u is the unpolarized hadronic tensor and W µν

p is the polarized one:

W µν
p =

1

2
Tr[FµFν†~σ · û]. (1.44)

For recoil proton polarization measurements, a longitudinally polarized beam is re-

quired. The polarization of the beam is defined as:

h =
N+ −N−

N+ +N− , (1.45)

where N+ and N− are the number of electrons with their spin parallel and anti-

parallel to their momentum respectively. Therefore, with a polarized electron beam,

the leptonic tensor is modified and a new γ matrix is introduced:

γ5 = iγ0γ1γ2γ3 =






−1 0

0 1




 (1.46)

The operator:

1− γ5
2

=






1 0

0 0




 . (1.47)

projects the spin along the momentum in a preferential direction. If the beam polar-

ization is h, and by further neglecting the electron mass, the leptonic tensor can be

written as:

Lµν =
1

2
Tr[(γ · k′ −me)γµ(1− hγ5)(γ · k −me)γν]

= 2kµk
′
ν + 2kνk

′
µ − 2gµνk · k′ + 2ihǫµναβkαk

′
β

= Lu
µν + Lp

µν , (1.48)

where ǫµναβ is the Levi-Civita symbol. It is 0 if any two indices are identical, -1 under
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an even number of permutations and +1 under an odd number of permutations. Note

that Lp
µν is anti-symmetrical.

In order to get the polarized amplitude, we contract the leptonic and the hadronic

tensors:

W µνLµν =W µν
u Lu

µν +W µν
u Lp

µν +W µν
p Lu

µν +W µν
p Lp

µν (1.49)

where

• W µν
u Lu

µν is the amplitude squared of the unpolarized process.

• W µν
u Lp

µν = 0 because it is the product of a symmetrical and an anti-symmetrical

tensors.

• W µν
p Lu

µν is the induced polarization, it represents the polarization state of the

recoil proton after scattering with an unpolarized beam off an unpolarized tar-

get.

• W µν
p Lp

µν is the transferred polarization, it represents the polarization state of

the recoil proton after scattering with a polarized beam.

The recoil polarization along the vector û are given by:

P ind
û =

W µν
p Lu

µν

W µν
u Lu

µν

hP transf
û =

W µν
p Lp

µν

W µν
u Lu

µν

. (1.50)

With the equations above, we can write the amplitude as:

W µνLµν = W µν
u Lu

µν(1 + P ind
û + hP transf

û ), (1.51)

where h is the polarization of the beam.

First, assume we measure the polarization along the 1-direction, and we can derive

each term of the hadronic tensor:

W µν
p,1 =

1

2
Tr[FµFν†σ1]. (1.52)
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Using σ1σ2 = iσ3, σ3σ1 = iσ2 and σ2σ3 = iσ1, we have:

F0†σ1 = 2mGEσ
1 (1.53)

F1†σ1 = −
√

Q2GMσ
3 (1.54)

F2†σ1 = i
√

Q2GM (1.55)

F3†σ1 = 0. (1.56)

The ~σ matrices have the trace properties:

Tr[γµγν] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ), (1.57)

where gµν is the Minkowski metric. The only non-zero terms arising are:

W 02
p,1 = i

√

Q22mGEGM

W 20
p,1 = −i

√

Q22mGEGM . (1.58)

We note here that the polarized tensor is anti-symmetrical, hence, when it multiplied

by the unpolarized leptonic tensor, the terms will vanish, which applies for all the

components.

The corresponding polarized terms of the leptonic tensor in the Breit frame are

anti-symmetrical, and obeys:

Lp
02 = −Lp

20. (1.59)

According to Eq. 1.48,

Lp
02 = 2ihǫ02αβkαk

′
β

= 2ih(k1Bk
′
3B − k3Bk

′
1B) = −ihQ2 cot

θB
2
. (1.60)

By contracting the hadronic tensor and the leptonic tensor, we get the transferred
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polarization amplitude:

W µν
p,1L

p
µν = 4hmQ2

√

Q2 cot
θB
2
GEGM . (1.61)

Therefore, measuring the 1-component, or transverse component of the recoil proton

polarization, gives access to the interference term GEGM , which is inaccessible from

an unpolarized cross section measurement.

The derivation for the 2-component is exactly identical. It involves the termsW 01
p,2

and Lp
01 of the tensors, in particular:

Lp
01 = 2ihǫ01αβkαBk

′
βB = 2ih(k3Bk

′
2B − k2Bk

′
3B) = 0 (1.62)

since k2B = k′2B = 0. Therefore, in the Born approximation, there is no normal

component to the transferred polarization in elastic scattering.

The same derivation applies to the longitudinal, 3-component, and we can obtain:

W µν
p,3L

p
µν = −4hQ2

√

Q2
G2

M

sin θB
2

, (1.63)

hence, the measurement of the longitudinal component of the recoil proton polariza-

tion is a measurement of the magnetic form factor G2
M .

We can now change the notation of the transferred polarization components by

1 → y, 2 → x, 3 → z. By applying the transformation from the Breit frame to the

Lab frame as defined in Appendix A, we have:

σredPx = 0

σredPy = −2ε
√

τ(1 + τ) tan
θe
2
GEGM

σredPz = ε
E + E ′

m

√

τ(1 + τ) tan2 θe
2
G2

M , (1.64)

where σred = εG2
E + τG2

M is the reduced cross section as defined in Eq. 1.40. From

this equation, we can see that the ratio of the form factors GE/GM can be extracted

by a simultaneous measurement of the transverse and longitudinal components of the
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polarization of the recoil proton:

GE

GM
= −Py

Pz

E + E ′

2m
tan

θe
2
. (1.65)

Compared to the cross section measurement, this method offers several experimental

advantages:

• Only a single measurement is required at each Q2, and this greatly reduces

the systematic error associated with the settings of the spectrometer and beam

energy changes.

• Since it’s a polarization ratio measurement, it is not sensitive to the knowledge

of helicity independent factors, such as the detector efficiency, beam polarization

and the analyzing power of the polarimeter.

• The measurement of the interference term GEGM provides a much more accu-

rate characterization of the electric form factor.

• There is no need to measure the absolute cross section, therefore, the associated

systematic uncertainties are usually much smaller.

With so many advantages, the polarization measurements cannot provide absolute

measurements of either form factor by themselves. However, when coupled with cross

section measurements, they allow for a precise extraction of both form factors, even

in regions where the cross section is sensitive to only one of the form factors.

1.3 World Data

Proton and neutron form factors have been measured for over 50 years at different

electron accelerator facilities around the world. Earlier cross section measurements

(Rosenbluth separation) at low Q2 found that the form factors, except GEn, were in

approximate agreement with the diploe form:

GMp

µp
≃ GEp ≃

GMn

µn
≃ GD (1.66)
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Figure 1-2: World data of GEp from unpolarized measurements [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13], using the Rosenbluth method, normalized to the dipole parameter-
ization.

where:

GD = (1 +
Q2

0.71GeV2 )
−2. (1.67)

This implies that the charge and magnetization distributions would be well described

by an exponential distribution, corresponding to the Fourier transform of the dipole

form.

Figs. 1-2 and 1-3 give a summary of the world data on the separated proton form

factors for unpolarized measurement using the Rosenbluth separation method. It is

clear that the extractions of GEp from Rosenbluth separation are of limited precision

at high Q2, and for GMp, the data follow the dipole shape reasonably well up to

Q2 ∼ 7GeV2 but show a large deviation from this behavior at higher Q2. Fig. 1-4

shows the ratio µpGEp/GMp from Rosenbluth separation. Earlier results generally

indicated that the form factor ratio stays around 1 but with poor quality.

The polarization transfer technique was used for the first time by Milbrath et

al. [45] at the MIT-Bates facility at Q2 values of 0.38 and 0.50 GeV2. A follow-
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up measurement was performed at the MAMI facility [68], for Q2 = 0.4GeV2. A

greater impact of the polarization transfer measurement was made by two recent

experiments [17, 16, 18], at Jefferson Lab Hall A as shown in Fig. 1-4. The most

striking feature of the data is the sharp, practically linear decline as Q2 increases.

In order to resolve the discrepancy between the results of the form factor ratio from

the two experimental techniques, an ε dependent modification of the cross section is

necessary. More recently, two-photon-exchange (TPE) contribution is considered as

the main origin of this discrepancy. A number of recent theoretical studies of TPE

in elastic scattering have been performed [79, 57, 80, 56, 58, 81, 82, 83, 84]. These

indicate that TPE effects give rise to a strong angular-dependent correction to the

elastic cross section, which can lead to large corrections to the extracted ratio. In

fact, the results of quantitative calculations based both on hadronic intermediate

states and on generalized parton distributions, provide strong evidence that TPE

effects can account for most of the difference between the polarized and unpolarized

data sets. Fig. 1-5 shows a comparison of the Rosenbluth data and the polarization
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Figure 1-5: Ratio µpGEp/GMp extracted from polarization transfer (filled diamonds)
and Rosenbluth method (open circles). The top (bottom) figures show Rosenbluth
method data without (with) TPE corrections applied to the cross sections. Figures
from [24].

data from the global analysis [24]. The TPE correction brings the high Q2 µpGE/GM

points from unpolarized measurements into decent agreement with the polarization

transfer measurement data.

1.4 Models and Global Fits

While the world experimental data have been quite fruitful for the nucleon electro-

magnetic form factors, significant theoretical progress has also been made in recent

years in understanding the nucleon electromagnetic structure from the underlying

theory of QCD. As the theory of the strong interaction, QCD has been extremely
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well tested in the high-energy region, i.e., in the perturbative QCD (pQCD) regime.

Ideally, one should be able to calculate the nucleon electromagnetic form factors di-

rectly in pQCD regime to confront the data. Unfortunately, it’s impossible to solve

QCD analytically in the confinement regime where the available world experimental

data are located. Lattice QCD calculations based on first principles of QCD, on the

other hand, have shown much promise in this field, and is developing rapidly. While

pQCD give prediction for the nucleon form factors in the perturbative region, QCD

effective theories such as the chiral perturbation theory can in principle provide reli-

able prediction in the very low energy region. In between the low energy region and

the pQCD regime, various QCD-inspired models and other phenomenology models

exist. Thus, precision data in all experimentally accessible regions is crucial in test-

ing these predictions. There are some recent reviews [30, 85, 38] that provide a nice

summary on these models and predictions.

The newly developed Generalized Parton distributions (GPDs) [73, 74, 86, 87,

88], which can be accessed through deeply virtual Compton scattering and deeply

virtual meson production, connect the nucleon form factors and the nucleon structure

functions probed in the deep inelastic scattering experiments. The GPDs provide new

insights into the structure of the nucleon, and possibly provide a complete map of the

nucleon wave-function.

The rest of the section will give a brief discussion of various theoretical approaches

used to calculate the nucleon electromagnetic form factors.

Scaling and pQCD

In contract to the QED dynamics of the leptonic probe, the QCD running coupling

constant at 1-loop order is:

αs(Q
2) =

αs(0)

1 + αs(0)
16π2 (11− 2

3
Nf )ln(

Q2

Λ2 )
, (1.68)

where the string coupling constant αs → 0 as the inter-quark distance → 0. Thus, one

can solve QCD using the perturbation method in the limit of Q2 → ∞. As illustrated
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Figure 1-6: Pertubative QCD picture for the nucleon EM form factors.

in Fig. 1-7, in pQCD picture, the large momentum of the virtual photon resolves the

three leading quarks of the nucleon, and the momentum is transferred between the

quarks through two successive gluon exchanges. Brodsky and Farrar [89] proposed

the following scaling law for the proton Dirac (F1) and Pauli form factor (F2) at large

momentum transfers based on dimensional analysis:

F1 ∝ (Q2)−2, F2 ∼
F1

Q2
(1.69)

This prediction is a natural consequence of hadron helicity conservation. Hadron

helicity conservation arises from the vector coupling nature of the quark-gluon inter-

action, the quark helicity conservation at high energies, and assumption of zero quark

orbital angular momentum state in the nucleon. In terms of the Sach’s form factors

GEp and GMp, the scaling result predicts:
GEp

GMp
→ constant at large Q2. Such scaling

results were confirmed in a short-distance pQCD analysis carried out by Brodsky

and Lepage [90]. Considering the proton magnetic form factor at large Q2 in the

Breit frame, the initial proton is moving in the z direction and is struck by a highly

virtual photon carrying a large transverse momentum, q2⊥ = Q2. The form factor

corresponds to the amplitude that the composite proton absorbs the virtual photon

and stays intact. Thus, the form factor becomes the product of the following three

probability amplitudes:

• the amplitude for finding the valence |qqq > state in the incoming proton.

• the amplitude for this quark state to scatter from the incoming photon produc-
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ing the final three-quark state with colinear momenta.

• the amplitude for the final three-quark state to reform a proton.

Based on this picture, Brodsky and Lepage obtained the following result within their

short-distance pQCD analysis [90]:

GM(Q2) =
32π2

9

α2
s(Q

2)

Q4

∑

n,m

bnm(ln
Q2

Λ2
)−γn−γm [1 +O(αs(Q

2), m2/Q2)]

→ 32π2

9
C2α

2
s(Q

2)

Q4
(ln

Q2

Λ2
)−4/3β(−e‖), (1.70)

where αs(Q
2) and Λ are the QCD strong coupling constant and scale parameter

respectively, bnm and γm,n are QCD anomalous dimensions and constants, and e‖(−e‖)
is the mean total charge of quarks with helicity parallel (anti-parallel) to the nucleon’s

helicity. For protons and neutrons, the mean total charge is given by:

ep‖ = 1,−ep‖ = 0, en‖ = −en‖ = −1/3, (1.71)

and based on the fully symmetric flavor-helicity wave function. For the proton electric

form factor, one obtains similar results for the Q2 dependence in the Q2 → ∞ limit,

and the short-distance pQCD analysis predicts the same scaling law as the dimen-

sional analysis for the proton form factors:
GEp

GMp
→ constant and Q2F2

F1
→ constant.

Recently, Belitsky, Ji and Yuan [91] performed a pQCD analysis of the nucleon’s

Pauli form factor F2 in the asymptotically large Q2 limit. They found that the leading

contribution to F2 goes like 1/Q
6, which is consistent with the scaling result obtained

by Brodsky and Farrar [89]. Fig. 1-7 shows data on the scaled proton Dirac and

Pauli form factor ratio Q2F2

F1
from Jefferson Lab as a function of Q2 together with

various predictions. While the short-distance pQCD analysis [90] predicts a constant

behavior for the Q2F2

F1
in the Q2 → ∞, the data are in better agreement with the QF2

F1

scaling behavior. The data could imply that the asymptotic pQCD scaling region has

not been reached so far or that hadron helicity is not conserved in the experimentally

tested regime. However, Brodsky, Hwang and Hill [92] were able to fit the Jefferson
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Lab data using a form consistent with pQCD analysis and hadron helicity conserva-

tion by taking into account higher twist contributions. Ralston and Jain [93] argue

that the QF2

F1
scaling behavior is expected from pQCD when one takes into account

contributions to the proton quark wave function from states with non-zero orbital

angular momentum. Miller [49] recently used light front dynamics in modeling the

nucleon as a relativistic system of three bound constituent quarks surrounded by a

cloud of pions. While the pion cloud is important for understanding the nucleon

structure at low momentum transfer, particularly in understanding the neutron elec-

tric form factor, quark effects are expected to dominate at large momentum transfers.

The model was able to reproduce the observed constant behavior of QF2

F1
as a function

of Q2 and the QF2

F1
is predicted to be a constant up to a Q2 value of 20 GeV2.

Lattice QCD Calculations

An analytical approach in solving QCD at low momentum transfers is prevented

due to the non-perturbative nature of QCD at large distance. However, important

conceptual and technical progress has been made over the last decade in solving QCD

on the lattice. In general, lattice QCD calculations are a discretized version of QCD

formulated in terms of path integrals on a space-time lattice [94] with the bare quark

masses and the coupling constant as the only parameters. The parameters commonly

defined in lattice calculations are:

• lattice spacing a: separate calculation at several values of a is required in order

to extrapolate results at finite lattice spacing a to a = 0 by continuum theory.

• spatial length of the box L: as lattice calculations are performed for a finite

lattice size, one must define a box size large enough to fit the hadrons inside,

and this requires to increase the number of sites as one decreases a.

• pion mass mπ: to keep finite volume effects small, one must have a box size

much larger than the Compton wavelength of the pion. Present lattice QCD

calculations take Lmπ ≥ 5.
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Figure 1-7: The scaled proton Dirac and Pauli form factor ratio: Q2F2

F1
(upper panel)

and QF2

F1
(lower panel) as a function of Q2 in GeV2. The data are from [17, 18].

Shown with statistical uncertainties only. The dash-dotted curve is a new fit based
on vector meson dominance model (VMD) by Lomon [25]. The thin long dashed
curve is a point-form spectator approximation (PFSA) prediction of the Goldstone
boson exchange constituent quark model (CQM) [26]. The solid and the dotted curves
are the CQM calculations by Cardarelli and Simula [27] including SU(6) symmetry
breaking with and without constituent quark form factors, repectively. The long
dashed curve is a relativistic chiral soliton model calculation [28]. The dashed curve
is a relativistic CQM by Frank, Jennings, and Miller [29]. Figure from [30].
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Figure 1-8: Diagrams illustrating the two topologically different contributions when
calculating nucleon EM form factors in lattice QCD [31].

State-of-the-art lattice calculations for nucleon structure studies use a ≤ 0.1 fm and

L ∼ 3 fm, and the pion mass down to a few hundred MeV. These results are connected

with the physical world by extrapolation down to the physical quark masses (mq is

proportional to m2
π for small quark masses). As the computational costs of such

calculations increase like m−9
π , it was only until very recently that pion mass values

below 350 MeV [95, 96] have been reached.

Also, most of the lattice results obtained so far were carried out in the so-called

quenched approximation in which the quark loop contributions, i.e. the sea quark con-

tributions, are suppressed. As illustrated in Fig. 1-8, the disconnected diagram (right

panel) involves a coupling to a qq̄ loop, thus, it requires a numerically more intensive

calculation and is neglected in most lattice studies. The Nicosia-MIT group [32] has

performed a high-statistics calculation of nucleon isovector EM form factors, both in

the quenched approximation and in full QCD, using two dynamical Wilson fermions.

The largest Q2 value accessible is around Q2 ≃ 2 GeV2. When comparing with exper-

iments, the Nicosia-MIT group uses a linear fit in m2
π. As shown in Fig. 1-9, one can

see that both the quenched and unquenched lattice results of [32] largely overestimate

the data for F V
1 . For F V

2 , one observes a stronger quark mass dependence, bringing

the lattice results closer to experiment with decreasing mπ.

The lattice calculations at present are still severely limited by available computing

power. Hence, the uncertainties in extrapolating lattice results to the physical quark
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Figure 1-9: Lattice QCD results from the Nicosia-MIT group [32] for the isovector
form factors F V

1 (upper left) and F V
2 (lower left) as a function of Q2. Both the

quenched results (NF = 0) and unquenched lattice results with two dynamical Wilson
fermions (NF = 2) are shown for three different pion mass values. The right panels
show the results for GV

E (upper right) and GV
M (lower right), divided by the standard

dipole form factor, as a function of Q2 in the chiral limit. The filled triangles show the
experimental results for the isovector form factors extracted from the experimental
data for the proton and neutron form factors. Figure from [32].

58



Figure 1-10: Isovector form factor F V
1 (Q2) lattice data with best fit small scale ex-

pansion (SSE) at mπ = 292.99 MeV (left panel). The line in the right-hand panel
shows the resulting Dirac radii, 〈r21〉. Also shown as the data points are the Dirac
radii obtained from dipole fits to the form factors at different pion masses. Figure
from [33].

mass are rather large, particularly with the naive linear extrapolation in quark mass.

Thus, the challenge is to find an accurate and reliable way of extracting the lattice

results to the physical quark mass. The extrapolation methods which incorporate

the model independent constraints of chiral symmetry [97, 98], especially the leading

non-analytic (LNA) behavior of chiral perturbation theory [99] and the heavy quark

limit [100] are exciting development in these years. Recently, the LHPC collabora-

tion [33] calculated new high-statistics results using a mixed action of domain wall

valence quarks on an improved staggered sea, and performed chiral fits to both vec-

tor and axial form factors. Through the comparison with the experimental data (see

Fig. 1-10), they found that a combination of chiral fits and lattice data is promising

with the current generation of lattice calculations.

Vector Menson Dominance (VMD) Model

In the low Q2 region, several effective models have been developed to describe the

nucleon properties. Most of them are semi-phenomenological, which means that they

require experimental data as inputs and thus have little predictive power. Usually

each model is valid in a limited Q2 range. One of the earlier attempts to describe the

proton form factors is a semiphenomenological fit introduced by Iachello et al. [101].
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Figure 1-11: Photon-nucleon coupling in the VMD picture.

It is based on a model that the scattering amplitude is written as an intrinsic form

factor of a bare nucleon multiplied by an amplitude derived from the interaction with

the virtual photon via vector meson dominance (VMD). As shown in Fig. 1-11, the

nucleon form factors are expressed in terms of photon-meson coupling strengths CγV

and meson-nucleon vertex form factors FjV :

F is,iv
j (Q2) =

∑

i

m2
iCγV i

m2
i +Q2

FjV i(Q
2), (1.72)

where the sum is over vector mesons of mass mi and is and iv correspond to the

isoscalar and isovector electromagnetic currents respectively. The form factors are

then given by:

2Fjp = F is
j + F iv

j ; 2Fjn = F is
j − F iv

j , (1.73)

where j = 1, 2 and p and n denote the proton and neutron respectively.

Various forms of the intrinsic bare nucleon form factor have been used: dipole,

monopole, eikonal. However, since this function is multiplicative, it cancels out in

the ratio GE/GM . The VMD amplitude was written in terms of parameters fit to

data. Gari and Krümpelmann [102] extended the basic VMD model with an addi-

tional term to include quark dynamics at large Q2 via pQCD. Lomon updated this
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Figure 1-12: The proton form factor ratio µpGEp/GMp from Jefferson Lab Hall A
together with calculations from various VMD models.

model [25] by including the width of the ρ meson and additional higher mass vector

meson exchanges. The model has been further extended [103] to include the ω′(1419)

isoscalar vector meson pole in order to describe the Jefferson Lab proton form factor

ratio data at high Q2. Fig. 1-12 shows the proton form factor ratio data as a function

of Q2 together with predictions from various VMD models discussed above. While

these models have limited predictive power due to the tunable parameters, once the

high Q2 data have fixed the parameters, the approach to low Q2 can be constrained.

However, one can obviously see that these calculations are still different in the low

Q2 range. Höhler [104] fit the e−N scattering data with a dispersion ansatz, and the

contributions from ρ, ω, φ, ρ′ and ω′ were included and parameterized. The proton

form factor ratio is obtained and is in good agreement with the Jefferson Lab data

up to Q2 ≈ 3 GeV2 as shown in Fig. 1-13.

In recent years, these VMD relation approaches have been extended to include

chiral perturbation theory [105, 106, 107, 108, 109]. Mergell et al. [105] obtained a

best fit that gave an rms proton radius near 0.85 fm, which is close to the accepted

value of 0.86 fm. However, simultaneously fitting the neutron data did not yield better

results. Hammer et al. [106] included the available data in the time-like region in the

fit to determine the model parameters. The later work by Kubis [109] was restricted
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Figure 1-13: The proton form factor ratio µpGEp/GMp from Jefferson Lab Hall A
together with calculations from dispersion theory fits. Figure from [30]

to the low Q2 domain of 0 − 0.4 GeV2 and used the accepted proton RMS radius of

0.86 fm as a constraint. The comparison between data and the different models are

shown in Fig. 1-13. It is not a surprise to find that these models failed to describe

the high Q2 data when their region of validity was claimed to be for Q2 ≤ 0.4 GeV2.

Recently, an updated dispersion-theoretical analysis [110] describes the nucleon

form factors through the inclusion of additional unphysical isovector and isoscalar

poles whose masses and widths are fit parameters to the form factors. The parametriza-

tion of the spectral functions includes constraints from unitarity, pQCD, and recent

measurements of the neutron charge radius. Belushkin et al. [34] updated the analysis

by including contributions from the ρπ and KK̄ isoscalar continua as independent

inputs, in addition to the 2π continuum. The 2π continuum is evaluated using the

latest experimental data for the pion time-like form factor [34]. TheKK̄ continuum is

obtained from an analytic continuation of KN scattering data [111]. World data were

analyzed in both space-like and time-like regions, and the fits were in general agree-

ment with the data. Fig. 1-14 shows the results for space-like momentum transfers

compared to the published world data, which includes preliminary CLAS data.
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Constituent Quark Models

In the constituent quark model (CQM), the nucleon is described as the ground state

of a three-quark system in a confining potential. In this picture, the ground state

baryon, which is composed of the three lightest quarks (u, d, s), is described by

SU(6) flavor wave functions and an antisymmetric color wave function. This non-

relativistic model, despite its simplicity, gives a relatively good description of baryon

static properties, such as nucleon magnetic moments and the charge and magnetic

radii.

However, to calculate electromagnetic form factors in the high-Q2(1 − 10 GeV2)

region, relativistic effects need to be considered. Relativistic constituent quark models

(RCQM) are based on relativistic quantum mechanics as opposed to quantum field

theory. The goal is to formulate a mechanics where the Hamiltonian acts on a suitable

Hilbert space, similar to the non-relativistic case. For any relativistic quantum theory,

it must respect Poincaré invariance. There are three classes of hamiltonian quantum

dynamics which satisfy Poincaré invariance [112]: the instant form, light-front form,

and point form.

In the instant form, the Einstein mass relation pµp
µ = m2 takes the form:

p0 = ±
√

~p2 +m2 (1.74)

which has two solutions for p0, thus allowing quark-antiquark pair creation and an-

nihilation in the vacuum, and it makes the theory complicated. In this case, the

generators of the Poincaré group are the energy of the system, whereas, the rotations

do not contain interactions. This allows states of good angular momentum to be

easily constructed.

In the point form, where the dynamical variables refer to the physical conditions

on some three-dimensional surface rather than an instant, boosts and rotations are

dynamical. It has the angular momenta and Lorentz boosts the same as the free case,

but has complications in dealing with all four momentum components.

In the light-front dynamics, the space-time variables x and t are transformed
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to x± = 1√
2
(t ± x) with corresponding canonical momenta p±. This system has

the advantages of a simple Hamiltonian without negative energies, the ability to

separate the center of mass from the relative motion of particles, and boosts which

are independent of the interactions.

Several theorists have calculated the proton electric and magnetic form factors us-

ing various versions of CQM. Chung and Coester [35], Aznauryan [113], and Schlumpf [114]

all used RCQM to calculate nucleon form factors in the Q2 range of 0−6 Gev2. Both

groups were able to reproduce the available data on F1p and F2p between Q2 from 2

to 4 GeV2. The calculation by Schlumpf is in good agreement with the unpolarized

data, showing a rise in the ratio µpGEp/GMp, but fails to reproduce the polarized

data from Jefferson Lab.

More recent calculations have been made using the CQM in light front dynamics

(LFCQM) [27, 115]. This approach uses a one-body current operator with phe-

nomenological form factors for the CQMs and light-front wave functions which are

eigenvectors of a mass operator . The SU(6) symmetry breaking effects with and

without the constituent quark form factor are also included. These calculations are

able to describe the trend of the high-Q2 polarized data.

Previously, Frank, Jennings and Miller [29] considered medium modifications in

real nuclei and calculated the proton form factors in CQM. Their results for the free

proton are in reasonable agreement with the polarization data and predict a change

in sign of GEp at slightly higher Q2.

A relativistic quark model (RQM) calculated by Li [116] requires symmetry in the

center-of-mass frame. By adding additional terms to the baryon wave function, which

are generated by the SU(6) symmetry requirements, it represents the inclusion of the

sea quarks. The result of this calculation originally preceded the publication of the

polarized data from Jefferson Lab, and the model has good agreement with the data.

A variant of the CQM model is the diquark model of Kroll et al.. Two of the con-

stituent quarks are tightly-bound into a spin-0 or 1 diquark with a phenomenological

form factor which allows the diquark to behave as free quarks at high Q2. When an

electron scatters from the spin-1 diquark, helicity-flip amplitudes are generated. Ma,
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Figure 1-15: Comparison of various relativistic CQM calculations with the data for
µpGEp/GMp. Dotted curve: front form calculation of Chung and Coester [35] with
point-like constituent quarks; thick solid curve: front form calculation of Frank et
al. [29]; dashed curve: point form calculation of Boffi et al. [36] in the Goldstone
boson exchange model with point-like constituent quarks; thin solid curve: covariant
spectator model of Gross and Agbakpe [37]. Figure from [38].
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Figure 1-16: Result for the proton form factor ratio µpG
p
E/G

p
M computed with four

different diquark radii, r1+. Figure from [39].

Qing, and Schmidet [117, 118] performed calculations of a quark spectato-diquark

model using the light-cone formalism. They also describe the available data well.

Recently, Wagenbrunn Boffi et al. [26] calculated the neutron and proton electromag-

netic form factors for the first time using the Goldstone-boson-exchange constituent

quark model. The calculations are performed in a covariant frame work using the

point-form approach to relativistic quantum mechanics, and is in good agreement

with the form factors from polarized data. The comparison between various CQM

models and the data are shown in Fig. 1-15.

Recently, Clët et al. [39] calculated the form factors contributed by a dressed-

quark core. It is defined by the solution of a Pioncará covariant Faddeev equation, in

which dressed-quarks provide the elementary degree of freedom and the correlations

between them are expressed via diquarks. The nucleon-photon vertex only has the

diquark charge radius as the free parameter. The calculation of the proton Sach’s

form factor ratio through this model is compared with the experimental data as shown

in Fig. 1-16.

Irrespective of the diquark radius, however, the proton’s electric form factor pos-
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sesses a zero and the magnetic form factor is positive definite. For Q2 < 3 GeV2, the

result of the calculation lies below experiment, which can likely be attributed to the

omission of pseudoscalar-meson-cloud contributions.

Pion Cloud Models

As the lightest hadrons, pions dominate the long-distance behavior of hadron wave

functions and yield characteristic signatures in the low momentum transfer behavior

of hadronic form factors. Therefore, a natural way to qualitatively improve the CQMs

is to include the pionic degrees of freedom [119].

In the early MIT Bag Model, the nucleon is described as three quark fields confined

in a potential that maintains them within a finite sphere of radius R. The introduction

of the pion cloud [120, 121] improves the static properties of the nucleon by restoring

chiral symmetry and also provides a convenient connection to πN and NN scattering.

To extend the calculation to larger Q2, Miller performed a light-front cloudy bag

model calculation [49], which give a relatively good global account of the data both

at low and larger Q2.

Chiral Perturbation Theory

At low momentum region, the nucleon form factors can also be studied within chiral

perturbation theory (χPT) expansions based on chiral Lagrangians with pion and

nucleon fields. In χPT, the short-distance physics is parameterized in terms of low-

energy-constants (LECs), which ideally can be determined by matching to QCD; but

in practice, they are fit to experimental data or estimated using resonance satura-

tion. In the calculation of the nucleon form factors, the LECs can be obtained from

the nucleon static properties, such as the charge radii and the anomalous magnetic

moments. Once these LECs are determined, the Q2-dependence of the form factors

can be predicted.

The calculation of the nucleon EM form factors involves a simultaneous expan-

sion in soft scales: Q2 and mπ, which are understood to be small relative to the

chiral symmetry breaking scale ΛχSB ∼ 1 GeV. Several expansion schemes have been
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Figure 1-17: The proton form factors in the relativistic baryon χPT of [40] (IR
scheme) and [41] (EOMS scheme). The results of [40] including vector mesons are
shown to third (dashed curves) and fourth (solid curves) orders. The results of [41]
to fourth order are displayed both without vector mesons (dotted curves) and when
including vector mesons (dashed-dotted curves). Figure from [38].

developed in the literature. Early calculations of the nucleon from factors in the

small scale expansion (SSE) [122] have been performed in [123]. Since such an ap-

proach is based on a heavy baryon expansion it is limited to Q2 values much below

0.2 GeV2. Subsequently, several calculations of the nucleon form factors have been

performed in manifestly Lorentz invariant χPT. Kubis and Meissner [40] performed

a calculation in relativistic baryon χPT, employing the infrared regularization (IR)

scheme. Schindler [41] also performed a calculation employing the extended on-mass-

shell (EOMS) renormalization scheme. Both groups found that when only pion and

nucleon degrees of freedom are included, one cannot well describe the data over a

significant range of Q2. On the other hand, it was found that the vector meson pole

diagrams play an important role, which also confirms the findings of VMD models

and dispersion theory mentioned earlier. The corresponding results in both IR and

EOMS schemes are shown in Fig. 1-17.
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Nucleon Charge and Magnetization Densities

Although models of nucleon structure can calculate the form factor directly, it is

desirable to relate form factors to spatial densities because our intuition tends to be

grounded more firmly in space than momentum transfer. The interpretation of the

form factors GE and GM has the simplest interpretation in the nucleon Breit frame

where the energy transfer vanishes, and the charge and magnetization densities can

be written as:

ρNR
ch (r) =

2

π

∫ ∞

0
dQQ2j0(Qr)GEQ

2 (1.75)

µρNR
m (r) =

2

π

∫ ∞

0
dQQ2j0(Qr)GMQ

2. (1.76)

However, this naive inversion is only valid when it ignores the variation of the Breit

frame with Q2, also known as the non-relativistic (NR) limit. For the nucleon, when

the form factors are measured for Q2 values much larger than M2, one needs to take

the effect of relativity into account. Kelly [42] provided a relativistic prescription

to relate the Sachs form factors to the nucleon charge and magnetization densities,

which accounts for the Lorentz contraction of the densities in the Breit frame relative

to the rest frame.

If we start from the spherical charge ρch(r) and magnetization densities ρm(r) in

the nucleon rest frame which are normalized according to the static properties:

∫ ∞

0
drr2ρch(r) = Z (1.77)

∫ ∞

0
drr2ρm(r) = 1, (1.78)

the Fourier-Bessel transforms of the intrinsic densities are defined as:

ρ̃(k) =
∫ ∞

0
drr2j0(kr)ρ(r), (1.79)

where k is the spatial frequency (or wave number), and ρ̃(k) is described as the

intrinsic form factor. If one can find the connection between the Sachs form factor
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and the intrinsic form factors, the intrinsic density is obtained simply by inverting

the Fourier transform:

ρ(r) =
2

π

∫ ∞

0
dkk2j0(kr)ρ̃(k). (1.80)

In the non-relativistic limit, k → Q and ρ̃(Q) → G(Q2), where G(Q2) is the ap-

propriate Sachs form factor. However, this naive inversion causes unphysical cusps

at the origin for the common dipole and Galster parameterizations. Licht and Pag-

namenta [124] attributed these failures to the replacement of the intrinsic spatial

frequency k with the momentum transfer Q and demonstrated that the density soft-

ens, when a Lorentz boost from the the Breit frame with momentum qB = Q to the

rest frame is applied. Consequently, the spacial frequency is replaced by:

k2 =
Q2

1 + τ
, (1.81)

where τ = Q2/4M2
N , and a measurement with Breit-frame momentum transfer qB =

Q probes a reduced spatial frequency k in the rest frame.

Unfortunately, unique relativistic relationships between the Sachs form factors

measured by finite Q2 and the static charge and magnetization densities in the rest

frame do not exist. The fundamental problem is that electron scattering measures

transition matrix elements between states of a composite system that have different

momenta, and the transition densities between such states are different from the

static densities in the rest frame. Several models have employed similar relativistic

prescriptions, which can be written in the following form:

ρ̃ch(k) = GE(Q
2)(1 + τ)λE (1.82)

µρ̃m(k) = GM(Q2)(1 + τ)λM (1.83)

where k and Q2 are related as in Eq. 1.81 and λ is a model-dependent constant. One

can see that the accessible spatial frequency is limited to k ≤ 2MN determined by

the nucleon Compton wavelength. To account for an asymptotic 1/Q4 form factor

behavior, Kelly followed the choice λE = λM = 2, and he employed linear expansions
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Figure 1-18: Comparison between charge and magnetization densities for the proton
and neutron. Figure from [38]

in complete sets of basis functions to minimize the model dependence. Fig. 1-18 shows

the charge and magnetization densities for neutron and proton from his analysis as

determined from fits of the world data.

The low Q2 behavior of the form factors also play an important role in defining

the transition radii obtained from integral moments of the underlying density. The

integral moments are defined by:

Mα =
∫ ∞

0
drr2+αρ(r). (1.84)

While the lowest nonvanishing moment is free of discrete ambiguities, the higher

moments depend upon λ. For example, the proton radius retains a small dependence

upon λ,

< r2 >λ,p= −6
dG(0)

dQ2
|Q2→0 −

3λ

2m2
p

, (1.85)

Recently, Miller [125] proposed a model independent analysis in the infinite-

momentum-frame (IMF). In this frame, the charge density ρ(b) in the transverse
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plane is in fact a two-dimensional Fourier transform of the F1 form factor:

ρ(b) ≡
∑

q

eq

∫

dxq(x,b) =
∫

d2q

(2π)2
F1(Q

2 = q2)eiq·b. (1.86)

In contrast with earlier expectations, from this analysis, the neutron charge density

is negative at the center, and the proton’s central d quark charge density is larger

than that of the u quark by about 30%.

Global Fits

As the most basic quantities, nucleon electromagnetic form factors are needed for

various calculations in nuclear physics. Hence, a simple parametrization which accu-

rately represents the data over a wide range of Q2 and has reasonable behavior for

both Q2 → 0 and Q2 → ∞ would be convenient.

For reasonable behavior at low Q2, the power-series representation should involve

only even powers of Q. At high Q2, dimensional scaling rules require G ∝ Q−4.

However, at present the most common parameterizations violate one or both of these

conditions. Often the reciprocal of a polynomial in Q [126, 127, 128] is used, but

this method has difficulty in determining the RMS radius due to the unphysical odd

powers of Q. Recently, Kelly [42] proposed a much simpler parametrization which

takes the form:

G(Q2) ∝
∑n

k=0 akτ
k

1 +
∑n+2

k=1 bkτ
k
, (1.87)

where both numerator and denominator are polynomials in τ = Q2/4m2
p and the

degree of the denominator is larger than that of the numerator to ensure the ∝ Q−4

for large Q2. Good fits by this form require only four parameters each for GEp, GMp

and GMn, and only two for GEn. Fig. 1-19 shows the results of the parametrization.

Bradford et al. [43] did another parametrization that uses the same functional

but with two additional constraints. The first constraint comes from local duality,

and a second constraint is based on QCD sum rules including a further application

of duality. The constraints were implemented by scaling the high Q2 data of GMp

and then adding these scaled points to the data sets for GEn and GMn during the
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Figure 1-19: Kelly’s fits [42] to nucleon electromagnetic form factors. The error bands
were of the fits. Figure from [42].

fits. Fig. 1-20 shows the new parameterizations. Arrington and Sick [48] performed

a fit of the world data at very low momentum transfer by a Continued Fraction (CF)

expansion:

GCF (Q) =
1

1 + b1Q2

1+
b2Q

2

1+···

. (1.88)

This expansion is suitable for the lower momentum transfers, and extends up to

Q =
√
Q2 ≈ 0.8 GeV/c. The analysis included the effect of Coulomb distortion

and the Two-Photon-Exchange (TPE) exchange beyond Coulomb distortion, which

includes only the exchange of an additional soft photon. Later on, Arrington et al. [24]

performed a global analysis of the world data. The analysis combined the corrected

Rosenbluth cross section and polarized data, and this is the first extraction of GE

and GM including the explicit TPE correction. Fig. 1-21 shows this global analysis

compared with the world data.

In 2003, Friedrich and Walcher performed various phenomenological fits [44] at

low Q2 with the “bump and dip” structure on the base of the smooth 2-dipole form.

Shown in Fig. 1-22 are the difference between the measured nucleon form factors at
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Figure 1-20: The parametrization of Bradford et al. compared with Kelly’s, together
with world data. Figure is from [43].
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Figure 1-21: Extracted values of GE and GM from the global analysis. The open
circles are the results of the combined analysis of the cross section data and polar-
ization measurements. The solid lines are the fits to TPE-corrected cross section and
polarization data. The dotted curves show the results of taking GE and GM from a
fit to the TPE-uncorrected reduced cross section. Figure from [24].
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Figure 1-22: The difference between the measure nucleon form factors and the 2-
components phenomenological fit of [44] for all four form factors.

that time and the smooth part of their phenomenological ansatz. It is found that all

four form factors exhibit similar structure at low momentum transfer region, which

they interpreted as an effect of the pion cloud around a bare nucleon. They found a

very long-range contribution to the charge distribution in the Breit frame extending

out to about 2 fm which could arise from the pion cloud. With the hint of the

existence of the “bump and dip” structure, their analysis reinvigorated the interest

in investigating the form factor behavior in the low Q2 region.

1.5 Measurements at Low Q2

While at highQ2, it is generally accepted that the proton form factor ratio µpGEp/GMp

decreases smoothly with increasing Q2. In the low Q2(< 1 GeV2) region, the world

existing data appear to be less conclusive about where this deviation starts. On the

other hand, from the fits performed by Friedrich and Walcher, the data somehow
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indicate the existence of structure.

Fig. 1-23 presents all world polarization data for Q2 < 1 GeV2 and Fig. 1-24

presents only the high precision ones (σtot < 3%). The earliest recoil polarization

measurement at Jefferson Lab [16] has two points below 1 GeV2. Later on, BLAST

(MIT-Bates) performed the first measurement of µpGEp/GMp from 1 ~H(~e, e′p) in the

Q2 region between 0.15 and 0.65 GeV2 [19]. The extracted ratio from these data is

consistent with unity. In 2006, Jefferson Lab [20] performed another recoil polariza-

tion measurement focusing at low Q2, which overlaps the region covered by BLAST.

While both results gave similar behavior over the whole range, a strong deviation from

unity is observed at Q2 ∼ 0.35GeV2 in LEDEX. However, due to limited statistics

during the experiment and the background issue [70], such a deviation is not conclu-

sive at that moment. Interestingly, both data sets are inconsistent with Friedrich and

Walcher fit.

The experiment reported in this thesis aimed to provide a high precision survey of

the proton form factor ratio ( σstat. < 1%) in the region of Q2 = 0.3−0.7 GeV2. With

the proposed accuracy, we will be able to either confirm or refute the existence of any

deviation from unity and local “structure” in this low momentum transfer region.

In addition, the range that we cover is particularly important for tests of effective

field theory predictions, future precision results from lattice QCD and also helps to

quantify the pion cloud effect in nucleon structure. Besides, improved form factor

measurements also have implications in the extraction of other physics quantities,

such as the ultra-high precision test of QED from the hydrogen hyperfine splitting

and the strange quark content of the nucleon through parity violation experiments.
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Figure 1-23: The world data from polarization measurements. Data plotted are
from [23, 45, 46, 21, 22, 16, 19, 20]
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Figure 1-24: Recent world high precision polarization data [16, 19, 20] compared to
several fits [47, 24, 48, 44] and parameterizations [49, 36, 50, 51].
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Chapter 2

Experimental Setup

Experiment E08-007 was completed in the summer of 2008 at Thomas Jefferson Na-

tional Accelerator Facility in Hall A. The polarized electron beam was produced and

accelerated by the Continuous Electron Beam Accelerator Facility (CEBAF). With

a 1.19 GeV beam on a liquid hydrogen target, the elasticly scattered electrons were

detected by the BigBite spectrometer in coincidence with the recoil proton detected

by the left High Resolution Spectrometer (HRS). The transferred proton polarization

was measured in the focal plane polarimeter (FPP). The proton form factor ratio were

measured at 8 kinematics, which are listed in Table 2.1. This chapter will describe

the experimental setup and instrumentation used for this experiment.

Kine. Q2 [GeV2] θe [deg] θp [deg] ε
K1 0.35 31.3 57.5 0.85
K2 0.30 28.5 60.0 0.88
K3 0.45 36.7 53.0 0.80
K4 0.40 34.2 55.0 0.82
K5 0.55 41.9 49.0 0.75
K6 0.50 39.2 51.0 0.78
K7 0.60 44.6 47.0 0.72
K8 0.70 49.8 50.0 0.66

Table 2.1: E08-007 kinematics.
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Figure 2-1: Layout of the CEBAF facility. The electron beam is produced at the
injector and further accelerated in each of two superconduction linacs. The beam can
be extracted simultaneously to each of the three experimental halls.

2.1 The Accelerator and the Polarized Electron

Source

CEBAF (see Fig. 2-1) accelerates electrons up to 5.7 GeV by recirculating the beam

up to five times through two superconducting linacs. Each linac contains 20 cryo-

modules with a design accelerating gradient of 5 MeV/m, producing a nominal energy

gain of 400 MeV per pass, and this gain can be tuned up to about 500 MeV per pass

if required by the experimental halls. Ongoing insitu processing has already resulted

in an average gradient in excess of 7 MeV/m, which has made it possible to accelerate

up to about 5.7 GeV.

Electrons can be injected into the accelerator from either a thermionic or a polar-

ized gun. With the polarized gun a strained GaAs cathode is illuminated by a 1497

MHz gain-switched diode laser, operated at 780 nm. The absorption of a right or

left circularly polarized laser light preferentially produces electrons with a spin down
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or up respectively in the conduction band, thus longitudinally polarizing the beam,

up to 85%. The laser light is circularly polarized using a Pockels cell. The electron

beam polarization is measured at the injector with a 5 MeV Mott polarimeter [129]

and the polarization vector can be oriented with a Wien filter [130]. The sign of the

beam helicity is flipped pseudo-randomly at a rate of 30 Hz by switching the circular

polarization of the laser, which is achieved by changing the voltage of the Pockels

cell. The current sent to the three Halls A, B and C can be controlled independently.

The design maximum current is 200 µA in CW (continuous wave) mode, which can

be split arbitrarily between three interleaved 499 MHz bunch trains. One such bunch

train can be peeled off after each linac pass to any one of the Halls using RF sep-

arators and septa. CEBAF can deliver 100 µA beam to one or both of the Hall A

and Hall C, while maintaining high polarization low current (1 nA) to Hall B. Hall C

has been operational since November 1995, Hall A since May 1997 and Hall B since

December 1997.

For this experiment (E08-007), a 1.19 GeV CW beam was delivered into Hall A,

with current 4−20µ A for production data taking for various kinematics. The average

beam polarization during the experiment was ∼ 83%.

2.2 Hall A

All three experimental halls have their bulk volumes underground with a shield of

concrete and a thick layer of earth. Hall A is the largest one with a diameter of 53 m.

The layout of Hall A during E08-007 is shown in Fig. 2-2. The key elements include

the beamline, cryogenic target in the scattering chamber, the left High Resolution

Spectrometers (LHRS) and the BigBite spectrometer.
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Figure 2-2: Hall A floor plan during E08-007.

2.3 Beam Line

2.3.1 Beam Energy Measurement

The beam energy during the experiment was monitored by “Tiefenbach” energy [131].

The value is calculated by the current values of Hall A arc B·dl and Hall A arc beam

position monitors (BPM). This number is continuously recorded in the data stream

and is calibrated against the Arc energy of the 9th dipole regularly. The accuracy

from this measurement is about 0.5 MeV. For this experiment, the results are not

sensitive to the absolute beam energy; therefore, there were no invasive measurements

performed during the experiment.

2.3.2 Beam Current Monitor

The beam current is measured by the beam current monitors (BCMs) [131] in Hall

A, which provides a stable, low-noise, no-invasive measurement. It consists of an

84



10 kHz
DownConverter

10 kHz
DownConverter

50 kHz
BW
Filter

50 kHz
BW
Filter

1X

1X

3X

10X

3X

10X

VToF

VToF

VToF

VToF

VToF

VToF

RMS-DC

RMS-DC

RMS-DC

RMS-DC

RMS-DC

RMS-DC

RMS-DC

RMS-DC

I-source

Downstream
BCM

Upstream
BCM

UNSER

Sampled Data

Integrated
Data

Unser Measurement

Data
Stream

Scaler to
Data Stream

Data
Stream

Beam

Figure 2-3: Schematic of beam current monitors.

Unser monitor, two RF cavities, associated electronics and a data-acquisition system.

The cavities and the Unser monitor are enclosed in a temperature-stabilized magnetic

shielding box which is located 25 m upstream of the target.

Fig. 2-3 shows the schematics of BCMs. The Unser monitor is a Parametric Cur-

rent Transformer which provides an absolute measurement [132]. The monitor is

calibrated by passing a known current through a wire inside the beam pipe and has

a nominal output of 4 mV/µA. As the Unser monitor’s output signal drifts signifi-

cantly on a time scale of several minutes, it is not suitable for continuous monitoring.

However, the drift can be measured during the calibration runs and the net measured

value is used to calibrate the two RF BCMs. The two resonant RF cavity monitors

on either side of the Unser monitor are stainless steel cylindrical high-Q (∼3000)

waveguides which are tuned to the frequency of the beam (1497 MHz) resulting in

voltage levels at their outputs which are proportional to the beam current. Each of

the RF output signals from the two cavities in split into two parts, to be sampled or

integrated.

The signals to be sampled are processed by a high-precision digital multi-meter

(DMM), HP3458A. Each second this device gives a digital output proportional to
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the RMS of beam current. Signals from both cavities’ and Unser’s multimeters are

transported through GPIB ports and are recorded by the data logging process every

1− 2 s. The signals to be integrated are sent to an RMS-to-DC converter to produce

an analog DC voltage level, and this level drives a Voltage-To-Frequency (VTOF)

converter. These frequency signals are then fed to 200 MHz VME scalers, and the

outputs are injected into the data stream along with other scaler information. These

logged scalers accumulate during the run and provide a number proportional to the

time-integrated voltage level which accurately represents the total delivered charge.

The regular RMS to DC output is linear for currents from about 5 µA to 200 µA.

A set of amplifiers has been introduced with gain factors of 1, 3, and 10 in order to

allow for lower currents at the expense of saturation at high currents. Hence, there is

a set of three signals coming from each RF BCM. These six signals are fed to scaler

inputs of each spectrometer, providing redundant beam charge information.

The beam charge can be derived from BCM scaler reading by

QBCM×A,H =

NBCM×A,H

clockH
− offset×A,H

constant×A
clockH , (2.1)

where A = 1, 3 or 10 is the gain factor,H=plus, minus or 0 (ungated) is the beam

helicity state, and clockH is the total clock time of corresponding helicity gate. The

BCM calibration is typically performed every 2− 3 months and the results are fairly

stable within ±0.5% down to a current of 1 µA.

2.3.3 Raster and Beam Position Monitor

The position and direction of the beam at the target location is determined by two

Beam Position Monitors (BPMA and BMPB) which are located at 7.345 m and 2.214

m upstream of the Hall A center respectively.

The standard difference-over-sum technique is used to determine the relative po-

sition of the beam to within 100 µm for currents above 1 µA [131, 133]. The absolute

position of the beam can be determined from the BPMs by calibrating them with

respect to wire scanners (superharps) which are located adjacent to each BPM. The
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wire scanners are regularly surveyed with respect to the Hall A coordinates; the re-

sults are reproducible at the level of 200 µm. The position information from the

BPMs are recorded in the raw data stream by two ways: average value and event-by-

event. The real beam position and direction at the target can be reconstructed using

the BPM positions calculated from 8 BPM antennas’ readout (2× 4):

x, ytarget =
x, yBPMa ·∆zBPMb − x, yBPMb ·∆zBPMa

zBPMb − zBPMa
(2.2)

~xbeam =
~xBPMb − ~xBPMa

|~xBPMb − ~xBPMa|
, (2.3)

where ∆z = zBPM − ztarget.

For liquid or gas targets, high current beam (> 5 µA) may damage the target cell

by overheating it. To prevent this, the beam is rastered by two pairs of horizontal (X)

and vertical (Y) air-core dipoles located 23 m upstream of the target, and the size of

rastered beam is typically several millimeters. The raster can be used in two modes,

sinusoidal or amplitude modulated. In the sinusoidal mode both the X and Y magnet

pairs are driven by pure sine waves with relative 90◦ phase and frequencies ∼18.3

kHz, which do not produce a closed Lissajous pattern. In the amplitude modulated

mode both X and Y magnets are drive at 18 kHz with a 90◦ phase between X and

Y, producing a circular pattern. The radius of this pattern is changed by amplitude

modulation at 1 kHz.

During the experiment, a new triangular raster was used, which copied the Hall

C design [134]. The new raster provides a major improvement over the sinusoidal

raster by reducing dwell time at the peaks. A uniform density distribution of beam

on the target is achieved by moving the beam position with a time-varying dipole

magnetic field with a triangular waveform. The raster contains two dipole magnets,

one vertical and one horizontal, which are located 23 m upstream from the target.

In the electronics design, an “H-bridge” is used that allows one pair of switches

to open and another pair to close simultaneously and rapidly at 25 kHz. the current
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Figure 2-4: Beam spot at target.

is drawn from HV supplies and rises according to

I(t) =
ǫ

R
(1− e−t/τ ) (2.4)

where τ = L/R is the time constant with resistance R and inductance L of the

controlling electronics. The time and applied voltage are t and ǫ, respectively. Fig. 2-

4 is a sample beam spot at target with raster on. In this experiment, a 1.5 mm × 1.5

mm raster was used.

2.3.4 Beam Polarization Measurement

There are three methods to measure the electron beam polarization:

• Mott method.

• Møller polarimetry.

• Compton polarimetry.

The Mott measurement [129] is performed at the polarized electron source, and the

other two polarimetries are performed in the experimental Hall. During this exper-

iment, since the beam polarization is canceled in the result, continuous monitoring
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of the polarization is not required, so only the Møller measurement was performed

during this experiment.

Møller Polarimetry

The Møller polarimetry [135] measures the process of Møller scattering of the polar-

ized beam electrons off polarized atomic electrons in a magnetized foil ~e− + ~e− →
e− + e+. The cross section of the Møller scattering depends on the beam and target

polarization Pb and Pt as

σ ∝ (1 +
∑

i=X,Y,Z

(AiiPb,iPt,i)), (2.5)

where i = X, Y, Z defines the projections of the polarizations. Aii is the analyzing

power, which depends on the scattering angle in the center of mass (CM) frame θCM .

Assuming that the beam direction is along the Z-axis and that the scattering happens

in the ZX plane, we have

AZZ = −sin2 θCM · (7 + cos2 θCM)

(3 + cos2 θCM)2

AXX = −AY Y = − sin4 θCM

(3 + cos2 θCM)2
. (2.6)

The analyzing power does not depend on the beam energy. At θCM = 90◦, the

analyzing power has its maximum AZZ,max = 7/9. The Møller polarimeter of Hall

A detects pairs of scattered electrons in a range of 75◦ < θCM < 105◦. The average

analyzing power is about< AZZ >= 0.76. A transverse polarization also produces an

asymmetry, though the analyzing power is lower: AXX,max = AZZ,max/7. The main

purpose of the polarimeter is to measure the longitudinal component of the beam

polarization.

The polarized electron target consists of a thin magnetically saturated ferromag-

netic foil. An average electron polarization of about 8% [135] can be obtained. The

foil is magnetized along its plane and can be tilted at angles from 20◦ to 160◦ to the

beam.
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Figure 2-5: Layout of the Møller polarimeter.

The scattered electrons are detected by a magnetic spectrometer (see Fig. 2-5).

The spectrometer consists of a sequence of three quadrupole magnets and a dipole

magnet. The detector consists of scintillators and lead-glass calorimeter modules, and

split into two arms in order to detect the two scattered electrons in coincidence. The

beam longitudinal polarization is measured as:

Pb,Z =
N+ −N−
N+ +N−

· 1

Pt · cos θt· < AZZ >
, (2.7)

where N+ and N− are the measured counting rates with two opposite mutual ori-

entation of the beam and target polarization. While < AZZ > is obtained using

Monte-Carlo calculation of the Møller spectrometer acceptance, Pt is derived from

special magnetization measurements of the foil samples, θt is measured using a scale

which is engraved on the target holder and seen with an TV camera, and also using

the counting rates measured at different target angles.

The Møller polarimeter can be used at beam energies from 0.8 to 6 GeV. The

measurement is invasive, since the beam needs to be tuned through the Møller chicane,

and the measurement is performed with low current (∼ 0.5 µA). One measurement
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Date Wien Pb ±∆Pb(stat.)
2008/05/16 −33.7◦ −67.9± 0.2%
2008/05/22 −13.5◦ −83.3± 0.2%

Table 2.2: Results of the Møller measurements during E08-007.

typically takes an hour, providing a statistical accuracy of about 0.2%. The total

relative systematic error is about 3% [131]. During this experiment, two Møller

measurements were performed at Wien angle −33.7◦ and −13.5◦ respectively. The

results are reported in Table 2.2. The experiment were mostly running with the latter

setting.

2.3.5 Beam Helicity

For experiment E08-007, the “G0 helicity scheme” [136] was used. The schematics

is shown in Fig. 2-6. There are three relevant signals: macro-pulse trigger (MPS),

quartet trigger (QRT), and Helicity. The characteristics of this scheme are:

• MPS is the master pulse at 30 Hz which is used as a gate to define periods when

the helicity is valid.

• The helicity sequence has a quartet structure (+−−+ or −++−). The helicity

of the first MPS gate is chosen pseudorandomly.

• Quartet trigger (QRT) denotes when a new random sequence of four helicity

states has begun.

There is a blank-off period of about 0.5 µs for each 33.3 ms gate period. This blank-off

is the time during which the Pockel cell at the source is changing and settling. The

quartet sequence provides for exact cancelation of linear drifts over the sequence’s

timescale. All three bits (helicity, QRT, gate) are read in the datastream for each

event, and the copies are sent to scalers which have input registers. The delay of the

helicity reporting breaks any correlations with the helicity of the event by suppressing

crosstalk. For this experiment, we used the configuration with no delay.
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Figure 2-6: Beam helicity sequence used during experiment E08-007.

2.4 Target

2.4.1 Scattering Chamber

The scattering vacuum chamber [137] consists of several rings, and is supported on

a 607 mm diameter central pivot post. The stainless steel base ring has one vacuum

pump-out port and other ports for viewing and electrical feed-throughs. The middle

ring is made out of aluminum and located at beam height with 152 mm vertical

cutouts on each side of the beam over the full angular range (12.5◦ ≤ θ ≤ 167.5◦).

The cutouts are covered with a pair of flanges with thin aluminum foils. It also has

entrance and exit beam ports. The upper ring is used to house the cryotarget. The

chamber vacuum is maintained at 10−6 Torr to insulate the target and to reduce the

effect of multiple scattering.

2.4.2 Cryogenic Target

A 6 cm liquid hydrogen cryogenic target was used for this experiment. The target

system was mounted inside the scattering chamber along with sub-systems for cooling,

gas handling, temperature and pressure monitoring, target control and motion, and

an attached calibration and solid target ladder (see Fig. 2-7).
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Figure 2-7: Target ladder.

The target system had three independent target loops: a liquid hydrogen (LH2)

loop, a liquid deuterium (LD2) loop and a gaseous helium loop. The LH2 loop had

two aluminum cylindrical target cells, 15 cm and 6 cm length, mounted on the vertical

stack which could be moved from one position to another by remote control. Both

the LD2 and gaseous helium loops had only single 20 cm aluminum cell. All the liquid

target cells had diameter φ = 63.5 mm, and the side walls were 178µm thick, width

entrance and exit windows approximately 71 and 102 µm thick, respectively. The

upstream window consisted of a thick ring holder with an inner diameter of 19 mm,

large enough for the beam to pass through.

Below the cryogenic targets were two sets of carbon foil optics targets constructed

of two thin pieces of carbon foils spaced by 10 or 24 cm. A solid target, attached at

the bottom, had six target positions: an empty target, two Be targets with different

thickness, a single carbon foil (can also be used for optics data taking), a BeO foil

(typically used for direct beam observation), and a lithium target.

The LH2 (LD2) target were cooled at 19 K (22 K) with pressure of 0.17 MPa (0.15
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MPa), about 3 K below their boiling temperature. Under these conditions, they have

a density of 0.0723 g/cm3 and 0.167 g/cm3. The nominal operating condition for

4He(3He) was 6.3 K at 1.4 MPa (1.1 MPa). The coolant (helium) was supplied by

the End Station Refrigerator (ESR). The helium from ESR is available at 15 K with

a maximum cooling power of 1 kW, and at 4.5 K with a lower maximum cooling

capacity near 600 W. Typically 15 K coolant is used for liquid cells while 4.5 K for

gaseous cells. At the full 1 kW load of 15 K coolant, up to 130 µA beam current

may be incident on the liquid target with temperature slightly over 20 K. In this

configuration the beam heating alone deposits 700 W in the target where the rest of

power arises from circuiting fans and small heaters required to stabilize the target’s

temperature. The coolant supply is controlled with Joule-Thompson (JT) valves,

which can be adjusted either remotely or locally.

2.5 High Resolution Spectrometers

One of the key pieces of equipments for this experiment is the left High Resolution

Spectrometers (HRS), which was used to detect the recoil proton. A schematic view

of the HRS is shown in Fig. 2-8, and the main design characteristics are provided in

Table 2.3. The vertically bending design includes a pair of superconducting cos(2θ)

quadrupoles followed by a 6.6 m long dipole magnet with focusing entrance and exit

polefaces, including additional focusing from a field gradient, n, in the dipole. Follow-

ing the dipole is a third superconducting cos(2θ) quadrupole. The first quadrupole

Q1 is convergent in the dispersive (vertical) plane. Q2 and Q3 are identical and both

provide transverse focusing. In this configuration, the spectrometer can provide a

momentum resolution better than 2× 10−4 with a 9% momentum acceptance.

2.5.1 Detector Packages

The detector packages of the spectrometer were designed to provide various infor-

mation in the characterization of charged particles passing through the spectrometer.

These include: a trigger to readout the data-acquisition electronics, tracking informa-
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Figure 2-8: Schematic of Hall A High Resolution Spectrometer and the detector hut.

Configuration QQDQ vertical bend
Bending angle 45◦

Optical lengh 24.2 m
Momentum range 0.3-4.0 GeV/c
Momentum acceptance ±4.5%(δp/p)
Momentum resolution 2× 10−4

Dispersion at the focus (D) 12.4 m
Radial linear magnification (M) -2.5
D/M 5.0
Horizontal angular acceptance ±30 mrad
Vertical angular acceptance ± 60 mrad
Horizontal resolution 1.5 mrad
Vertical resolution 4.0 mrad
Solid angle at δp/p = 0, y0 = 0 6 msr
Transverse length acceptance ±5 cm
Transverse position resolution 2.5 mm

Table 2.3: Main characteristics of Hall A High Resolution Spectrometers; the resolu-
tion values are for the FWHM.
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Figure 2-9: Left HRS detector stack during E08007.

tion (position and direction), coincidence determination, and particle identification.

The configuration of the detectors on the left spectrometer for this experiment is

shown in Fig. 2-9. The detector package includes:

• a set of two vertical drift chambers (VDCs) which provide tracking information.

• two scintillator planes which provide basic triggers.

• a CO2 gas Cerenkov detector for particle identification.

• the focal plane polarimeter (FPP) measure the recoil proton polarization.

• a pair of lead glass pion rejectors for PID.

For this experiment, the key instruments are the scintillator planes, VDCs and the

FPP.
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2.5.2 Vertical Drift Chambers

The vertical drift chamber (VDCs) [138, 139], provides a precise measurement of the

incident position and angle of the charged particles at the spectrometer focal plane1.

The tracking information from the VDC measurement is combined with the knowledge

of the spectrometer optics to reconstruct the position, angle and momentum of the

particles in the target coordinate system.

The pair of VDC chambers are laid horizontally. The top VDC is placed 33.5 cm

above the bottom VDC and shifted by another 33.5 cm in the dispersive direction

to account for the 45◦ central trajectory (see Fig. 2-10). Each VDC consists of two

planes of wires in a standard UV configuration: the wires of each successive plane are

oriented at 90◦ to one another. There are a total of 368 sense wires in each plane,

spaced 4.24 mm apart.

During operation, the VDC chambers have their cathode plane at about −4 kV

and the wires at ground. The gas supplied to the VDCs is a 62%/38% argon-ethane

(C2H6) mixture, with a flow rate of 10 liter/hour [131]. When a charged particle

travels through the chamber, it ionizes the gas inside the chamber and leaves a track

1The focal plane is a plane associated with the lower VDC of each spectrometer. A detailed
description and the definition of related coordinate systems can be found in [140]
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of electrons and ions along its trajectory behind. The ionized electrons accelerate

toward the wires along the path of least time (geodetic path). The Hall A VDCs

feature a five cell design, i.e a typical 45◦ track will fire five wires as shown in Fig. 2-

11. The fired wires are read out with time-to-digital converters (TDCs) operating

in common stop mode. In this configuration, a smaller TDC signal corresponds

to a larger drift time. With a 50 µm/ns drift velocity and time shift constants, the

distances of the track to each fired wires are precisely reconstructed. The position and

direction of the track is then determined. In the focal plane, the position resolution

σx(y) ∼ 100 µm, and the angular resolution σθ(φ) ∼ 0.5 mrad.

2.5.3 Scintillator Trigger Plane

There are two planes of trigger scintillators S1 and S2 in the left HRS, separated

by a distance of about 2 m. Each plane is composed of six overlapping paddles

made of thin plastic scintillator (5 mm BC408) to minimize hadron absorption (see

Fig. 2-12). The active area for the scintillator paddles are 29.5 × 35.5 cm2 (S1) and

37.0 × 54.0 cm2 (S2), and are viewed by two photomultiplier tubes (PMTs) (Burle
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Figure 2-12: Layout of scintillator counters.

8575). The scintillators were used to generate triggers for the data acquisition system.

The time resolution of each plane is about 0.30 ns. The scintillators can also be used

for particle identification by measuring the Time-of-flight (TOF) between the S1 and

S2 planes.

Additionally, the S0 scintillator counter is usually used for trigger efficiency analy-

sis. It was removed for this experiment to reduce the energy loss of the low momentum

protons (∼ 550 MeV/c).

2.5.4 Focal Plane Polarimeter

The Focal Plane Polarimeter (FPP) measured the polarization of protons in the

hadron spectrometer [141]. It was developed by the College of William & Mary,

Rutgers University, Norfolk State University and the University of Georgia.

The FPP is located between the VDCs and the lead glass counter, it consists of 4

straw chambers and a carbon analyzer (see Fig. 2-13). When the polarized protons

pass through the carbon analyzer, the nuclear spin-orbit force leads to an azimuthal
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asymmetry due to the scattering from carbon nuclei. The particle trajectories, in

particular the scattering angles in the carbon analyzer, are determined by the front

and rear chambers.

The front straw chambers are separated by about 114 cm, and are located before

and after the gas Cerenkov detector. The second chamber is followed by S2, which is

in turn followed by the FPP carbon analyzer. The rear chambers, chamber 3 and 4

are separated by 38 cm and are immediately behind the carbon analyzer.

The carbon analyzer consists of 5 carbon blocks. Each block is split in the middle

so that it can be moved in or out of the proton paths. The total thickness of the

carbon analyzer can be adjusted accounting for different proton momentum. The

block thicknesses, from front to rear are 9”, 6”, 3”, 1.5” and 0.75”. The block positions

are controlled through EPICS [142]. For this experiment, the proton momentum was

between 550 MeV/c and 930 MeV/c. We adjusted the carbon door thicknesses based

on a Monte Carlo simulation (see Fig. 2-14). The thicknesses of the carbon door used

for different kinematics are listed in Table 2.4.

The straw chambers include X, U, and V planes. The central ray defines the

z-axis. X wires are along the horizontal direction and measure position along the

dispersive direction. As illustrated in Fig. 2-15, the UV planes are oriented at 45◦
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EJ Brash’s MC Simulations of FPP Performance
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Figure 2-14: The simulated FPP figure of merit with different carbon door thick-
nesses [52].

Kine. Q2 [(GeV/c)2] Pp [GeV/c] Carbon thickness [inch]
K1 0.35 0.616 2.25
K2 0.30 0.565 2.25
K3 0.45 0.710 3.75
K4 0.40 0.668 3.75
K5 0.55 0.794 3.75
K6 0.50 0.752 3.75
K7 0.60 0.836 3.75
K8 0.70 0.913 3.75

Table 2.4: Carbon thickness along the proton momentum at each kinematics.
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Chamber Ch.1 Ch.2 Ch.3 Ch.4
Active legnth (cm) 209.0 209.0 267.5 292.2
Active width (cm) 60.0 60.0 122.5 140.6
Wire spacing (cm) 1.095 1.095 10.795 1.0795

Configuration 3U + 3V 3U + 3V 2U+ 2V + 2X 3U + 3V
Straws per plane 170 170 249 292

Table 2.5: Dimensions of the FPP straw chambers.

with respect to the transverse plane of the XY coordinate system, with +U between

the +X and +Y axes, and +V between the +Y and -X axes. The configurations for

each chamber are listed in Table 2.5.4. The FPP has angular resolution better than

1 mrad and accepts second scattering angles of at least 20◦.

The straw chambers are a set of cylindrical tubes of radius 0.5 cm, with a thin wire

running along a central axis of each tube (straw), as shown in Fig. 2-16. The wire is

at positive high voltage (∼ 1.8 kV) relative to the straw. Each tube is individually

supplied with a gas mixture of Argon (62%) and Ethane (38%). When a charged

particle passes through the straw, it ionizes the Argon gas atoms, leaving behind

a track of electrons. These electrons drift towards the anode wire, at a constant

velocity of about 50 µ m/s. When the electrons get within about 100 µm of the
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Figure 2-16: Straws in two different planes of a FPP straw chamber.

wire, the increase in electric field strength is larger enough so that addition atoms

ionize; this leads to an avalanche effect and produces a gain of about 105 per primary

ionization. The movement of the positive and negative ions leads to a voltage drop on

the wire and produces a negative electrical signal. The analog signal is then sent to

the read out board, where it is pre-amplified and discriminated to give a logic pulse

(see Fig. 2-17).

Because of the straw around each wire forms a physical ground, a proton track

leaves a signal only in one wire of a plane. Multiplexing the signal in groups of

eight neighboring wires, and reading out the entire group by the same multiplexing

chip, it significantly reduces the amount of electronics required for the FPP. This

multiplexing chip is setup to give a logic pulse whose width depends on which wire

fired. This 45 mV signal is converted to a 800 mV signal in the level shifter and

is sent to the FastBus TDC modules, whose output is readout to the data stream.

The multi-hit TDCs records the arrival of the leading edge and the trailing edge of

the logic signal. The time difference between the leading edge and the common stop

given by the trigger gives the drift time.
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2.6 BigBite Spectrometer

Due to the constraints from the preceding experiments, the BigBite spectrometer was

used to detect the electrons instead of the originally proposed right HRS. Compared

with the standard HRS, the BigBite spectrometer has larger angular and momentum

acceptance. Recently, the spectrometer has been upgraded to detect electrons with

adequate momentum and angular resolution for a series of experiments [143, 144].

The central component of the spectrometer is a large acceptance, non-focusing

dipole magnet. The magnet was originally designed and built for use at NiKHEF

in the Netherlands [145, 146]. The large pole-face gap (25 cm in the horizontal and

84 cm in the vertical directions) allows for a larger bite of scattered particles in the

angular acceptance (see Fig. 2-18).

In this experiment, the magnet was located ∼ 1.1 m from the target (see Fig. 2-19)

and can provide a field strength of up to 1.2 T. The nominal momentum acceptance is

200 ∼ 900MeV/c, and the solid angle acceptance is ∼ 96 msr, roughly sixteen times

larger than the nominal HRS acceptance.

As shown in Fig. 2-20, the BigBite electron package consists of:

• 3 sets of multiple wire drift chambers.

• a gas Cerenkov counter.

104



Figure 2-18: A side view (left) and top view (right) of the BigBite magnet showing
the magnetic field boundary and the large pole face gap.

Figure 2-19: A side view (left) and top view (right) of the BigBite spectrometer
during this experiment.
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Figure 2-20: A side view of the BigBite detector package during this experiment.

• a pre-shower counter.

• a scintillator plane.

• a shower counter.

The scintillator plane consists of 13 scintillator paddles with PMTs on both sides, and

each paddle has a size of 17×64×4 cm. The pre-shower counter has 2×27 lead glass

blocks (8.5 × 8.5 × 37 cm), and each block is oriented perpendicular to the particle

tracks. The shower counter has 7 × 27 lead glass blocks and are aligned parallel to

the tracks. The signal detected by lead glass blocks is linearly proportional to the

energy deposited by the incoming particle [147]. Electromagnetic showers develop in

the counter, whereas hadronic showers do not due to the longer hadronic mean free

path. Therefore, the longitudinal distribution of the energy deposited in the counter

can be used to identify the incident particles.

The HV for both the pre-shower and shower counters were calibrated by cosmics

before the experiment. Since the kinematics can be well determined from the hadron

arm for the elastic events, trajectory information is not required on the BigBite side.
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Figure 2-21: The BigBite shower counter hit pattern for kinematics K8, δp = -2%.
The hot region corresponds to the elastic electrons. For production data taking, only
the shower blocks inside the ellipse were on.

Therefore, only the shower counters were turned on during the production data taking

to tag the electrons and form the coincidence trigger. The pre-shower counter was

turned off to further reduce the background. Fig. 2-21 is an example of the shower

rate pattern for one of the kinematics settings. The hot region corresponds to the

elastic peak on the left HRS.

2.7 Hall A Data Acquisition System

The Hall A data acquisition (DAQ) system used CODA (CEBAF On-line Data Ac-

quisition) [148] developed by the Jefferson Lab Data Acquisition Group.

CODA is a tool kit composed of a set of software and hardware packages from

which a data acquisition system can be constructed which will manage the acquisition,

monitoring and storage of data of nuclear physics experiments. The DAQ includes

front-end Fastbus and VME digitization devices (ADCs, TDCs and scalers), the VME

interface to Fastbus, single-board VME computers running VxWorks operating sys-

tem, Ethernet networks, Unix or Linux workstations, and a mass storage tape silo
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(MSS) for long-term data storage. The custom software components of CODA are:

• a readout controller (ROC) which runs on the front-end crates to facilitate the

communication between CODA and the detectors.

• an event builder (EB) which caches incoming buffers of events from the different

controllers then merges the data streams in such a way that data which was

taken concurrently in time appears together.

• an event recorder (ER) to write the data built by EB to the disk.

• an event transfer (ET) system which allows distributed access to the data stream

from user processes and inserts additional data into the data stream every a few

seconds from the control system.

• a graphical user interface (Run Control) to set experimental configuration, con-

trol runs, and monitor CODA components.

A recorded CODA file consists the following major components:

• Header file including a time stamp and other run information like run number,

pre-scale factors and event number.

• CODA physics events from the detectors.

• CODA scaler events: the DAQ reads the scaler values every 1− 4 seconds and

feeds them into the main data stream. Since counted by stand-alone units, the

scaler values are not effected by the DAQ dead time; therefore, they can be

used to correct DAQ dead time.

• EPICS [142] data from the slow control software used at JLab, e.g., the spec-

trometer magnet settings and angles, target temperature and pressure, etc.

2.8 Trigger Setup

In this experiment, six different types of triggers were generated and used in the

data acquisition. T1 and T3 are singles triggers from the electron arm (BigBite)
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Figure 2-22: Left HRS single arm triggers diagram during E08-007.

and the hadron arm (L-HRS) respectively. T4 is the left HRS scintillator trigger

used for trigger efficiency. T5 is the coincidence trigger of T1 and T3. T7 is the

BigBite cosmic trigger for testing. T8 is the EDTM pulser trigger used to measure

the trigger efficiency. The trigger system was built from commercial CAMAC and

NIM discriminators, delay units, logic units and memory lookup units (MLU).

2.8.1 Signal Arm Trigger

T3 was formed by requiring that both scintillator planes S1 and S2 have at least one

fired scintillator bars (both phototubes fired) and they are close enough to form a

valid track. Thus, this main trigger requires four fired PMTs. The T3 trigger diagram

is illustrated in Fig. 2-22.
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T1 was formed by the BigBite shower total sum as illustrated in Fig. 2-23. The

total sum (TS) was defined as the sum of all the pre-shower (PS) and shower (SH)

ADCs of the two adjacent rows, e.g.,

PS1sum = PS1L+ PS1R+ PS2L+ PS2R, (2.8)

SH1sum = SH11 + SH12 + · · ·+ SH17 + SH21 + SH22 + · · ·+ SH27, (2.9)

TS1 = PS1sum + SH1sum. (2.10)

The electron trigger was given by the “OR” of the total sum signals.

2.8.2 Coincidence Trigger

The diagram of coincidence triggers is shown in Fig. 2-24. Coincidence trigger T5 is

simply an “AND” of T1 and T3 triggers.

2.8.3 Trigger Selection

A summary of triggers used in E08-007 is listed in Table 2.6. After generated, all types

of triggers have their copies sent to a scaler unit for counting and a trigger supervisor

(TS) unit to trigger data acquisition. The TS unit has a pre-scale function. If the

pre-scale factor for a specific trigger type is N , then only 1 out of N triggers of that

type is recorded in the data stream. This function is very useful to decrease the

computer dead time caused by frequent data recording while keeping all the events

with useful physics information. Therefore, during the production data taking, all the

single arm triggers were highly pre-scaled, and all the T5 (coincidence) trigger events

were kept in the data stream. The rates of each trigger after the pre-scale factors are

also listed in Table 2.6.
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BigBite Trigger Logic for E08-007
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Figure 2-23: The BigBite trigger diagram during E08-007.

Trigger Definition Rate after pre-scale
T1 electron arm singles (total shower sum) ∼ 20 Hz
T3 hadron arm singles (S1 AND S2) ∼ 20 Hz
T4 hadron arm efficiency (S1 OR S2) ∼ 10 Hz
T5 coincidence (T1 AND T3) ∼ 2200 Hz
T8 EDTM pulser (1024 Hz) 10 Hz

Table 2.6: Trigger summary for E08-007.
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Figure 2-24: Coincidence trigger diagram during E08-007.
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Chapter 3

Data Analysis I

3.1 Analysis Overview

The Hall A C++ Analyzer [149] was used to replay the raw data and generate the

processed data files for this experiment. The Analyzer was developed by Hall A soft-

ware group and is based on ROOT [150], a powerful object-oriented framework that

has been developed at CERN by and for the nuclear and particle physics commu-

nity. From the replayed data files, the proton form factor ratio was extracted by the

weighted sums technique [151].

The flow-chart of the E08-007 analysis procedure is illustrated in Fig. 3-1. The raw

data recorded from the detectors were first transformed into ntuples by the Analyzer

after calibration. The recoil proton’s second scattering angle was extracted from the

FPP reconstruction. The spin transport matrix were generated by COSY (a model

simulating the spectrometer transport system). With these inputs, the recoil proton

polarization and hence the form factor ratios were extracted by the main analysis

code PALM [152].

3.2 HRS analysis

The particle trajectory at the focal plane of the left HRS is determined by raw wire

hits and drift times in the VDCs. These trajectories are transported from the focal
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Figure 3-1: The flow-chart of the E08-007 analysis procedure.

plane to the target using a calibrated “optics” matrix of the spectrometer. The

reconstructed target quantities (momentum and angles) allow for the determination

of the kinematics of each event. For this experiment, these target quantities are

important in another way as the inputs for the spin transport matrix calculation,

which determines the recoil proton polarization at the target.

3.2.1 Definition of Hall A coordinate systems

In this section, a short overview of Hall A coordinate conventions is presented. More

details can be found in reference [140].

Hall Coordinate System (HCS)

The origin of the HCS is defined by the intersection of the electron beam and the

vertical symmetry axis of the target system. ~z is along the beam line and points in

the direction of the beam dump, and ~y is vertically up, see Fig. 3-2.
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Figure 3-2: Hall coordinate System (top view).

Target Coordinate System (TCS)

The TCS is defined with respect to the central axis of the spectrometer. A line

perpendicular to the sieve slit surface of the spectrometer and going through the

midpoint of the central sieve slit hole define the ~ztg-axis. The ~ytg-axis points to the

right facing the spectrometer, and ~xtg-axis is vertically down as illustrated in Fig. 3-3.

In the ideal case where the spectrometer is pointing directly at the hall center and

the sieve slit is perfectly centered on the spectrometer, the TCS has the same origin

as HCS. However, it typically deviates from HCS center by Dx and Dy in the vertical

and horizontal directions in TCS, respectively, and the offsets are given by surveys.

The distance of the midpoint of the collimator from the TCS origin is defined to be

the length L for the spectrometer. The out-of-plane angel θtg and the in-plane angle

φtg are given by the tangent of the real angle, dxsieve/L and dysieve/L.

The TCS variables are used to calculate the scattering angle and the reaction point

along the beam line for each event. Combined with the beam positions (measured in

the Hall coordinate system), the scattering angle and reaction point are given by:

θscat = arc cos




cos(θ0)− φtg sin(θ0)
√

1 + θ2tg + φ2
tg



 (3.1)
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zreact =
−(ytg +Dy) + xbeam(cos(θ0)− sin(θ0))

cos(θ0)φtg + sin(θ0)
, (3.2)

where θ0 denotes the spectrometer central angle. The in-plane and out-of-plane angles

can be determined using sieve hole positions:

φtg =
ysieve +Dy − xbeam cos(θ0) + zreact sin(θ0)

L− zreact cos(θ0)− xbeam sin(θ0)
(3.3)

θtg =
xsieve +Dx + ybeam

L− zreact cos(θ0)− xbeam sin(θ0)
(3.4)

and the position at the target is given by:

ytg = ysieve − Lφtg (3.5)

xtg = xsieve − Lθtg. (3.6)
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Detector Coordinate System (DCS)

The Detector Coordinate System (DCS) is defined by the positions of the VDC planes.

The intersection of wire 184 of the VDC1 U1 plane and the perpendicular projection

of wire 184 in the VDC1 V1 plane onto the VDC U1 plane defines the origin of the

DCS. ~z is perpendicular to the VDC planes pointing vertically up, ~x is along the long

symmetry axis of the lower VDC pointing away from the hall center (see Fig. 3-4).

Using the trajectory intersection points pn (where n = U1, V1, U2, V2) with the

four VDC planes, the coordinates of the detector vertex can be calculated from the

following expressions:

tan(η1) =
pU2 − pU1

d2
(3.7)

tan(η2) =
pV2 − pV1

d2
(3.8)

θdet =
1√
2
(tan(η1) + tan(η2)) (3.9)
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φdet =
1√
2
(− tan(η1) + tan(η2)) (3.10)

xdet =
1√
2
(pU1 + pV1 − d1 tan(η2)) (3.11)

ydet =
1√
2
(pU1 + pV1 − d1 tan(η2)) (3.12)

where d1 = 0.115 m is the distance between the U and V planes in both chambers,

and d2 = 0.335 m is the distance between the two planes.

Transport Coordinate System (TRCS)

The TRCS at the focal plane is generated by rotating the DCS clockwise around its

y-axis by 45◦. It’s typically used as a intermediate position state from DCS to the

FCS (focal plane coordinate system), which will be described in the next section; the

bending angle related to the spin transport can also be calculated from the difference

of the out-of-plane angles (θtg − θtr) between the TCS and TRCS. The transport

coordinates can be expressed in terms of the detector coordinates as follows:

θtr =
θdet + tan(ρ0)

1− θdet tan(ρ0)
(3.13)

φtr =
φdet

cos(ρ0)− θdet sin(ρ0)
(3.14)

xtr = xdet cos(ρ0)(1 + θtr tan(ρ0)) (3.15)

ytr = ydet + sin(ρ0)φtrxdet, (3.16)

where ρ0 = −45◦ is the rotation angle, see Fig. 3-5.

Focal Plane Coordinate System (FCS)

The focal plane coordinate system (FCS) chosen for the HRS analysis is a rotated

coordinate system. Because of the focusing of the HRS magnet system, particles from

different scattering angles with the same momentum will be focused at the focal plane.

Therefore, the relative momentum from the central momentum of the spectrometer,
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which is selected by the HRS dipole magnet field setting,

δ =
∆p

p0
=
p− p0
p0

, (3.17)

is approximately only a function of xtr, and p0 in the formula stands for the central

momentum setting of the HRS. The FCS is obtained by rotating the DCS around

its y-axis by an varying angle ρ (xtr) to have the new z-axis parallel to the local

central ray, which has the scattering angle θtg = φtg = 0 for the corresponding δ at

position xtr (see Fig. 3-6). In this rotated coordinate system, the dispersive angle θfp

is small for all the points across the focal plane, and the distribute is approximately

symmetric with respect to θfp = 0. This symmetry greatly simplifies further optics

optimization.

With proper systematic offsets added, the coordinates of focal plane vertex can

119



be written as follows:

xfp = xtr (3.18)

tan(ρ) =
∑

ti000x
i
fp (3.19)

yfp = ytra −
∑

yi000x
i
fp (3.20)

θfp =
xdet + tan(ρ)

1− θdet tan(ρ)
(3.21)

φfp =
φdet −

∑
pi000x

i
fp

cos(ρ0)− θdet sin(ρ0)
. (3.22)

The coordinate transformation is not unitary and we have xfp equal to xtr for sim-

plicity.

3.2.2 Target Variables Reconstruction

For each event, two angular coordinates (θdet and φdet) and two spatial coordinates

(xdet and ydet) are measured at the focal plane detectors. The position of the particle

and the tangent of the angle made by its trajectory along the dispersive direction

are given by xdet and θdet, while ydet and φdet give the position and tangent of the

angle perpendicular to the dispersive direction. These variables are corrected for any

detector offsets from the ideal central ray of the spectrometer to obtain the focal plane

coordinates xfp, θfp, yfp and φfp. The focal plane observables are used to reconstruct

the variables in the target system by matrix inversion.

The first order optics matrix can be expressed as,













δ

θ

y

φ













tg

=













< δ|x > < δ|θ > 0 0

< θ|x > < δ|θ > 0 0

0 0 < y|y > < y|φ >
0 0 < φ|y > < φ|φ >













·













x

θ

y

φ













fp

. (3.23)

The null tensor elements result from the mid-plane symmetry of the spectrometer.

In practice, the expansion of the focal plane coordinates is performed up to the fifth

order. A set of tensors Djkl, Tjkl, Yjkl and Pjkl relates the focal plane coordinates to
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the target coordinates according to [153]

δ =
∑

jkl

Djklθ
j
fpy

k
fpφ

l
fp (3.24)

θtg =
∑

jkl

Tjklθ
j
fpy

k
fpφ

l
fp (3.25)

ytg =
∑

jkl

Yjklθ
j
fpy

k
fpφ

l
fp (3.26)

φtg =
∑

jkl

Pjklθ
j
fpy

k
fpφ

l
fp, (3.27)

where the tensors Djkl, Tjkl and Pjkl are polynomials in xfp. For example,

Djkl =
m∑

i=0

CD
ijklx

i
fp. (3.28)

The optics matrix used in this experiment was optimized for the Transversity [144] ex-

periment. The core of the optimization program is the TMinuit package of ROOT [150].

This package varies the optics matrix parameters to minimize the variance σ2 of the

reconstructed data from their actual values.

3.2.3 Focal Plane Polarimeter Reconstruction

As the key instrument to measure the recoil proton polarization, the FPP recon-

structs the second scattering angles of the proton in the analyzer. There are basically

four steps: identifying the wires that have fired, calculating the drift distances, re-

constructing the tracks in the front and rear chambers, and determining the second

scattering angles. All the steps are done in the Analyzer program by incorporating

the FPP tracking library.

Demultiplexing

As noted in Section 2.5.4, the signals from the sense wires are multiplexed in groups

of eight to decrease the number of TDCs. By assigning a different pulse width to each

straw of the group, one can make a cut to identify which wire fired. Fig. 3-7 is an

example of the raw pulse width spectrum from one wire group. Then the signal has to
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Figure 3-7: The TDC width of the u1 wire group and the demultiplexing cut.

be demultiplexed in the analysis. The straw group, the leading edge and the trailing

edge of the TDC signal are fed into Analyzer, which calculates two time differences:

the difference between the trigger signal (common stop) and the leading edge gives

the drift time, while the difference between the leading edge and the trailing edge

identifies which straw fired in the group.

Once the drift time for each wire that fired has been determined, one can convert

it into the drift distance; and hence, the tracks can be reconstructed in the chambers.

First, an offset is applied to the drift time spectrum, to correct for various delays in

the electronics. Except when the event passes very close to the anode wire, the drift

distance is proportional to the drift time.

When the particle approaches the anode wire, the electric field becomes strong

enough for secondary ionization, which starts an avalanche. In this region, the drift

velocity increases near the sense wire, and the drift distance d is obtained from a

fifth-order polynomial in drift time t:

d =
5∑

n=0

T (j, n)tn, (3.29)

where T (j, n) are obtained from fitting the integrated drift time spectra for a plane

j. These coefficients were all re-calibrated for this experiment. More details of the
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FPP calibration can be found in [154].

Track Reconstruction

Using the FPP library in the Analyzer, the raw data were replayed and the tracks

were reconstructed in the straw chambers. The front and rear chambers were analyzed

separately to produce both a rear and front track. For each set of chambers, the u

and v directions are also analyzed separately. The x planes in chamber 3 were not

used1.

The first step is to identify hit clusters in the sets of u planes of each chamber. In

this set, a cluster can have at most one hit per plane. The code searches for a track

by looking at the adjacent straws first. In Fig. 3-8, the colored circles stands for the

fired straws. The code looks at the top plane and finds a hit in S12, then it looks in

the second plane at the straws adjacent to S12. It finds that S21 fired, then S12 and

S21 start to form a cluster. When it looks further to the third plane, at straws that

are adjacent to S21 or S22 which are both adjacent to S12 even though S22 didn’t fire.

It finds S31 and forms the first cluster (S12 → S21 → S31), S33 also fired and forms

another cluster (S12 → S22 → S33). The area around S12 is now all scanned, so the

code starts looking at the rest of the first plane. It finds S15, and finds nothing else

in this cluster on the next planes. When the entire first plane has been scanned, it

goes to the second plane. A hit is found at S27, which forms a cluster with S37. When

looking at the third plane, no hit is found that is not already included in a cluster so

the procedure is complete. As a results, the code has found a total of four clusters:

(S12 → S21 → S31), (S12 → S22 → S33), (S15), (S27 → S37).

The same procedures are applied to the second chamber. All combinations of pairs

of clusters in both chambers are considered. For each combination, several tracks are

reconstructed. From the drift distance, the track can be passing left or right of the

sense wire of every fired straw, therefore, there are 4 track possibilities with two given

drift distance, as illustrated in Fig. 3-9. Straight lines are then fitted, and a χ2 for

1The original design of the x plane is to provide additional information of the out-of-plane posi-
tion, but it was found later that the u and v planes were sufficient.
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Figure 3-8: Illustration of the procedure to find clusters in a FPP chamber. The
three layers represent the three planes, and the circles are cross-sectional cuts of the
straws. The filled circles represent the fired straws.

each possible trajectory is calculated. Since it is easier for a cluster with very few

hits to give a very good χ2, a weight is give to the χ2 corresponding to the number of

hits for the track. The track with the lowest χ2 is then considered as the good track.

The procedure is repeated for the v direction.

Chamber Alignment

In order to determine the proton scattering angle in the carbon analyzer, the positions

of the chambers have to be well known so that the second scattering angles φfpp and

θfpp are correctly reconstructed. To achieve the precision of ∆φfpp ∼ ∆θfpp ∼ 1

mrad, a software alignment was applied. This procedure is crucial for two reasons.

First, what we measured is the phase shift of the azimuthal angle φfpp, therefore, any

rotation between the front chambers and the rear chambers will directly shift φfpp.

Second, what we really care about is the proton polarization at the target; therefore,

the FPP front and rear chambers have to be aligned with respect to a well known

coordinate system so that the second scattering angle is calibrated referring to that

coordinates system and can easily be related to the target frame. As described in

Section 3.2.1, the transport coordinate system (TRCS) defined by the VDCs is a

convenient choice. By taking “straight-through” data with the carbon door open, the

trajectory determined by the FPP should coincide with the trajectory reconstructed
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Figure 3-9: 4 possible tracks for two given fired straws with given drift distances d1
and d2. The good track is the one with the lowest χ2 when taking into account all
planes of all chambers.

by the VDCs after alignment has been completed.

There are two different methods to do the alignment. In the first approach, a

software procedure is applied to fit the alignment offset parameters u0, v0, z0, and

the rotation angles θzu, θzv, θuv, by minimizing the trajectory difference between the

VDCs and the FPP. The advantage of this method is the direct link between the

alignment parameters and the physical offsets of the chambers.

For this experiment, the alignment procedure was done by the second approach,

which was developed for experiment E93-049 [155]. Compared to the chamber align-

ment approach mentioned above, this method directly applies a correction to the

reconstructed track instead of the individual chambers. It first aligns the front cham-

ber track with respect to the VDC track, and then the rear chamber track is aligned

with respect to the well aligned front chamber track. The alignment parameters ob-

tained with this method are not easily related to the physical offsets or rotations, but

the extension to higher order corrections is straight forward. The detailed alignment

algorithm is presented in Appendix B. For high precision measurements, the previ-

125



ous experiment analysis [155] showed that using the second method by extending the

corrections with higher order terms can achieve better results.

The “straight-through” data (electron) was taken during experiment E04-007 [156],

which ran just before this experiment2. The histograms of the track difference (xdiff ,

ydiff , θdiff , φdiff) between the VDCs and the FPP front chambers before (black)

and after (red) the software alignment are shown in Fig. 3-10. As one can see, the

differences are well centered at 0 after the alignment.

Another way to see the alignment quality is by looking at zclose, which is the

location along the spectrometer axis of closest approach between the front and rear

FPP tracks and stands for the second scattering vertex in the carbon analyzer. For

the ideal alignment, the reaction vertex should not depends on the azimuthal angle

φfpp, so the plot of zclose versus φfpp should be “straight” in the zclose dimension,

with sharply defined edges centered at the physical position of the carbon analyzer.

Fig. 3-11 shows a plot before and after the alignment. One can obviously see the

“snake” shape is gone after the alignment.

Scattering Angle Calculation

For the determination of the polar and azimuthal angles of the second scattering, one

first needs to rotate the coordinates system so that its z-axis is along the momentum

of the incident track, and then express the scattered track in this new coordinate

system.

As shown in Fig. 3-12, for the incident track ~f in the transport coordinates system,

~z is along the spectrometer axis at the focal plane, ~x is perpendicular to ~z and

vertically down, and ~y = ~z × ~x. θf and φf are the Cartesian angles: θf is the angle

between the projection of the track on the x− z plane and the z-axis, and φf is the

angle between the projection on the y − z plane and the z-axis. For convenience, we

define ψf as the angle between the track and its projection on the y − z plane, and

2The FPP chambers were installed before experiment E04-007 took data and were not touched
until this experiment was finished.

126



x_diff_f [cm]
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

L.fpp.x_diff_f

y_diff_f [cm]
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

L.fpp.y_diff_f

th_diff_f [deg]
-3 -2 -1 0 1 2 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

L.fpp.th_diff_f

ph_diff_f [deg]
-3 -2 -1 0 1 2 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

L.fpp.ph_diff_f

Figure 3-10: The difference between the VDC track and the FPP front track before
(in black) and after (in red) the chamber alignment. The difference is centered at 0
after the alignment.
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Figure 3-11: φfpp versus zclose before and after the FPP chamber alignment.
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the relation between the angles is:

tanψf = tan θf cosφf , (3.30)

Therefore, the rotation can be decomposed into two rotations: first, a rotation of the

y − z plane around the x-axis by an angle φf , and followed by a second rotation by

angle ψf so that the new z′-axis lies along the incident track. The new projection of

the incident track ~f is given by:
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Similarly, the new projection of the scattered track ~r is now:
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. (3.32)

We can now define the scattering angles (θfpp, φfpp) as the spherical angles of the

scattered track in this new coordinate system as illustrated in Fig. 3-13. If ~r0 is the
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Figure 3-13: Spherical angles of the scattering in the FPP.

projection of ~r on the x′ − y′ plane, we have:

r20 = r′2x + r′2y , (3.33)

θfpp = tan−1(
r0
r′z
), (3.34)

φfpp = tan−1(
r′x
r′y
). (3.35)

3.3 Events Selection

Before we extracts the physics asymmetries, a series of cuts were applied to select the

elastic events and to minimize the experimental systematic uncertainties.

3.3.1 HRS Cuts

One-Track-Only Cut

First, the one-track-only cut was applied to the events reconstructed from VDC clus-

ters. The drift times range from 0 to 360 ns. In the Analyzer, a software cut of 400 ns

is applied after the first wire fires to ensure the completeness of the track searching.

If only one track is observed in an event, the track reconstruction will be accurate. If

multiple tracks for an event are found in the analysis, the first track reconstruction

may be distorted due to the interference of a nearby second track. This cut removes
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Figure 3-14: Left HRS VDC track number distribution.

∼ 1.5% of the total events (see Fig. 3-14).

η(ONE) =
N(ntrack = 1)

N(ntrack) > 0
∼ 98.5% (3.36)

HRS Acceptance Cut

As mentioned in Section 2.5, the HRS has a finite momentum and angular acceptance.

Events with the target coordinates reconstructed outside the physical acceptance need

to be cut out. On the other hand, since this experiment measures the helicity depen-

dent asymmetry difference at the focal plane, precise knowledge of the acceptance is

not required compared to an absolute cross section measurement. In order to avoid

potential problems arising from the spin transport at the edge of the acceptance,

relatively tight cuts were applied compared to the HRS nominal acceptance. The

reaction vertex cut was also applied (ytg) to reduce the number of events from the

quasi-elastic scattering off the aluminum end cap. Typical cuts on different target

variables are shown in Fig. 3-15.
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Figure 3-15: HRS acceptance cuts for kinematic setting K5 δp = 0%.

Elastic Cut for the Hadron Arm

Since during the production of this experiment, only part of the BigBite shower

blocks were turned on, we cannot reconstruct the electron kinematics. However, due

to the small acceptance and high resolution of the HRS, the elastic kinematics are

well determined by the hadron arm. The beam energy (∼ 1.2 GeV) is low enough so

that the inelastic background channel is highly suppressed. By placing constraints

on the proton elastic kinematics, the background is further suppressed within the

acceptance.

We applied an elastic cut on the proton “dpkin”, which is the angle-corrected

δp. The resolution of “dpkin” represents the momentum and angular resolution of

the hadron spectrometer. With sufficient statistics, we applied a tight cut on the

proton elastic peak to keep ∼ 80% of the elastic events. This cut corresponds to a 2

dimensional cut on the proton angle versus momentum (see Fig. 3-16).

This elastic cut minimizes the contributions from the radiative tail, inelastic events
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Figure 3-16: Elastic cut on dpkin (left), and the corresponding 2D cut on the proton
angle θp versus momentum δp.

and the background due to the proton re-scattering inside the spectrometer3 without

sacrificing too many of the elastic events.

3.3.2 Other Cuts

Although most the singles triggers were pre-scaled away during the experiment, there

were still ∼ 20 Hz T1 and T3 events left in the data stream. An event-type cut was

applied to select the coincidence trigger T5.

A coincidence timing cut was applied to the TDC spectrum of T3. The accidental

background under the elastic cut is ∼ 0.3%. Since the accidental background is still

dominated by the elastic singles, the reconstructed proton polarization outside the

cut is similar to the events inside; hence, we do not expect background from these

events to produce any noticeable effect.

3.3.3 BigBite Replay

During this experiment, the BigBite shower counter was used to tag the scattered

electrons and form the coincidence trigger. The entire pre-shower counter and part of

the shower blocks outside the elastic peak were turned off during the production data

3This becomes crucial for low momentum protons, since the re-scattering can change the mo-
mentum and direction of the proton at the focal plane while the reconstruction is still within the
acceptance. The spin transport is totally different for this type of events.
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Figure 3-17: The BigBite pre-shower ADC sum versus shower ADC sum with (right
panel) and without (left panel) the coincidence trigger cut (T5). The low energy
background were highly suppressed with the coincidence configuration.

taking to reduce the background. To ensure we turned on the right shower counter

region, we did test runs after every kinematic setting change in which both the pre-

shower and shower counters were turned on to locate the electron elastic peak (see

Fig. 3-18).

From these test runs, the electron energy deposited in the pre-shower and shower

counters were reconstructed. Fig. 3-17 shows the BigBite shower ADC sum versus

the pre-shower ADC sum when both of them were turned on, with and without the

coincidence cut (T5). Clearly, the coincidence trigger can effectively suppress the

pions and low energy electrons. Additionally, the plots of the proton acceptance with

BigBite shower y > 0 (y < 0) (see Fig. 3-19), directly demonstrate the correlation

between the electrons and the protons.

3.3.4 FPP Cuts

Scattering Angle Cut

In order to select the correct reconstructions of the second scattering in the FPP,

several cuts were applied on the FPP variables. First, a cut was applied on the polar

scattering angle: 5◦ < θfpp < 25◦. This cut removes the small scattering angle events,

which are dominated by Coulomb scattering with little analyzing power, and the

larger scattering angle events, which have large instrumental asymmetry and smaller
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Figure 3-18: BigBite shower counter hit pattern in the upper panel and the profiles
on x (vertical) and y (horizontal) in the left and right panels, respectively.
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Figure 3-20: The distribution of the FPP polar scattering angle θfpp and the applied
cut.

analyzing power. Fig. 3-20 shows an example of the θfpp distribution and the applied

cut.

Scattering Vertex Cut

In order to ensure that the scattering originated from within the carbon block, a tight

cut on the reaction vertex was applied. Due to the imperfect alignment of the FPP

chambers, a manual correction was applied to zclose along the azimuthal scattering

angle φfpp. In this procedure, a set of coefficients were generated along φfpp by the

profile of the 2D plot of φfpp versus zclose. After this correction, a straight line cut

was applied to the corrected zclose. Fig. 3-21 shows the plot of φfpp versus zclose

after the correction, and the applied cut4.

The correlation between the FPP front track and rear track is represented by

sclose, which is the distance of the closest approach between these two tracks. To

ensure the quality of the FPP tracking, a cut on sclose of 2 cm or less was applied

(see Fig. 3-22).

4The purpose of this correction is to make the cut simpler, and it doesn’t change the FPP
alignment.
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Figure 3-21: Cut applied to zclose after the manual correction for setting K2 δp = 0%.
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Figure 3-22: sclose distribution and cut applied to it for setting K2 δp = 0%.
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Figure 3-23: The cone-test in the FPP. The cone of angle θfpp around track 1 is
entirely within the rear chambers acceptance, while the one around track 2 is not.
Track 2 fails the cone-test and is rejected.

Cone-test Cut

To avoid large non-physical asymmetries arising at the edges of the rear chambers

due to the limited size, a cone-test was applied. For a scattering angle θfpp, if the

entire cone of angle θfpp around the incoming track is within the acceptance of the

rear chamber, this event passes the cone-test. As illustrated in Fig. 3-23, track 1

passes the cone test, while track 2 fails and is rejected. This test eliminated ∼ 15%

of the events. Most of the rejected events have a scattering angle larger than 20◦.
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3.4 Recoil Polarization Extraction

For the events passing all the cuts described in the previous section, the recoil polar-

ization and the form factor ratio was extracted. In this section, the distribution of the

scattering angle of the recoil proton in the FPP is analyzed. With the reconstruction

of the spin precession through the spectrometer, the proton polarization is extracted.

In addition, the discussion of the carbon analyzing power is presented.

3.4.1 Angular Distribution

For the polarization measurement of the recoil proton, the events of interest are those

that have scattered in the carbon analyzer via the strong interaction with a carbon

nucleus. As illustrated in Fig. 3-24, the interaction between the polarized proton and

an analyzer nucleus is sensitive to the direction of the incident proton’s spin through

a spin-orbit coupling. A left-right asymmetry in the scattering will be occurred if

the proton spin is preferentially up or down. The sign of the force is determined by

the sign of ~L · ~S scalar product, where ~L is the orbital angular momentum of the

proton with respect to the analyzer nucleus, and ~S is the proton spin. Protons are

scattered to the left with spins up and to the right with spin down (corresponding

to the polarization of the incident proton). Hence, an asymmetry in the horizontal

direction will be observed. Similarly, an vertical asymmetry will be observed when the

polarization is along the horizontal direction. However, the longitudinal component

does not result in an asymmetry.

In general, the angular distribution for a large sample of incident polarized pro-

tons is expressed by a sinusoidal function of the vertical P fpp
x and horizontal P fpp

y

polarization components:

f±(θ, φ) =
1

2π
ǫ(θ, φ)(1± Ay(θ, Tp)(P

fpp
x cos φ− P fpp

y sinφ)), (3.37)

where ± refers to the sign of the beam helicity. In this expression, ǫ(θ, φ) is the

normalized efficiency, which describes the non-uniformities in the acceptance due to
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Figure 3-24: Polarimetry principle: via a spin-orbit coupling, a left-right asymmetry
is observed if the proton is vertically polarized.
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chamber misalignment and detector inefficiency. Ay(θ, Tp) is the analyzing power of

the reaction A(p,N)X , which represents the strength of the spin-orbit coupling of

the nuclear scattering, thus the sensitivity to the incident particle polarization. The

analyzing power depends on the scattering polar angle θ and the proton kinetic energy

Tp.
5 For Coulomb scattering, there is no analyzing power, since there is no spin-orbit

coupling.

3.4.2 From Focal Plane to the Target Frame

The FPP measures the proton polarization at the focal plane, however, the form

factor ratio GEp/GMp is obtained from the polarization in the target frame; hence,

the measured polarization at the FPP has to be transported to the one at the target.

The relation between the polarization components in these two frames is complicated

due to the proton spin precession through the spectrometer magnets.

Dipole Approximation

Before we try to fully describe the spin transport through the spectrometer, a simple

approximation can be used by considering a single perfect dipole, as illustrated in

Fig. 3-25. With only a transverse field with respect to the particle momentum, the

spin rotates along the y-axis. In this case, the spin precession angle is a simple

function of the trajectory bending angle Θbend:

χ = γ(µp − 1)Θbend, (3.38)

where γ = 1/
√
1− β2. The HRS dipole central bending angle is ∼ 45◦; in this

approximation, the relation between the polarization components at the target and

5The details of the analyzing power analysis are presented in Section 3.4.4.
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at the focal plane is:
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Note that the transverse component Py does not precess, since it is parallel to the

magnetic field. As mentioned earlier, in the one-photon-exchange approximation,

the ep elastic scattering process has no induced polarization, which means that the

normal part of the polarization is:

Px = 0. (3.40)

Since the FPP can measure only the two perpendicular components to the momentum

at the focal plane, the relation in Eq. 3.39 is further simplified:






P fpp
x

P fpp
y




 =






0 sinχ

1 0











Py

Pz




 . (3.41)
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Using the angular distribution function from Eq. 3.37, the polarization components

at the focal plane can be extracted. By taking the difference of the distributions with

respect to two beam helicities, the efficiency term cancels in the first order. Assuming

the efficiency is fairly uniform over the FPP so that the higher order terms can be

ignored, the asymmetry difference distribution has the simple form:

f diff = f+ − f− ≈ 1

π
[Ay(P

fpp
x cosφ− P fpp

y sin φ)]. (3.42)

This expression can be written equivalently as:

f diff = C cos(φ+ δ), (3.43)

where:

C =
1

π

√

(P fpp
x )2 + (P fpp

y )2

tan δ =
P fpp
y

P fpp
x

. (3.44)

In the simple dipole approximation (Eq. 3.41), P fpp
y is equal to the transverse com-

ponent at the target frame Py, which is proportional to the product GEpGMp, and

P fpp
x is related to the longitudinal component which is proportional to G2

Mp, via

P fpp
x = sinχPz. Therefore, the phase shift of the helicity difference distribution is a

direct measure of GEp/GMp:

GEp

GMp
= K

Py

Pz
≈ K sinχ

(

P fpp
y

P fpp
x

)

, (3.45)

where K = E+E′

m
tan2(θe/2).

Fig. 3-26 presents the helicity difference f diff and a fit to the data. The black

solid curve is a sinusoidal fit to the data (K6, δp = 0%), with a χ2 of 0.94 per degree

of freedom. The dashed light blue curve is a hypothetical distribution assuming

µpGEp/GMp = 1, as predicted by the dipole model. By zooming in this figure, one can

see a small but clear deviation between these two curves in Fig. 3-27, which is a direct
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Figure 3-26: Asymmetry difference distribution along the azimuthal scattering angle
φfpp at kinematics K6 (Q2 = 0.5 GeV2). The black solid curve represents the sinu-
soidal fit to the data (χ2/ndf = 0.94). The dashed light blue curve corresponds to a
hypothetical distribution assuming µpGEp/GMp = 1 in dipole approximation.

indication that the form factor ratio deviates from unity in dipole approximation.

Full Spin Precession Matrix and COSY

In reality, the spectrometer magnets are more complicated than just a simple perfect

dipole. First, the field is not uniform inside the dipole, it is distorted by the fringe

fields at the entrance and exit apertures. In addition, there are three quadrupoles

that have field components in both x and y directions; hence, the matrix that relates

the two polarizations measured in the FPP and in the target frame takes the general

form: 








P fpp
x

P fpp
y

P fpp
z










=










Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



















Px

Py

Pz










. (3.46)

The coefficients Sij depend on the trajectory of the proton as it passes through the

spectrometer. Within the HRS acceptance, the protons recoiling with different angles
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Figure 3-27: Close up view of Fig. 3-26. The black solid curve represents the sinu-
soidal fit to the data, while the dashed light blue curve corresponds to a hypothetical
distribution assuming µpGEp/GMp = 1 in dipole approximation. There is ∼ 2◦ shift
between these two curves at the zero crossing.

and momenta at the target frame have different trajectories inside the spectrometer,

they experience different magnetic fields along their trajectories, and hence, their

spin precession is different. Therefore, the coefficients are calculated event by event

to account for this difference in path length.

The COSY model was used to calculate the spin precession matrices. It is a differ-

ential algebra-based code written by M. Berz of the Michigan State University [157].

This model is originally developed for the simulation, analysis and design of particle

optics systems. COSY takes the dimensions and positions of the magnetic elements,

such as the diameter and the path length of the magnet, the central momentum

of the particle, etc. as the inputs. The fringe fields are also taking into account

by a set of coefficients that were determined from measurements when Hall A was

commissioned. With all these ingredients, COSY calculates a table of the expansion

coefficients Cklmnp
ij of the rotation matrix. This matrix is calculated event by event

based on the particle trajectory variables located at the target coordinate system

144



(TCS), which is defined in Section 3.2.1:

Sij =
∑

k,l,m,n,p

Cklmnp
ij rk1r

l
2r

m
3 r

n
4 r

p
5 (3.47)

where:

r1 = x (3.48)

r2 = px/p0 (3.49)

r3 = y (3.50)

r4 = py/p0 (3.51)

r5 = δK = (K −K0)/K0. (3.52)

x and y are the positions, p0 and K are the particle momentum and kinetic energy6

respectively. From Eq. 3.46, the transverse polarization component at the focal plane

is P fpp
y = SyyPy + SyzPz. Compared to the dipole approximation, the non-zero term

Syz brings the contribution from the longitudinal target component Pz; this term

is mainly due to the precession of the spin in the non-dispersive direction from the

quadrupoles, which is neglected in the dipole approximation.

The spin rotation matrix given by COSY only relates the polarization at the target

coordinate system (TCS) to the transport coordinate system (TRCS). Therefore, two

addition rotations, from the target scattering frame to the target coordinate system

(TCS) and from the transport coordinate system (TRCS) to the focal plane frame at

the FPP, are needed.

First, we need to express the proton track in the TCS. As illustrated in Fig. 3-28,

the target scattering frame is defined as:

~x =
~ki × ~kf

|~ki × ~kf |
~y = ~z × ~x

6The particle mass is assigned in the code so that the matrix is calculated according to the correct
momentum.
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Figure 3-28: The target scattering coordinate system (solid lines) is the frame where
the polarization is expressed while the TCS (dashed lines) is the one in which COSY
does the calculation.

~z =
~ki − ~kf

|~ki − ~kf |
, (3.53)

where ~ki and ~kf are vectors along the incident and scattered electron momenta, re-

spectively. In the elastic case, ~q is the vector along the momentum of the recoil

proton:

~q = ~ki − ~kf , (3.54)

so that:

~ki × ~kf = ~ki × ~ki − ~ki × ~q = ~q × ~ki. (3.55)

Eq.3.53 becomes:

~x =
~q × ~ki

|~q × ~ki|
~y = ~z × ~x

~z =
~q

|~q| . (3.56)

In the lab frame, ~ki is the beam direction, which is along the z-axis. The momentum
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transfer ~q is in the direction of the outgoing proton, they both can be expressed in

the TCS:

~ki =










0

− sinΘspec

cosΘspec










, ~q =










sinψ

cosψ sin φ

cosψ cosφ










. (3.57)

Finally, the matrix of the transformation from the target frame to the TCS, T0 can

be obtained by Eq. 3.53 and Eq. 3.57.

Second, we need to perform a rotation from the TRCS to the FPP local frame,

whose z-axis is along the proton momentum. In a similar way as defined in Fig. 3-

12, the transformation can be done by a rotation around the x-axis by an angle φf ,

which is then followed by a rotation by an angle ψf around the new y-axis. For this

transformation, the coordinates are related by the matrix T1:










P fpp
x

P fpp
y

P fpp
z










=










cos φf − sinψf sinφf − sinψf cosφf

0 cosφf − sin φf

sinψf cosψf sinφf cosψf cosψf










︸ ︷︷ ︸

T1










P tr
x

P tr
y

P tr
z










. (3.58)

Therefore, the total rotation matrix S consists of T0, T1 and the spin rotation matrix

Ssp given by COSY. The measured polarization at the focal plane can be expressed

as

Pfpp = T1SspT0
︸ ︷︷ ︸

S

Ptg. (3.59)

As an example, Fig. 3-29 shows the four major elements of the full spin transport

matrix for one of the kinematic settings.

3.4.3 Extraction of Polarization Observables

With the scattering angles reconstructed by the FPP and the rotation matrix cal-

culated by COSY, we are able to extract the polarization components at the target.

There are 3 different methods to extract the polarization observables, as discussed

in [151]. For the transferred polarization analysis, the weighted-sum method is used.
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Figure 3-29: Histograms of the four spin transport matrix elements, Sxy (upper left),
Sxz (upper right), Syy (lower left) and Syz (lower right) at Q2 = 0.7 GeV2 for the
elastic events. The ones plotted in black are from dipole approximation, and the ones
in red are from the full spin transport matrix generated by COSY. For the dipole
approximation, Sxy and Syz are exactly zero, and Sxy = 1 by ignoring the transverse
components of the field. The full spin precession matrix gives broad distributions for
these elements which represent the effect from the quadrupoles and the dipole fringe
field.
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The advantage with this technique is that by using different beam helicities, we can

ignore the efficiency of the acceptance in extracting the transferred polarization. The

detailed formalism of the weighted-sum method will be presented in this section.

Weighted-sum

As noted earlier, the probability that a proton scatters in the analyzer with angles

(θ, φ) with a polarization (P fpp
x , P fpp

y ) is given by Eq. ??:

f±(φ) =
1

2π
ǫ(1±Ay(P

fpp
y sin φ− P fpp

x cosφ)), (3.60)

where ǫ is the normalized instrumental efficiency (acceptance):

ǫ(φi) =
f+ + f−

π
. (3.61)

By considering the spin transport, the probability function can be written in terms

of the polarization components at the target frame:

f(φ) =
1

2π
ǫ(1 + λxP

tg
x + λyhP

tg
y + λzhP

tg
z ), (3.62)

where

λx = Ay(Syx sinφ− Sxx cosφ)

λy = ηhAy(Syy sinφ− Sxy cosφ)

λz = ηhAy(Syz sin φ− Sxz cos φ), (3.63)

where η is the sign for the beam helicity, and h is the beam polarization. Note

that the contribution from the induced (normal) polarization P tg
x is beam helicity

independent. In the Born approximation, P tg
x = 0; hence, Eq. 3.62 reduces to:

f(φ) =
1

2π
ǫ(φ)(1 + λyhP

tg
y + λzhP

tg
z ). (3.64)
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As derived in [151], for Eq. 3.64, with different beam helicities we can always

construct an effective acceptance that has a symmetry period of π in φ so that the

acceptance ǫ canceles in the integral. We can obtain the equations:

∫ 2π

0
f(φ)λydφ = hP tg

y

∫ 2π

0
f(φ)λ2ydφ+

hP tg
z

∫ 2π

0
f(φ)λyλzdφ (3.65)

∫ 2π

0
f(φ)λzdφ = hP tg

y

∫ 2π

0
f(φ)λyλzdφ+

hP tg
z

∫ 2π

0
f(φ)λ2zdφ, (3.66)

since for n+m odd,
∫ 2π

0
ǫ(φ) sinm φ cosn φdφ = 0. (3.67)

By replacing the integrals in Eqs. 3.66 with corresponding sums over the observed

events, we have






∑

i λy,i
∑

i λz,i




 =






∑

i λy,iλy,i
∑

i λz,iλy,i
∑

i λy,iλz,i
∑

i λz,iλz,i











P tg
y

P tg
z




 . (3.68)

With the accumulation of a large event sample, Eq. 3.68 can be solved to obtain

P tg
y and P tg

z . Eq. 3.68 is rewritten as:

B = M ·P

P = M−1 ·B. (3.69)

The statistical error is given by:

∆(Pi) =
√

(M−1)ii (3.70)

with i = y, z, and the correlation factor between the two is

ρij =
(M−1)ij

√

(M−1)ii(M−1)jj
. (3.71)
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Then the form factor ratio is given by:

µp
GEp

GMp
= Kr (3.72)

where a = Py, and b = Pz, and r = a/b. K is the kinematic factor:

K = −µp
Ee + Ee′

2Mp
tan

θe
2
. (3.73)

The statistical errors are calculated by:

∆(
GEp

GMp

) =

√

(
dr

da
)2(∆a)2 + (

dr

db
)2(∆b)2 + 2ρ

dr

da
∆a

dr

db
∆b (3.74)

where:

dr

da
= K

1

b
dr

db
= −K a

b2
. (3.75)

The weighted-sum technique is valid under the condition that there is no induced

polarization in the physics asymmetry, since this helicity independent term breaks

the symmetry period of ǫ. In reality, non-zero P tg
x may arise from the 2γ exchange

process. From a detailed study which considered the non-zero induced polarization

in Appendix C, we have concluded that the weighted-sum method is valid given the

required precision.

3.4.4 Analyzing Power

From Eq. 3.72, one can see that since the polarization components are measured si-

multaneously, for the ratio of Py and Pz, the knowledge of the beam polarization h

and the analyzing power Ay, which cancel out in the ratio is not necessary. However,

certain properties of the analyzing power are useful in giving the correct statistical

uncertainty. As noted earlier, the analyzing power Ay depends only on the scattering
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angle θfpp and the proton kinematic energy Tp. For example, by taking the θfpp depen-

dence of the analyzing power into account provides more weight to events scattered at

angles corresponding to high analyzing power and less weight to events scattered at

smaller angles with low analyzing power, which is dominated by Coulomb scattering.

Although the absolute value of the analyzing power is irrelevant in the extraction

of the form factor ratio, it is a byproduct of this measurement. In the first pass of

the data analysis, the analyzing power Ay was ignored by setting it to be 1. Since the

beam polarization is well know from the Møller measurements and is included in the

analysis, the solutions of Eq. 3.68 become AyPy and AyPz. We can rewrite the proton

polarization components as a function of the form factor ratio only, independent of

the beam polarization and the the analyzing power:

Py =
−2
√

τ(1 + τ) tan θe
2
GEGM

G2
E + (τ/ǫ)G2

M

=
−2
√

τ(1 + τ) tan θe
2

GE

GM

( GE

GM
)2 + (τ/ǫ)

(3.76)

Pz =
E+E′

m

√

τ(1 + τ) tan2 θe
2
G2

M

G2
E + (τ/ǫ)G2

M

=
E+E′

m

√

τ(1 + τ) tan2 θe
2

( GE

GM
)2(τ/ǫ)

. (3.77)

With the measured ratio GE/GM , we can calculate Py and Pz. By comparing them

with the measured AyPy and AyPz, we can extract the analyzing power:

Ay = α
a2

b
+ βb (3.78)

∆Ay =

√
√
√
√

(

dAy

da

)2

(∆a)2 +

(

dAy

db

)2

(∆b)2 + 2ρ
dAy

da
∆a

dAy

db
∆b, (3.79)

with:

dAy

da
= 2α

a

b
(3.80)

dAy

db
= −α

(
a

b

)2

+ β, (3.81)
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where

α =
Ee + Ee′

4m
√

τ(1 + τ)
(3.82)

β =
τ [1 + 2(1 + τ) tan2( θe

2
)]

EeEe′

m

√

τ(1 + τ) tan2( θe
2
)
. (3.83)

In the above expression, ρ is the correlation factor as defined in Eq. 3.71, and a = AyPy

and b = AyPz are the output of the first pass analysis with Ay = 1.

A parameterization of the analyzing power for large solid angle spectrometers was

first suggested by Ransome et al. [158] and was later expanded by McNaughton et

al. [54] for inclusive p12C experiments at Los Alamos. The parameterization is divided

at Tp = 450 MeV into a “low energy region” and a “high energy region”, where Tp is

the proton kinetic energy at the center of the carbon analyzer.

For the low energy fit, the suggested fitting function in [54, 158] is:

Ay =
ar

1 + br2 + cr4
, (3.84)

where r = pp sin(θfpp) and pp is the proton momentum in GeV/c at the center of the

carbon analyzer. The coefficients a, b, c are polynomials of the momentum. In 2006,

the LEDEX [53] experiment extracted the carbon analyzing power for proton energies

from 82 to 217 MeV. A similar functional form as shown in Eq. 3.84 was used:

Ay =
ar

1 + br2 + cr4 + dr6
, (3.85)

where the dr6 term was added in order to improve the quality of fit. The coefficients

are expanded as follows:

a =
4∑

i=0

ai(pp − p0)
i (3.86)

b =
4∑

i=0

bi(pp − p0)
i (3.87)
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c =
4∑

i=0

ci(pp − p0)
i (3.88)

d =
4∑

i=0

di(pp − p0)
i, (3.89)

where p0, ai, bi, ci and di are the parameters of the fit.

For this experiment, we have much better statistics and much larger proton energy

coverage (90 to 360 MeV). We used the same functional form in Eq. 3.85. The

analyzing power was extracted by binning the data with respect to θfpp and Tp, and

the average values of each bin were used to fit the parameters. The parameterization

based on the new data is provided in Appendix D.

As illustrated in Figs. 3-30 and 3-31, the analyzing power in the low energy region

(Tp < 130 MeV) rises slowly with respect to the scattering angle θfpp. For Tp > 150

MeV, the analyzing power peaks around 10 to 12◦ and decreases rapidly at very small

angles and angles larger than 25◦. In the final analysis, events with angle below 5◦

and above 25◦ were rejected.

The new parameterization based on this experiment is in good agreement with

both the McNaughton [54] and LEDEX [53] parameterizations in the energy/angle

regimes for which they were intended, considering all fits were done for different

polarimeters and for different carbon block thicknesses. Compared to the older fits,

the new parameterization extends the kinematics coverage and provides a smooth

transition from the low energy to the high energy region.

The statistical uncertainty of the ratio µpGEp/GMp depends on the uncertainty

of the asymmetries’ amplitudes at the focal plane hAyP
fpp
x , hAyP

fpp
y , which is pro-

portional to the number of events N that contribute to the amplitude via the strong

interaction in the analyzer:

∆(hAyP
fpp
x(y)) ∝

√

1

N
. (3.90)

First we define the efficiency of the polarimeter

ǫ(θ) =
Neff(θ)

N0
. (3.91)
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Figure 3-30: Analyzing power fit part 1: Ay plotted with different parameterization
in the low energy region (Tp < 170 MeV). The error bars shown are statistical only.
The dashed lines are from the LEDEX [53] parameterization, the dashed dotted lines
are from the “low energy” McNaughton parameterization [54], and the solid lines are
from the new parameterization for experiment E08-007.
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Figure 3-31: Analyzing power fit part 2: Ay plotted with different parameterization
in the high energy region (Tp > 170 MeV). The error bars shown are statistical only.
The dashed lines are from the LEDEX [53] parameterization, the dashed dotted lines
are from the “low energy” McNaughton parameterization [54], and the solid lines are
from the new parameterization for experiment E08-007.
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N0 is the number of incoming protons, and Neff is the number of valid outgoing tracks

that passed a series of the FPP cuts (cone-test, zclose, sclose, etc.) and scattered

with a polar angle θ. In other words, Neff (θ) is the effective number of events which

participated in the measurement of the asymmetry.

Since the analyzing power Ay has a dependence on the scattering angle θ, from

Eq. 3.90 the effective number of events has to be multiplied by a weight, A2
y(θ); hence,

the weighted effective number of events N(θ) is

N(θ) = N0ǫ(θ)A
2
y(θ). (3.92)

The total effective number of events N is obtained by integrating over the scattering

angle θ:

N =
∫

N(θ)dθ = N0

∫ θmax

θmin

ǫ(θ)A2
y(θ)dθ = N0 · FOM, (3.93)

where

FOM =
∫ θmax

θmin

ǫ(θ)A2
y(θ)dθ (3.94)

is the Figure of Merit (FOM) and is an intrinsic characteristic of the polarimeter.

Then, Eq. 3.90 can be expressed as:

∆(hAyP
fpp
x(y)) ∝

√

1

N
=

√

1

N0 · FOM
(3.95)

The weighted average analyzing power 〈Ay〉 for Tp = 90 to 360 MeV is shown in

Fig. 3-32, and the FOM for each kinematics is summarized in Table 3.1
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Figure 3-32: Weighted average analyzing power 〈Ay〉 with respect to Tp for scattering
angles 5◦ ≤ θfpp ≤ 30◦.

Table 3.1: FPP performance for E08-007 with 5◦ < θfpp < 25◦. Tp is the proton
average kinetic energy at the center of the carbon door.

Kinematics Q2 [(GeV/c)2] Tp [MeV] 〈Ay〉 ǫfpp [%] FOM [%]
K1 0.35 141.2 0.3938 3.67 0.57
K2 0.30 109.8 0.2191 5.30 0.25
K3 0.45 195.4 0.4876 4.09 0.97
K4 0.40 165.3 0.4662 4.36 0.95
K5 0.55 252.5 0.4305 4.34 0.81
K6 0.50 221.4 0.4659 3.81 0.83
K7 0.60 282.2 0.3923 4.41 0.68
K8 0.70 335.6 0.3343 4.74 0.53
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Chapter 4

Data Analysis II

In this chapter, the inelastic background, systematic errors, and the radiative effects

will be discussed in detail.

4.1 Background Study

In addition to the ep elastic events, there are three major types of background that

can potentially contaminate the measurement. The first background is the scattering

off the aluminum (Al) end cap of the liquid hydrogen (LH2) cell through the reaction

27Al(~e, e′~p); the second is the accidental background under the coincidence timing

peak, and the final one is from the photoproduction of pions. In this section, the

background analysis and the impact to the final results are discussed.

4.1.1 Aluminum Background

To estimate the Al background from the target end cap, we took Al dummy runs

for every kinematic setting. The elastic polarization results need to be corrected if

there is a significant amount of Al events passing the cuts, which can have a different

proton polarization. The corrected target polarization Py(z) is calculated by using:

Yel. = YH − YAl, (4.1)

Yel.Py,el. = YHPy,H − YAlPy,Al, (4.2)
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Yel.Pz,el. = YHPz,H − YAlPz,Al, (4.3)

where Y is the normalized yield. First, we first need to estimate the fraction of Al

events in the elastic data to obtain the corrected proton polarization. In order to

be consistent with the elastic proton polarization extraction, the same relevant cuts

were applied:

• HRS acceptance cut (φtg, θtg, δp).

• Coincidence event type cut (T5).

• Coincidence timing cut.

• Elastic proton peak on dpkin;

The fraction of Al in LH2 data was estimated by using the charge normalization

method1. By assuming the running conditions (beam energy, position and size, trig-

ger setup, etc.) were the same between the LH2 and the Al dummy run and the

polarization of the background polarization is independent of the reaction location

(ytg), the fraction of Al in LH2 can be extracted by:

R = YAl/YH = f · NAl × CH × (1−DTH)

NH × CAl × (1−DTAl)
, (4.4)

where NH(Al) is the number of events in the LH2 (Al) run after applying the same

cuts2, CH(Al) is the charge, and DTH(Al) is the DAQ dead time. In the expression, f

is the ratio of the Al foil thickness for the LH2 and the Al dummy target. From the

Al foil thicknesses reported in Table. 4.1, f = 0.113. The fraction of Al background

in LH2, R, for each kinematic setting is summarized in Table 4.23. These are the

1Due to the small acceptance of the HRS, it’s difficult to select a pure Al sample spectra in LH2

data; hence, the normalization factors obtained from comparing the Al and LH2 spectra could highly
overestimate the Al contamination.

2These include the HRS acceptance cut, coincidence trigger and timing cut, but no target vertex
cut was applied to avoid the inconsistency due to the position shift between the LH2 target cell and
the Al dummy target.

3The first two δp settings of kinematics K1 were with the entire BigBite shower counter on; hence,
more Al background was included for these data compared to the other kinematic settings, which
had only a limited set of shower blocks turned on.
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Table 4.1: Aluminum foil thickness.

Target Thickness [cm]
LH2 (6cm) 0.0113

Al dummy (6cm) 0.100

Table 4.2: The upper limit of the Al background fraction Rmax for each kinematics.
The numbers listed are the average over all δp settings.

Kinematics Q2 [(GeV/c)2] Rmax

K1 0.35 0.0021
K2 0.30 0.0001
K3 0.45 0.0001
K4 0.40 0.0001
K5 0.55 0.0001
K6 0.50 0.0001
K7 0.60 0.0001
K8 0.70 0.0001

upper limits of R, since in the elastic analysis a cut on the target reaction vertex

was applied (ytg), and the events from the target end caps were further suppressed.

Fig. 4-1 illustrates the spectrum of ytg for the LH2 and Al dummy runs respectively

with the location of the target vertex cut indicated by the vertical lines. Fig. 4-2

gives an example of the normalized LH2 and Al spectra after applying all the cuts

(including the target vertex cut).

The recoil proton polarization of the LH2 and Al dummy targets for each kinemat-

ics were extracted. As an example, the results of kinematics K1 (Q2 = 0.35 GeV2)

are reported in Table 4.3. As can be seen that the correction to the elastic form fac-

tor ratio µpGE/GM is less than 0.001, which is negligible compared to the statistical

error. The corrections for the other kinematic settings are at the same level.

4.1.2 Accidental Background

In this experiment, the coincidence trigger helped to significantly reduce the inelastic

background. The accidental background can be estimated by using the same method
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Figure 4-1: The ytg spectrum for LH2 and Al dummy data with the cut shown by the
vertical solid lines.
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Figure 4-2: The normalized dpkin spectrum for LH2 and Al dummy at setting K2
δp = −2%. The unfilled and filled spectra are with and without the proton dpkin cut
respectively.

Table 4.3: Polarization Py(z) of LH2, Al dummy and corrected values for kinematics
K1 (Q2 = 0.35 GeV2).

Pol. LH2 Al LH2 corrected
Py -0.2624±0.0017 -0.0562±0.0995 -0.2628±0.0017
Pz 0.2536±0.0017 0.2709±0.1016 0.2536±0.0017

used as for the Al case. With the coincidence timing cut, the accidental background

was estimated by interpolating the timing spectrum under the elastic peak region;

the typical background to signal ratio was found to be ≤ 0.003.

The polarization of the accidental background outside the timing cut was ex-

tracted. Unlike the Al background, the proton polarization of the accidental back-

ground is very close to the polarization of the elastic events within the timing cut.

This behavior is expected since the accidental events are dominated by the elastic

events. Using a similar procedure as described in the Al case, the correction to the

elastic results from the accidental background is ≤ 0.001, which is also negligible. As

an example, the polarization of the accidental background outside the timing cut was

extracted for kinematics K8 (Q2 = 0.7 GeV2), the results are reported in Table 4.4.
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Table 4.4: Polarization Py(z) of LH2 inside, outside the coincidence timing cut and
the corrected values for kinematics K8 (Q2 = 0.7 GeV2).

Pol. LH2 Accidental LH2 corrected
Py -0.3636±0.0015 -0.3295±0.0188 -0.3637±0.0015
Pz 0.5552±0.0016 0.5320±0.0208 0.5553±0.0016

The correction for the other kinematics settings are at the same level.

4.1.3 Pion Photoproduction

Due to the reduced detector configuration of the BigBite spectrometer, events cannot

be easily distinguished between an electron or a photon that decayed from a π0,

which fired the shower counter, since the coincidence trigger could be formed by

pion photoproduction via γ + p → p + π0. A study was made to estimate the pion

contamination which is elaborated in Appendix E. Due to the small acceptance and

high resolution of the HRS combined with the tight elastic cut applied on the proton

kinematics, we have concluded that the contribution from pion photoproduction is

less than 10−4, and the correction to the proton polarization is also at < 10−4 level,

which is negligible.

As a simple demonstration to test whether the results are sensitive to the elastic

cut applied in this work, 3 different cuts were applied on the peak of the proton dpkin

as shown in Fig. 4-3: ±1.4σ, ±1.7σ and ±2.0σ. As shown in Fig. 4-4, the results

with different elastic cuts are consistent within the statistical uncertainty. In the final

analysis, a ±1.7σ cut was applied.

4.2 Systematic Analysis

For this experiment, the proposed statistical uncertainties were achieved (≤ 1%),

and hence, the systematic uncertainties will dominate the total errors. The details

of the systematic analysis are presented in the following sections, which includes a

discussion of:
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• Spin precession: HRS optics and the COSY model.

• Scattering angle reconstruction in the FPP.

• Beam energy and HRS mis-pointing.

• Charge asymmetry.

The helicity independent factors such as the acceptance, beam current, target den-

sity etc., cancel in the polarization ratio. The beam energy and the spectrometer

setting are used to calculate the kinematic factors; however, the form factor ratio is

less sensitive to these parameters with the current experimental precision. The spin

precession and the FPP reconstruction are directly related to the extraction of the

proton polarization at the target, and therefore, they are the most important compo-

nents for this type of measurement. In this section, the analysis for all the significant

systematic uncertainties will be discussed.

4.2.1 Spin Precession

What we measured in this experiment is the proton polarization detected at the focal

plane: P fpp
x , P fpp

y . However, the polarization at the target is directly related to the

physics of interests. In reality, the magnetic structure of the spectrometer is more

complicated than just a simple perfect dipole; COSY [157] was used to calculate

the the full precession matrix Sij to relate the polarization at the target to the one

detected at the focal plane by Eq. 3.46.

To calculate the matrix Sij, two inputs are required. The first input is a table of

the expansion coefficients Cklmnp
ij which is generated by COSY, and the second is the

target coordinates of each event which are reconstructed by the HRS optics matrix.

Hence, it is natural to separate the spin precession systematics error into two parts:

HRS optics and COSY.
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Table 4.5: Shifts of the form factor ratio associated with shifts of the individual target
quantities for each kinematic setting.

Kinematics δp (+0.001) φtg (+1 mrad) θtg (+1 mrad) ytg (+1 mm)
K1 0.0015 0.0064 -0.0004 0.0011
K2 0.0018 0.0064 -0.0002 0.0011
K3 0.0005 0.0064 -0.0006 0.0015
K4 0.0013 0.0066 -0.0005 0.0010
K5 0.0004 0.0064 -0.0009 0.0019
K6 0.0006 0.0064 -0.0008 0.0015
K7 0.0007 0.0064 -0.0010 0.0022
K8 0.0005 0.0064 -0.0014 0.0027

HRS Optics

The optics database used for this experiment was optimized for experiment E06-

010 [144]4. We used two steps to estimate the systematic uncertainty due to the

optics. First, the uncertainties in the central deviation of each target quantity

(∆δp,∆φtg,∆θtg,∆ytg) were estimated. Then they were shifted separately by the

amount of the estimated uncertainties to determine the impact on the form factor

ratio µpGE/GM . The sensitivities of the ratio µpGE/GM to each target quantity

are summarized in Table 4.5. Clearly φtg is the most important quantity and hence

requires additional attention.

To evaluate the quality of the optics, especially the uncertainty in φtg, we take

advantage of the proton elastic kinematics, since the angle is well constrained when the

beam energy and the proton momentum are fixed. Beforehand, we need to evaluate all

the parameters which are relevant in determining φtg and convert their uncertainties

into ∆φtg(x). Then, the offset between the anticipated proton elastic peak position

and the reconstructed proton spectrum is quoted as ∆φtg(off). The total error in

4Experiment E06-010 took the optics data for the left HRS at a similar momentum setting (p0 =
1.2 GeV). We also have the optics acquired in 2000 during experiment E89-044 [159], which was also
carefully optimized. Both sets of optics were utilized and produced similar results, which indicates
that the spectrometer optics reconstruction is fairly stable over the past ten years.
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φtg is quoted conservatively as:

∆φtg =
√

∆2φtg(x) + ∆2φtg(off). (4.5)

The relevant parameters which would affect the anticipated proton elastic peak

position are:

• Spectrometer central angle θs.

• Beam energy Ee.

• Proton central momentum P0.

• δp reconstruction.

Each one of them is discussed in the following subsections.

1. Spectrometer Central Angle

Due to the misplacement between the front and the end of the spectrometer during

movement, the HRS central angle can be off by a small amount as illustrated in Fig 4-

5. During the experiment, we took carbon foil data at each kinematics to determine

the spectrometer central angle. With the target position survey and ignoring the

higher order terms introduced by φtg, we can determine the spectrometer horizontal

offset D from its ideal position by:

z = −(ytg +D)/ sin θ0 + xbeam cot θ0, (4.6)

where xbeam is the horizontal beam position. The ytg is the peak value, which is fit

as shown in Fig. 4-6. The actual spectrometer angle θs is corrected by D in the first

order:

θs ≈ θ0 −
D

L
, (4.7)

where L is the distance between the hall center and the floor marks where the angles

are scripted (8.458 m). By considering the uncertainty of the survey (±1 mm), and
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the true angle is denoted by θs when the spectrometer offset is considered.
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Figure 4-6: Carbon pointing ytg for kinematics K8 (Q2 = 0.7 GeV2).
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Table 4.6: Spectrometer nominal (θ0) and real (θs) central angle for each kinematic
setting.

Kinematics θ0 [deg] θs [deg] ∆φtg(θs) [mrad]
K1 57.5 57.478 ± 0.008 0.14
K2 60.0 59.975 ± 0.008 0.14
K3 53.0 52.991 ± 0.008 0.14
K4 55.0 54.986 ± 0.008 0.14
K5 49.0 48.990 ± 0.008 0.14
K6 51.0 50.974 ± 0.008 0.14
K7 47.0 46.990 ± 0.008 0.14
K8 43.5 43.484 ± 0.007 0.12

K1ext 57.5 57.494 ± 0.008 0.14
K2ext 60.0 59.977 ± 0.008 0.14

Table 4.7: Target materials in the beam energy loss calculation.

Material Thickness
Al vacuum chamber window 0.0406 cm
Al entrance window 0.0113 cm
LH2 3 cm

the uncertainty in ytg (±1 mm) , the error in D is derived by:

∆D =
√

∆2ytg + sin2 θ0∆2z (4.8)

The spectrometer central angle for each kinematics was corrected using the pointing

method, and the results are reported in Table 4.6. One can see that the angle mis-

pointing is small which is consistent with previous records [160]. This observation

was anticipated due to the large value of L.

2. Beam Energy

During the experiment, the beam energy was given by the Tiefenbach value. Ac-

cording to [131], the uncertainty for this non-invasive measurement is 0.5 MeV. The

average beam energy loss in the target is also taken into account. The target material

thicknesses are summarized in Table 4.7. The average total energy loss in the target
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Table 4.8: Converted uncertainty in φtg with ∆(Ee) = 0.5 MeV.

Kinematics ∆φtg(Ee) [mrad]
K1 0.11
K2 0.11
K3 0.14
K4 0.14
K5 0.16
K6 0.14
K7 0.18
K8 0.18

for a 1.19 GeV beam is 1.5 MeV; hence, the beam energy we used to calculate the

elastic kinematics is:

Ee = (Etiefenbach − 1.5)± 0.5MeV. (4.9)

Table 4.8 gives the converted uncertainty of φtg for each kinematics due to the uncer-

tainty of Ee
5.

3. Proton central momentum P0

The momentum we reconstructed is the relative momentum δp, which refers to

the central momentum P0. At the beginning of the experiment, we switched to NMR

probe D instead of probe A, which is typically used. From the calibration study at 1

GeV/c, the offset between probe A and D is 1.07× 10−4 [161]. The NMR values for

each momentum setting are listed in Table 4.9.

From a previous calibration study [162] with NMR probe A, we know that the

central momentum P0 is fairly linear with the central magnetic field B0. The relation

between P0 and B0 is given by:

P0 = Γ1B0 + Γ3B
3
0 , (4.10)

5There is also some uncertainty in the value of the beam energy loss due to the possible non-
uniformity of the material thicknesses; however, this uncertainty is much less than 0.5 MeV given
the precision of the survey.
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Table 4.9: Recorded magnetic field B0 in kG with probe D for each momentum
setting.

Kinematics δp = −2% δp = 0% δp = 2%
K1 2.647 2.595 2.543
K2 2.426 2.378 2.330
K3 3.049 2.989 2.929
K4 2.869 2.813 2.757
K5 3.410 3.342 3.276
K6 3.229 3.166 3.102
K7 3.591 3.521 3.450
K8 3.923 3.846 3.769

Table 4.10: Converted uncertainty in φtg from P0.

Kinematics ∆φtg(P0) [mrad]
K1 0.12
K2 0.13
K3 0.13
K4 0.13
K5 0.12
K6 0.12
K7 0.13
K8 0.12

where B0 is measured in kG. For the left HRS, Γ1 = 270.2 ± 0.15, and Γ3 = −1.6 ×
10−3 ± 0.7× 10−3, which is much smaller than Γ1. With probe D, a linear fit yields:

P0 = Γ1B
d
0 . (4.11)

As shown in Fig. 4-7, the linearity was well preserved when the probed was switched.

Based on the differences between the set values and the ones derived from the new

fit, we conservatively estimate ±0.15 MeV/c as the uncertainty on the proton central

momentum. The converted uncertainty in φtg for each kinematics is summarized in

Table 4.10.

4. Proton momentum loss in the target

The recoil protons passed through a few materials before they entered the spec-
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Figure 4-7: NMR reading with probe D versus the central momentum setting (left
panel), and the deviation between the value from the linear fit function and the set
value.

Table 4.11: Target materials that the proton passed through before entering the
spectrometer.

Material Thickness [cm]
LH2 1.27±0.01 (radius)
Al wall 0.0127±0.0005
Al vacuum chamber window 0.0406±0.0005
Air 65.1±0.1
Kapton window 0.0355±0.0005

trometer. The materials are summarized in Table 4.11. The proton momentum loss

Ploss for each momentum setting is summarized in Table 4.12. We conservatively

quote ±0.1MeV/c as the uncertainty in the average proton momentum loss in the

materials by considering the uncertainty in the material thicknesses.

5. δp reconstruction

The last parameter we need to consider is the uncertainty of the reconstructed

momentum δtg. From the optimization results [163], we conservatively quote±5×10−4

as the uncertainty of δp, and convert it to an uncertainty in φtg. The results for each

kinematics are listed in Table 4.13.

In Table 4.14, the uncertainty in φtg converted from the uncertainties of the ex-
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Table 4.12: Proton momentum loss [MeV/c] for each kinematics.

Kinematics δp = −2% δp = 0% δp = 2%
K1 3.69 3.83 3.98
K2 4.30 4.48 4.67
K3 2.95 3.05 3.16
K4 3.23 3.35 3.48
K5 2.54 2.62 2.70
K6 2.72 2.81 2.91
K7 2.39 2.46 2.54
K8 2.19 2.25 2.31

Table 4.13: Uncertainty of φtg with ∆δp = 0.0005

Kinematics ∆φ(δp) [mrad]
K1 0.25
K2 0.25
K3 0.30
K4 0.30
K5 0.33
K6 0.30
K7 0.35
K8 0.35

ternal parameters as discussed above are given. ∆φ(x) is defined as:

∆φ(x) =

√
√
√
√

N∑

i=0

∆2φ(xi), (4.12)

where ∆φ(xi) are the converted uncertainties in φtg from the related parameters.

The next step is to quote ∆φ(off), which is the average deviation of the replayed

proton kienmatics from the anticipated elastic peak position. From Figure 4-8, we see

that the slope of the elastic strips generally matches the predicted slopes. The average

offset across the acceptance between the predicted peak position and the center of

the data ∆φ(off) is a combined effect of the optics and external parameters (beam

energy, proton momentum, etc.). The systematic uncertainty from the optics is given
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Table 4.14: Total uncertainty in φtg from the external parameters.

Kinematics ∆φ(Ee) ∆φ(θs) ∆φ(δp) ∆φ(P0) ∆φ(Ploss) ∆φ(x) [mrad]
K1 0.11 0.14 0.25 0.12 0.08 0.34
K2 0.11 0.14 0.25 0.13 0.09 0.34
K3 0.14 0.14 0.30 0.13 0.09 0.39
K4 0.16 0.14 0.30 0.13 0.08 0.40
K5 0.16 0.14 0.33 0.12 0.08 0.42
K6 0.14 0.14 0.30 0.12 0.08 0.39
K7 0.18 0.14 0.35 0.13 0.09 0.45
K8 0.18 0.13 0.35 0.12 0.08 0.44

by:

∆φtg =
√

∆2φ(off) + ∆2φ(x). (4.13)

The final uncertainty in φtg is summarized in Table 4.15. The uncertainties of the
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Figure 4-8: Proton scattering angle θp versus the momentum δp for kinematics K8
δp = 0%. The anticipated elastic peak position is plotted as the black dash line.

other target quantities (θtg, δp, ytg) are quoted according to their difference when the

data were replayed by using different HRS optics:

∆θtg = 2 mrad,∆δp = 0.001,∆ytg = 1 mm (4.14)
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Table 4.15: φtg uncertainty for each kinematics.

Kinematics ∆φoff [mrad] ∆φ(x) [mrad] ∆φtot [mrad]
K1 1.30 0.34 1.34
K2 0.76 0.34 0.83
K3 0.87 0.39 0.95
K4 0.87 0.40 0.96
K5 0.70 0.42 0.67
K6 0.87 0.39 0.95
K7 1.22 0.45 1.30
K8 1.05 0.44 1.14

Table 4.16: Systematic uncertainty in R = µpGE/GM for each kinematics associated
with left HRS optics.

Kinematics ∆R (optics)
K1 0.0087
K2 0.0057
K3 0.0062
K4 0.0068
K5 0.0051
K6 0.0063
K7 0.0090
K8 0.0084

Combining the results in Table 4.15, Eq. 4.14 and Table 4.5, the total systematic

uncertainty from the left HRS optics is summarized in Table 4.16.

COSY

Another source of systematic error, which is related to the spin precession, is COSY. If

the precession matrix determined by COSY is correct, the form factor ratio µpGEp/GMp

should not depend on any target quantities. As illustrated in Fig. 4-9, while the results

with dipole approximation show a strong dependence on δp and φtg, COSY provides

a nice correction to these quantities and gives a reasonable χ2 with a constant fit. To

estimate the systematic error of COSY, more detailed studies were carried out. The

COSY systematic error was separated into two parts:
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Figure 4-9: Dependence of µpGEp/GMp on the proton target quantities for kinematics
K7 (Q2 = 0.6 GeV2). The full precession matrix calculated by COSY (solid quare)
is compared to the dipole approximation (open square) and a constant fit. The data
points are shown with statistical error bars only.

• The first one is associated with the spectrometer configuration and settings

defined in the COSY input file. Through a series of tests, the most sensitive

parameters were identified. Then, those parameters were changed and the spin

procession was calculated in different ways to see the variation in the form factor

ratio.

• The other part was determined from the COSY optics map, which also reflects

the quality of the model. We used the target quantities reconstructed by COSY

instead of the ones from the ANALYZER to calculate the spin precession matrix

Sij.
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Fig. 4-10 demonstrates the alternative ways to calculate the spin precession and esti-

mate the model’s systematics uncertainty.

Focal Plane Coordinates

Target Coordinates I Target Coordinates II

ANALYZER

optics

COSY

optics

COSY inputs

Spin Precession Matrix S

klmnp

ijC

tgy ),,,( dfq tgy )',',','( dfq

Figure 4-10: Alternative ways to calculate the spin precession matrix Sij .

1. Configuration Inputs

In the COSY input file, geometries and settings of the magnets were defined.

Many of the parameters were determined by comparing them with the field maps. We

focused on the ones that are either intuitive or examined in the previous study [164].

The tested parameters included:

• Dipole bending angle Θ0.

• Dipole radius.

• Drift distances between magnets.

• Quadrupole alignment coefficients.
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The dipole bending angle was found to be the most important parameter in this

measurement; on the other hand, the impact from the other parameters was negligible.

The default setting for the dipole bending angle is 45◦. Ideally we should be able to

check the central bending angle from the trajectory determined by the VDCs, when

combined with the VDC position survey [165]. However, it’s very difficult to define

the spectrometer central trajectory6. To minimize bias, we cut on a very small region

of the central part of the HRS acceptance and treated the events in this region as the

central trajectories. By fitting the out-of-plane angle difference (θtg − θtr) between

the target frame and the focal plane, the dipole central bending angle was verified.

The cuts applied to select the central trajectories were:

• −0.01 < δp < 0.01.

• −0.01 < ytg < 0.01.

• −0.01 < θtg < 0.01.

A fit to the out-of-plane angle difference is illustrated in Figure 4-11. We can see that
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Figure 4-11: Fit of the out-of-plane angle difference between the target and the focal
plane. θtr = θdet − 45◦ (K6 δp = 0%). The peak at zero corresponds to a 45◦ bending
angle in the spectrometer.

the mean value of the peak is very close to 0, which corresponds to a 45◦ bending angle

between the target and the focal plane. In a previous analysis [166], a ±5.5 mrad

6Usually the central sieve hole position was used to define the spectrometer central trajectory.

179



Table 4.17: Systematic error in µpGE/GM associated with COSY.

Kinematics Bending angle (+5.5 mrad) COSY optics
K1 -0.0018 0.0012
K2 -0.0012 0.0018
K3 -0.0029 0.0011
K4 -0.0022 0.0002
K5 -0.0043 0.0005
K6 -0.0035 0.0006
K7 -0.0048 0.0004
K8 -0.0062 0.0002

uncertainty in the dipole bending angle Θ0 was quoted from a fit to the 180◦ rotation

data, and this uncertainty was also used in this analysis. Therefore, the central dipole

bending angle Θ0 was changed by 5.5 mrad in the COSY input file and another set

of spin precession matrices were generated to extract the ratio. The difference in the

resulting form factor ratios was quoted as the systematic error associated with the

central bending angle. The results are provided in Table 4.17.

2. COSY optics map

COSY not only generates the spin precession matrix but also produces the optics

map. With the quantities measured at the VDCs, we could use the COSY optics map

to reconstruct the target quantities. The COSY reconstructed target quantities are

in general agreement with the target quantities determined via the ANALYZER. The

central peak differences are a couple of mrad for the angles (φtg, θtg) and a couple of

mm for the position (ytg). By using the COSY reconstructed target quantities in the

spin precession matrix calculation, the difference in the form factor ratio was quoted

as another part of the systematic error from COSY. The results from this study are

reported in Table 4.17.

4.2.2 FPP Alignment and Reconstruction

As previously mentioned, the second scattering angles at the FPP are directly related

to the proton polarizations measured in the focal plane; to make sure the angles at
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the FPP were determined correctly, the software alignment was completed, which is

elaborated in Section 3.2.3. Ideally, the straight-through data should uniformly cover

the FPP chamber’s full acceptance. However, full coverage is difficult to achieve

for the rear chambers due to their larger area, which was designed for the second

scattering; the lack of uniform coverage inevitably changes the weight of the data

over the acceptance and can affect the fits of the alignment coefficients.

The misalignment of the chambers involves both offsets and rotations. For offsets,

the effect is equivalent to a non-uniform acceptance A(φ), which can be canceled

by flipping the beam helicity as described in the Appendix D. For rotations, we

can separate them into two types as illustrated in Figs. 4-12 and 4-13. The chamber

rotations along x and y-axis induce an elliptical acceptance which can also be absorbed

in the non-uniform acceptance; hence, they are not our primary concern. The rotation

along the z-axis, which is the particle’s incident direction, will shift φ by an additional

offset and cannot be canceled. This type of rotation will directly change the result of

the ratio µpGEp/GMp.

x
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FPP chamber

fD

xx
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Figure 4-12: FPP chamber rotation along z and the shift of the azimuthal angle φ.

The events at the FPP are mostly dispersed in x-direction (vertical), whereas they

are close to zero in y. To make the estimation simpler, the reasonable assumption of

y = 0 is made. As illustrated in Fig. 4-14, if there is a small rotation along z or x,
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Figure 4-13: FPP chamber rotation along x(y) and the change of φ distribution.

the difference in y between the VDC track and the FPP track will depend on x by:

dy ≈ ∆φ× x. (4.15)

Before applying the software alignment, there is an obvious slope between dy and x as

shown in Fig. 4-15, which indicats a rotation around z. After the software alignment,

the slope is gone. If we zoom in and fit the spectrum after alignment, the residual

slope is at the 1 × 10−4 level as shown in Fig. 4-16. The same fit was applied to the

rear track, and the slope is at the same order of magnitude (∼ −3 × 10−4). Since in

the first order this slope can only be caused by a rotation along z, we conservatively

quote twice the residual slope value to be the uncertainty in the angle of rotation

along z. The slopes of the front and rear alignment were added together as the final

uncertainty of φfpp, which is ∼ 1 mrad. From this study, the systematic uncertainty

associated with the FPP angle uncertainty is summarized in Table 4.18 for each

kinematic setting.

As another demonstration of the FPP alignment quality, Fig. 4-17 shows the form

factor ratio binning results on the FPP polar scattering angle θfpp with a constant

fit, and there is no indication of any systematic dependence on this variable with the

current precision.
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Figure 4-14: The non-zero y component in the rotated frame.

4.2.3 VDC Resolution

The VDC quantities θtr and φtr were used to calculate the spin rotation matrix

between the transport frame and the FPP local frame. By manually shifting these

variables, the systematic error on the ratio was obtained and reported in Table. 4.19.

4.2.4 Other Systematics

Charge Asymmetry

In the analysis code, we randomly throw out a small fraction of events with one

beam helicity state to test the sensitivity to the charge asymmetry. With the charge

asymmetry (< 1000 ppm) from this experiment, the change of the form factor ratio

is negligible (≤ 0.001). This result is expected since the charge asymmetry only

introduces a high order effect from the instrumental efficiency.
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Figure 4-15: The track difference in y versus x before and after the software alignment.
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Figure 4-16: The track difference (y) and its profile versus x after the software align-
ment. The solid line is a linear fit to the profile with a slope of 1× 10−4.

Kinematics factors

From the form factor ratio formula:

R = µpGE/GM = −µp
Py

Pz

E + E ′

2mp

tan(
θe
2
) = −µpK

Py

Pz

, (4.16)

knowledge of the kinematic factor K is also required. In the analysis code, the

initial inputs are the beam energy and the proton scattering angle7; therefore, the

kinematic factor K is a function of E and θp in this analysis. Based on the systematic

studies mentioned earlier, we quote ±0.5 MeV as the beam energy uncertainty and

7The reconstruction of the electron kinematics is not available due to reduced configuration of
the BigBite spectrometer.
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Table 4.18: Errors in the FPP scattering angles and the associated systematic error
in µpGE/GM .

Kinematics θfpp (+1 mrad) φfpp (+1 mrad)
K1 -0.0003 0.0018
K2 0.0002 0.0018
K3 0.0001 0.0018
K4 -0.0002 0.0019
K5 -0.0001 0.0018
K6 -0.0002 0.0018
K7 -0.0001 0.0019
K8 -0.0001 0.0019
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Figure 4-17: The form factor ratio binning on the FPP polar scattering angle θfpp for
kinematic setting K6 (Q2 = 0.5 GeV2) and K7 (Q2 = 0.6 GeV2).

0.02◦ as the proton scattering angle uncertainty. As an example, Table 4.20 lists the

uncertainty of each factor and the resulting uncertainty in the ratio for one of our

kinematics (K7). Clearly, the change of the form factor ratio is negligible (< 0.001)

and is at the same level for the other kinematics.

4.3 Summary of Uncertainties

As a summary, Fig 4-18 shows the major uncertainties for each Q2 point. All these

contributions are added quadratically to obtain the total systematic error for this

experiment. Table. 4.21 presents the final results with both the statistical and sys-
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Table 4.19: Errors of the VDC angles and associated systematic error in µpGE/GM .

Kinematics θtr (+1 mrad) φtr (+1 mrad)
K1 -0.0002 0.0002
K2 -0.001 -0.0002
K3 0.0003 -0.0002
K4 -0.0004 -0.0002
K5 -0.0006 -0.0004
K6 -0.0005 -0.0003
K7 -0.0002 -0.0004
K8 -0.0001 -0.0007

Table 4.20: Errors of the kinematic factors and the resulting uncertainty in the form
factor ratio R for kinematics K7 (Q2 = 0.6 GeV2).

δR(E0)(±0.5MeV) ∆R(θ0)(±0.02◦) ∆R
0.0003 0.0005 0.0006

tematic errors. As Q2 increases, the systematic error starts to dominate the total

uncertainty.

4.4 Radiative Correction

For electron scattering, the radiative process is inevitably involved. This includes the

electron initial and final state Bremsstrahlung, loop correction, as well as 2γ exchange

effects. The radiative correction to this experiment is discussed by providing the

results from recent theoretical calculations.

Afanasev et al. [55] performed a numerical analysis for the radiative corrections

in elastic ep scattering when the kinematic variables are only reconstructed from the

recoil proton. This study calculated the radiative correction to the cross sections and

asymmetries differential in Q2. Fig. 4-19 shows the correction to the longitudinal

and transverse polarization components as a function of the inelasticity um = (k1 +

p1 − p2)
2 −m2, where m is the electron mass, k1 is the electron initial momentum,

and p1(2) is the initial (final) proton momentum at s = 8 GeV2. The magnitude
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Figure 4-18: Comparison of the major contributions to the systematic uncertainties
and the statistical uncertainty for each kinematics.

of the correction does not exceed 1.5%, though it does rise with increasing Q2 and

inelasticity cut. Fig. 4-20 gives the correction to the measured ratio of final proton

polarization; the correction is negative and does not exceed 1%.

Afanasev et al. [56] also estimated the 2γ exchange contribution to elastic ep

scattering at large momentum transfer by using a quark-parton representation of

virtual Compton scattering. While the correction is significant for cross-section mea-

surements, the impact upon the recoil polarization measurement is small. Fig. 4-21

shows the calculated transferred proton polarization with and without the 2γ ex-

change terms, for 100% right-handed electron polarization and with a fixed Q2 of 5

GeV2.

Blunden et al. [57, 58] performed an explicit calculation of the 2γ exchange dia-

gram in which nucleon structure effects were fully incorporated. They also applied

it to systematically calculate the effects in a number of electron-nucleon scatterings.

Fig. 4-22 shows the relative correction of the proton form factors ratio µpGE/GM as

a function of ε at different Q2.

For the kinematic condition of this experiment (Q2 < 1 GeV2, 0.66 < ε < 0.85,

s = 3.12 GeV2 ), we have concluded that the radiative corrections to the form factor
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Table 4.21: Final results with statistical and systematic uncertainties for each kine-
matics.

Kinematics 〈Q2〉 [(GeV/c)2] R ∆Rsys. ∆Rstat.

K1 0.3458 0.9433 0.0093 0.0088
K2 0.2985 0.9272 0.0071 0.0114
K3 0.4487 0.9314 0.0073 0.0060
K4 0.4017 0.9318 0.0076 0.0066
K5 0.5468 0.9274 0.0071 0.0055
K6 0.4937 0.9264 0.0076 0.0056
K7 0.5991 0.9084 0.0104 0.0053
K8 0.6951 0.9122 0.0107 0.0045

ratio is less than 0.3% based on the current theoretical calculations.
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Figure 4-19: Radiative corrections to the recoil polarization. The solid and dashed
lines correspond to the longitudinal and transverse components with s = 8 GeV2.
Figure from [55].
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Figure 4-20: Radiative corrections to the ratio of the recoil proton polarization in the
region where the invariant mass of the unobserved state is close to the pion mass and
s = 8 GeV2. Figure from [55].

Figure 4-21: The 2γ exchange correction to the recoil proton longitudinal polarization
components Pl and the ratio of the transverse to longitudinal component for elastic
ep scattering at Q2 = 5 GeV2. Figure from [56].
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Figure 4-22: The relative correction to the proton form factor ratio from 2γ exchange
as a function of ε for 5 different Q2 [57, 58].
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Chapter 5

Discussion and Conclusion

In this chapter, the experimental data are compared with the world data and various

models and fits. In addition, the impacts of the new results to other physics quantities

are discussed, and the future outlook to access lower Q2 is also presented.

5.1 Comparison with World Data

Fig. 5-1 and 5-3 show the new results of this work, µpGE/GM as a function of Q2

together with previous high precision measurements (σtot < 3%). The green point

at Q2 = 0.8 GeV2 which will also be published soon is from one of the LEDEX

experiments E03-104 [167]. The new data have the following features:

• The new results are in good agreement with the high precision point at Q2 = 0.8

GeV2, which was taken in 2006 with a different configuration1 and analyzed

independently.

• The whole data set slowly decrease along Q2 in the region of Q2 = 0.3 ∼ 0.8

GeV2; no obvious indication of any “narrow structure”.

• The new data strongly deviate from unity by several percent which is unex-

pected from the previous measurements.

1E03-104 used right HRS to detect the electron and the electron kinematics was well known.
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Figure 5-1: The proton form factor ratio µpGE/GM as a function of Q2 with world
high precision data [16, 19, 20] (σtot < 3%). For the new data, the inner error bars
are statistical, and the outer ones are total errors. For the world data sets, the total
errors are plotted. The dashed lines are fits [42, 24, 48, 44].
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Figure 5-2: The proton form factor ratio µpGE/GM as a function of Q2 shown with
world high precision data [16, 19, 20] (σtot < 3%). For the new data, the inner error
bars are statistical, and the outer ones are total errors. For the world data sets, the
total errors are plotted. The solid lines are from vector-meson dominance calcula-
tions [50, 59], a light-front cloudy-bag model calculation [49], a light-front quark model
calculation [51], and a point-form chiral constituent quark model calculation [36].
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Although the LEDEX results (Ron et al.) overlap with the new data in the

vicinity of Q2 = 0.36 GeV2, the highest Q2 point is ∼ 3 σ above the new data. To

investigate this potential discrepancy, we reanalyzed the LEDEX data and found that

the Al background was overestimated in the original analysis [70]; hence, the data

were overcorrected for dilution effect from the Al end cap. The preliminary results of

the LEDEX reanalysis are in good agreement with the new data, and we expect to

publish the erratum soon.

The other two data points contributed by JLab in this region are from GEp-I

measurement [16], which was performed in 1998. The point at Q2 = 0.5 GeV2 is

∼ 3.5 σ higher than the new results, and the point at Q2 = 0.8 GeV2 is ∼ 2.5 σ

higher than the E03-104 result (Paolone et al.). The investigation of the original

GEp-I analysis is still underway, which includes the consistency check of different

analysis codes, the accuracy of the kinematic parameters2, the discussion of the cuts

and the systematic error analysis3.

Another discrepancy is in the comparison with the BLAST [19] results. The new

data are systematically lower by 2 to 3 σ, which is hard to explain by statistical

fluctuations. Since BLAST used the beam-target asymmetry technique, the origin of

the systematic uncertainty is different. While the investigation of this discrepancy

is needed, a third measurement by using the beam-target asymmetry technique in

this region is strongly recommended to uncover any unknown systematic errors in the

recent measurements.

In summary, Fig. 5-3 shows the new results plotted with a different scale together

with the world polarization data, which includes the preliminary results of the GEp-

III measurement [60].

2In the very early days of the Hall A running, the beam energy and spectrometer momentum
were not very well known.

3GEp-I used the right HRS to detect the recoil proton instead of the left HRS; therefore, the
optics and spin transport were different.
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Figure 5-3: The proton form factor ratio µpGE/GM as a function of Q2 shown with
world high precision polarization data [16, 19, 20, 18, 60].

5.2 Discussion with Theoretical Models and Fits

In Fig. 5-1 and Fig. 5-3, the data are shown together with a representative set of the

existing theoretical models and fits. Analytical fits from Kelly [42] and AMT [24]

are based on the data over all Q2, while the fits from Arrington and Sick [48] and

Friedrich and Walcher [44] concentrate on the lower Q2 data. Due to the absence of

physical interpretation and the dominance of the old data, it is plausible to expect

that the global fits are substantially above our new data. On the other hand, the

new results cannot completely rule out the existence of the structure given by the

phenomenological fit of Friedrich and Walcher [44]; however, the average value of the

structure would be much lower then what they predicted if there is any.

The existing theoretical models also cannot accurately predicts the results. A

chiral constituent quark model by Boffi et al. [36], and a Lorentz covariant chiral

quark model by Faessler et al. [51] are both above the new data. A Light-front cloudy

bag model by Miller [49], which includes the pion cloud effect, generally reproduces
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the large deviation from unity in this region; however, this calculation decreases too

rapidly compared to the data. The VMD calculations by Belushkin et al. [50] and

Lomon [59] are also above the new data. Although this type of calculation is known

to be very successful in representing the existing world data, the large number of

tunable parameters in these models inevitably weaken the predictive power; therefore,

the current disagreement is not surprising.

5.3 Individual Form Factors and Global Fits

To extract the individual form factors, the data must be combined with cross section

measurements to determine the absolute magnitudes of GE and GM . From Eq. 1.40

σred = ε(1 + τ)
dσ/dΩ

(dσ/dΩ)Mott
= εG2

E + τG2
M , (5.1)

if the ratio R = µpGE/GM is completely fixed, there is only degree of freedom left in

the linear fit of the reduced cross section. A new set of GE and GM were extracted by

forcing the ratio µpGE/GM to be the experimental value of the new results (E08-007

I and E03-104). The cross sections used in this extraction are listed in Appendix

F. Fig. 5-4 shows the fits of the reduced cross sections at 9 different Q2s, which are

in the vicinity of the new ratio measurements. Table 5.1 provides the results of the

extractions of GE and GM by the standard Rosenbluth separation and the constrained

fit. The new extracted GE and GM are plotted with the world data in Fig. 5-5.

With the constraint of the new ratio results, the uncertainty of the individual

form factors are significantly improved. While the new GE obviously deviates from

unity by a few percent, GM is slightly higher than the world unpolarized data, and

both of them show a relatively smooth evolution along Q2 in this region.

However, forcing the fit to match the ratio results gives too much weight to the

polarization data. To avoid this issue, a global combined fit [168] was performed by

John Arrington. This new fit followed the same procedure as in [24, 128, 169] with a

treatment for the TPE effect in the cross section data. The χ2 of the combined fit is
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Figure 5-4: Rosenbluth separation of GE and GM constrained by R = µpGE/GM .
For each Q2, the reduced cross section σR is plotted against ε. The solid blue line is
the standard Rosenluth separation fit without any constraint on R. The dotted red
line is fit with an exact ratio constraint.
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unpolarized data.
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Table 5.1: The extracted values of GE and GM , with and without the constraint of
µpGE/GM from the new measurements. The errors are indicated in parentheses.

Q2 Unconstrained LT Separation Constrained Fit
[(GeV/c)2] GE/GD GM/µpGD χ2/ndf GE/GD GM/µpGD χ2/ndf

0.292 1.003(44) 0.936(22) 0.17 0.906(13) 0.977(11) 1.27
0.350 0.935(61) 0.971(25) 0.05 0.921(14) 0.976(12) 0.05
0.389 0.972(16) 0.965(11) 1.14 0.928(07) 0.995(05) 1.60
0.467 0.993(54) 0.972(20) 0.19 0.925(12) 0.993(10) 0.52
0.506 0.999(40) 0.957(25) 1.15 0.926(09) 0.999(08) 1.87
0.545 0.982(69) 0.983(20) 1.60 0.924(13) 0.997(11) 1.35
0.584 0.971(18) 0.984(08) 0.50 0.915(08) 1.007(05) 1.05
0.701 1.078(10) 0.981(21) 0.47 0.919(14) 1.007(11) 0.90
0.779 0.949(41) 1.004(12) 0.55 0.921(10) 1.012(06) 0.52

the contribution from the cross section measurements plus the additional contribution

from the polarization ratio measurements:

χ2 = χ2
σ +

NR∑

i=1

(Ri − Rfit)
2

(dRstat)2
+

Nexp∑

i=1

(∆j)
2

(dRsys)2
, (5.2)

where R = µpGE/GM , dRstat and dRsys are the statistical and systematics uncertain-

ties in R, and Rfit is the new ratio parameterization by including the new results.

NR is the total number of polarization measurements of R, ∆j is the offset for each

data set and Nexp is the number of the polarization data sets.

The form factors are fit to the following functional form:

GE(Q
2), GM(Q2)/µp =

1 +
∑n

i=1 aiτ
i

1 +
∑n+2

i=1 biτ
i
, (5.3)

where τ = Q2/4M2. The first pass of the new fit [168] was performed by removing

the lowest Q2 Punjabi et al. (GEp-I) point and highest Q2 Ron et al. (LEDEX)

point, since the reanalysis is still underway. The other data points from the world

data sets kept the same so that we have a conservative estimate of how much the

fit changed. The new fit has a slightly increased χ2 compared to the previous AMT

fit [24], which is mainly due to the change in the polarization data set. Fig. 5-6 shows
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Figure 5-6: The global fit for the proton form factor ratio with world high precision
data. The red points are the new results (E08-007 I and E03-104), the other points
are from previous polarization measurements [16, 19, 20]. The black line is the AMT
fit to the world 2γ exchange corrected cross section and polarization data. The red
line is the new fit by including the new data.

the high precision world data with the previous AMT fit and the new fit. As one can

see, the new fit is still slightly above the new data set. The fit to the individual form

factors are shown in Fig. 5-7 and Fig. 5-8, respectively. While GM stays almost the

same, the new fit indicates a ∼ 2% decrease in GE in this low Q2 region.

5.4 Proton RMS Radius

In the past, the proton root-mean-square (rms) radius in general has been determined

from the low Q2 form factor measurements. In the non-relativistic limit, the proton

charge radius is related to the electric form factor as:

rp =

(

−6
dGE(Q

2)

dQ2

)

Q2→0

. (5.4)
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Figure 5-7: The global fit for the proton electric form factor GE. The black line is
the AMT fit to the world 2γ exchange corrected cross section and polarization data.
The red line is the new fit by including the new data.
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Figure 5-8: The global fit for the proton magnetic form factor GM . The black line is
the AMT fit to the world 2γ exchange corrected cross section and polarization data.
The red line is the new fit by including the new data.
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The most cited value is from the analysis of Simon et al. [4], which gives rp =

0.862 ± 0.012 fm by using the unpolarized data up to Q2 < 2 fm−2. Occasionally,

fits with 2- or 4-pole expressions [170] were performed, and significantly bigger values

(0.88±0.02 fm and 0.92±0.02 fm) were found. The difference was partially understood

as a consequence of different treatments of the 〈r4〉 term. In parallel, fits based on

dispersion relations and VMD [171, 105] models give 0.854±0.012 fm.

As mentioned in Section 1.4, Kelly [47] defined the intrinsic density ρ(r) as the

density in the nucleon rest frame, and the moment is defined by

Mα =
∫ ∞

0
drr2+αρ(r), (5.5)

where α is an even integer. For a charge density, these moments are related to the

electric form factor by

M0 = GE(0), (5.6)

M2 =

(

−6
dGE(Q

2)

dQ2

)

Q2→0

− 3λ

2m2
GE(0). (5.7)

While the definition for the intrinsic charge radius depends upon the choice of λE

employed to fit the form factor, the radius parameter

ξp =

(

−6
d lnG(Q2)

dQ2

)1/2

Q2→0

=

(

M2

M0

+
3λ

2m2

)1/2

(5.8)

is a model-independent quantity to be compared with the Lamb shift results and other

form factor fits. This approach yields that ξp = 0.88 ± 0.01 fm, which represents a

model-independent property of the data even if its interpretation as a charge radius

depends upon the choice of λE. Kelly [42] also provided a simple fit with a rational

function of Q2, which is consistent with dimensional scaling at high Q2. It provides

excellent fits to the existing data, and the rms radii are consistent with those in [47].

Recently, Sick [172] used the Continued-fraction (CF) expansions to deal properly

with the higher moments after accounting for the Coulomb distortion, and this leads
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Table 5.2: Proton charge rms-radius from different parameterizations.

Form factor rp [fm] year
Dipole 0.851 -
FW [44] 0.808 2003
Kelly [42] 0.878 2004
AS [48] 0.879 2007
AMT [24] 0.885 2007
BS [173] 0.897 2008
New (pre.) 0.868 2009

to a radius of 0.895±0.018 fm, which is significantly larger than the radii used in

the past. Later on, Blunden and Sick [173] investigated the effect of 2γ exchange

processes in the analysis; they found that the change in the radius by removing the

contribution of 2γ exchange is small (+0.0052 fm). With the new fit presented in the

previous section, we give an updated proton charge rms-radius and compare it with

recent representative parameterizations in Table 5.2.

5.5 Proton Zemach Radius

High-precision measurements and calculations of the hydrogen hyperfine-splitting

(hfs) provide very high precision tests of QED [174, 175, 176, 177]. Experimentally,

the hfs of the hydrogen ground state is known to 13 significant figures in frequency

units [178],

Ehfs(e
−1p) = 1420.4057517667(9)MHz. (5.9)

One the theoretical side, the QED corrections have reached a level of a ppm accuracy.

The major theoretical uncertainty comes from nuclear structure-dependent contribu-

tions, which are determined exclusively by the spatial distribution of the charge and

magnetic moment of the proton.

The calculated hfs can be given as [179, 180]

Ehfs(e
−1p) = (1 + ∆QED +∆p

hvp +∆p
µvp +∆p

weak +∆S)E
p
F , (5.10)
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where Ep
F is the Fermi energy

Ep
F =

8α3m3
r

3π
µBµp =

16α2

3

µp

µB

R∞
(1 +ml/mp)

. (5.11)

The massmr = mlmp/(mp+ml) is the reduced mass, and R∞ is the Rydberg constant

(in frequency units).

The first four corrections are due to QED, hadronic vacuum polarization, muonic

vacuum polarization, and weak interactions (Z0 exchange), which are all well known.

The proton structure dependent corrections are

∆S = ∆Z +∆p
R +∆pol, (5.12)

where the individual terms stand for “Zemach”, “recoil”, and “polarizability”. The

Zemach correction is given by [181]

∆Z = −2αmrrZ(1 + δradZ ), (5.13)

where rZ is the Zemach radius

rZ = −4

π

∫ ∞

0

dQ

Q2

(

GE(Q
2)GM(Q2)

1 + κp
− 1

)

. (5.14)

Note that this term depends on the knowledge of the elastic form factors. Due to the

1/Q2 term in the integral, the form factors at low Q2 dominate the contribution.

Carlson et al. [84] performed an analysis by including the most recent published

data on proton spin-dependent structure functions. Table 5.3 shows the results of

this study. Note that the uncertainty of the polarizalibity term is now comparable

with the uncertainty of the Zemach term.

We calculated the Zemach term with the new fit [168], and compared it with other

parameterizaions in Table 5.4. The new fit gives a slightly larger Zemach term (+0.22

ppm) which shifts the total calculation in the “right” direction. The deficit is now

reduced to 0.63 and is within one standard deviation. Fig. 5-9 shows the uncertainty

206



Table 5.3: Summary of corrections for electronic hydrogen.

Quantity value [ppm] uncertainty [ppm]
(Ehfs(e

−p)/Ep
F )− 1 1103.48 0.01

∆QED 1136.19 0.00
∆p

µvp +∆p
hvp +∆p

weak 0.14
∆Z(using [24]) -41.43 0.44
∆p

R(using [24]) 5.85 0.07
∆pol(using [24]) 1.88 0.64
Total 1102.63 0.78
Deficit 0.85 0.78

Table 5.4: Zemach radii, ∆Z for different parameterizations.

Form factor rZ [fm] ∆Z [ppm] year
Dipole 1.025 -39.29 -
FW [44] 1.049 -40.22 2003
Kelly [47] 1.069 -40.99 2004
AS [48] 1.091 -41.85 2007
AMT [24] 1.080 -41.43 2007
New fit (pre.) 1.075 -41.21 2009

of the Zemach radius integrand as a function of Q2. The new results (Q2 = 0.3 ∼ 0.8

GeV2) contributed ∼ 11% of the uncertainty with an optimistic approach as Q2 goes

to zero4.

5.6 Proton Transverse Densities

As noted in Section 1.4, unique relativistic relationships between the Sachs form

factors measured at finite Q2 and the nucleon densities in the rest frame do not exist.

Miller [125] showed that the form factor F1 can be interpreted as a two dimensional

Fourier transform of charge density in transverse space in the infinite-momentum-

4This is by assuming a smooth behavior of GM in the region where it is not well measured
(Q2 < 0.3 GeV2), and the uncertainty goes to zero as Q2 → 0
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Figure 5-9: The uncertainty of the Zemach radius as a function of Q2. The green
band shows the coverage of the new data.

frame (IMF)

ρCh(b) ≡
∑

q

eq

∫

dxq(x,b) =
∫

d2q

(2π)2
F1(Q

2 = q2)eiq·.b (5.15)

Recently, Miller et al. [61] extended the analysis and showed that the form factor

F2 may be interpreted as the two dimensional Fourier transform of the magnetization

density by

ρM(b) =
∫

d2q

(2π)2
F2(Q

2)eiq·b. (5.16)

For small values of Q2 it is possible to make the following expansion:

F1(Q
2) ≈ 1− Q2

4
〈b2〉Ch, (5.17)

F2(Q
2) ≈ κ

(

1− Q2

4
〈b2〉M

)

, (5.18)

where 〈b2〉Ch(M) is the second moment of ρCh(M)(b). The effective ( ∗ ) square radii

via the small Q2 expansion of the Sachs form factors are defined as

GE(Q
2) ≈ 1− Q2

6
R∗2

E , (5.19)
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Figure 5-10: A linear fit to previous world polarization data, shown by the solid (blue)
line and error band. The fit was done up to the region of Q2 = 0.35 GeV2 where the
linear expansion is valid for the transverse radii difference. The shaded area indicates
〈b2〉Ch > 〈b2〉M . The dashed (red) line shows the critical slope when 〈b2〉M = 〈b2〉Ch.
Figure from [61]

GM(Q2) ≈ 1− Q2

6
R∗2

M . (5.20)

Then the form factor ratio can be expanded as

R = µpGE/GM ≈ 1 +
Q2

6
(R∗2

M −R∗2
E ), (5.21)

and the charge and magnetization transverse densities can be related to the ratio R

by:

〈b2〉M − 〈b2〉Ch =
µp

κ

2

3
(R∗2

M − R∗2
E ) +

µp

M2
p

, (5.22)

where up

M2
p
≈ 0.1235 fm2 represents the relativistic correction. It is a consequence of

the Foldy term [182], which arises from the interaction of the anomalous magnetic

moment of the nucleon with the external magnetic field of the electron.

Fig. 5-10 shows the results of a linear fit to the previous world data, and Fig. 5-11
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Figure 5-11: New fit with the E08-007 data, shown by the solid (blue) line and error
band. The shaded area indicates 〈b2〉Ch > 〈b2〉M . The dashed (red) line shows the
critical slope when 〈b2〉M = 〈b2〉Ch.

shows the fit with the new results from experiment E08-007 I and the preliminary

results of LEDEX reanalysis [183]. The charge and magnetization second moments

difference changed from

〈b2〉M − 〈b2〉Ch = 0.10960± 0.00687fm2 (5.23)

to

〈b2〉M − 〈b2〉Ch = 0.09093± 0.00395fm2 (5.24)

Note that the new fit improves the uncertainty by a factor of ∼ 2, and the mag-

netic density still extends further than the electric density in the transverse space.

This result can be related to the failure of quarks spin to account for the total angu-

lar momentum of the proton and the expected importance of quark orbital angular

momentum [184].
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5.7 Strangeness Form Factors

The parity-violating (PV) asymmetry in elastic ep scattering can be used to extract

the strangeness form factors [185, 186, 187]. The PV asymmetry arises due to in-

terference between photon exchange and Z-boson exchange. The asymmetry in the

Born approximation is given by [188]:

APV = − GFQ
2

4πα
√
2

AE + AM + AA

τG2
Mp + εG2

Ep

, (5.25)

where GF is the Fermi constant, and α is the fine structure constant. The individual

asymmetry terms can be written in terms of the proton form factors GEp and GMp

and the proton neutral weak vector and axial form factors GZ
Ep, G

Z
Mp and GZ

A:

AE = εGEpG
Z
Ep, (5.26)

AM = τGMpG
Z
Mp, (5.27)

AA = (1− 4 sin2 θW )ε′GMpG
Z
A, (5.28)

where θW is the weak mixing angle, and ε′ =
√

τ(1 + τ)(1− ε2). With the assumption

of isospin symmetry, the weak vector form factors can be expressed in terms of the

proton and neutron form factors together with the strangeness form factors: GEs and

GMs. Neglecting the contributions from heavier quarks [187], APV is given by:

APV = − GFQ
2

4πα
√
2

[

(1− 4 sin2 θW )− εGEp(GEn +GEs) + τGMp(GMn +GMs)

ε(GEp)2 + τ(GMp)2

− (1− 4 sin2 θW )ε′GMpG
Z
A

ε(GEp)2 + τ(GMp)2

]

. (5.29)

Clearly, the measurements of the strangeness form factors require the knowledge of

the nucleon form factors.

From our data, we estimated the impact of the new fit to the existing strangeness

form factor measurements by comparing them with the AMT parameterization [24].

The difference in the extracted physics asymmetry is summarized in Table 5.5.
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Table 5.5: The absolute asymmetry difference (∆APV ), the normalized difference
by the experimental uncertainty (∆APV /σ) and the relative asymmetry difference
(∆APV /APV ) between using the AMT [24] parameterization and the new one.

Q2 [GeV2] ∆APV [ppm] ∆APV /σ ∆APV /APV Experiment
0.38 -0.178 0.42 1.6% G0 FWD [189]
0.56 -0.347 0.50 1.6% G0 FWD
1.00 -0.414 0.30 0.8% G0 FWD
0.23 +0.038 0.12 0.2% G0 BCK [190]
0.65 +0.014 0.14 0.3% G0 BCK
0.50 -0.299 0.50 1.7% HAPPEX III [191]

5.8 Future Results and Experiment

5.8.1 The Mainz Cross Section Measurement

The A1 collaboration [192] at Mainz Microtron (MAMI) completed a very high preci-

sion elastic ep cross section measurement in the range of Q2 = 0.01−2 GeV2 [62]. The

experiment aimed to measure the cross section at a fixed Q2 for several settings of ε

to perform the Rosenbluth separation of the individual form factors. The accessible

region is determined by the accelerator and the properties of the detector system.

Fig. 5-12 shows the accessible kinematic region for the experiment.

Due to the large cross section in the low Q2 region, a very small statistical un-

certainty can be achieved. The collaboration estimated a < 0.5% statistical error

plus a 0.5% systematics uncertainty, leading to a total error of ∼ 1% or less for ev-

ery cross section measurement, which is an unprecedentedly small for cross section

measurements.

The Mainz experiment plans to extract the individual form factors using two

methods. The first way is by using the standard Rosenbluth separation which utilizes

a linear fit to the cross section at constant Q2 but different ε. This works in a

completely model independent way except for the larger Q2 where the two photon

exchange contribution becomes larger. A second approach is to fit the global ansatz

for the form factors directly to the cross sections. With a flexible ansatz, this is quasi
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Figure 5-12: The accessible kinematic region in ε/Q space. The black dots represent
the chosen settings (centers of the respective acceptance). The dotted curves corre-
spond to constant incident beam energies in steps of 135 MeV (”horizontal” curves)
and to constant scattering angles in 5◦ steps (”vertical” curves). Also shown are the
limits of the facility: the red line represents the current accelerator limit of 855 MeV,
with the upgrade, it will be possible to measure up to the light green curve. The
dark green area is excluded by the minimal beam energy of 180 MeV. The maximum
(minimum) spectrometer angle excludes the dark (light) blue area. The gray shaded
region is excluded by the upper momentum of spectrometer A (630 MeV/c). Figure
from [62].
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model-independent and is an even more powerful method to directly test available

models.

5.8.2 E08-007 Part II

The second part of experiment E08-007 is tentatively scheduled in 2012. This part

will measure the proton form factor ratio in the range of Q2 = 0.015−0.4 GeV2 using

the beam target asymmetry technique.

For longitudinally polarized electrons scattering from a polarized proton target,

the differential cross section can be written as [193]:

dσ

dΩ
= Σ+ h∆, (5.30)

where Σ is the unpolarized differential cross section, h is the electron helicity and ∆

is the spin-dependent differential cross section given by:

∆ =

(

dσ

dΩ

)

Mott

f−1
recoil

[

2τvT ′ cos θ∗G2
M − 2

√

2τ(1 + τ)vTL′ sin θ∗ cosφ∗GMGE

]

,

(5.31)

where θ∗ and φ∗ are the polar and azimuthal proton spin angles defined with respect

to the three-momentum transfer vector ~q and the scattering plane (see Fig. 5-13), and

vT ′ and vTL′ are kinematic factors [193].

The spin-dependent asymmetry A is defined as:

A =
σ+ − σ−

σ+ + σ− , (5.32)

where σ+(−) is the differential cross section for the two different helicities of the

polarized electron beam. The spin-dependent asymmetry A can be written in terms

of the polarized and unpolarized differential cross-sections as:

A =
∆

Σ
= −

2τvT ′ cos θ∗G2
M − 2

√

2τ(1 + τ)vTL′ sin θ∗ cosφ∗GMGE

(1 + τ)vLG2
E + 2τvTG2

M

. (5.33)

The experimental asymmetry Aexp is related to the spin-dependent asymmetry by the
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Figure 5-13: Spin-dependent ep elastic scattering in Born appromixation.

relation:

Aexp = PbPtA, (5.34)

where Pb and Pt are the beam and target polarizations, respectively. By measuring

the asymmetry simultaneously in two spectrometers with different angles between the

momentum transfer and the target spin as illustrated in Fig. 5-14, the following super

ratio is directly related to the ratio GE/GM :

R =
A1

A2

=
τvT ′ cos θ∗1 −

√

2τ(1 + τ)vTL′ sin θ∗1 cos φ
∗
1
GE

GM

τvT ′ cos θ∗2 −
√

2τ(1 + τ)vTL′ sin θ∗2 cos φ
∗
2
GE

GM

, (5.35)

which is independent of the knowledge of the beam and target polarization.

The solid polarized proton target developed by UVa will be used. In this tar-

get, 15NH3 is polarized by Dynamic Nuclear Polarization (DNP) [194] in a strong

magnetic field (5 T) at very low temperature (∼ 1 K). The left and right HRS to-

gether with two septum magnets [195] will be used to detect the scattered electrons

simultaneously. The proposed Q2 points and projected total errors are shown in

Fig. 5-15. This future measurement will overlap with the part I points and the lower

range of the BLAST [19] measurement. This will provide a direct comparison with

the BLAST results by using the same technique and allow an examination of any

unknown systematic uncertainties of the recent measurements.

Beyond the curiosity in the form factor behavior in the extremely low momentum
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Figure 5-14: The kinematics for the two simultaneous measurements. The scattered
electrons e′1 and e

′
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part of E08-007.
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Figure 5-16: The uncertainty of the Zemach radius as a function of Q2. The green
band shows the coverage of the new data from this work, and the yellow band shows
the proposed coverage of the second part of E08-007.

transfer region, the motivation for the running of the experiment E08-007 part II

also comes from the determination of the proton Zemach radius. As illustrated in

Fig. 5-16, the second part of this measurement will cover the peak region where the

existing data contribute ∼ 60% of the total uncertainty in rZ . By assuming the form

factor ratio follows in a similar trend as the part I data, a conservative change of

∼ 0.4 ppm in the Zemach term ∆Z is expected.

As mentioned in Section 5.6, the low Q2 data will also greatly improve our knowl-

edge of the proton transverse densities in the impact parameter space. The expected

results from the part II measurement are shown in Fig. 5-17 and will allow us to make

a definitive fit to this quantity.

5.9 Conclusion

In conclusion, this thesis presents the details of the proton electric to magnetic form

factor ratios measurements at Q2 = 0.3− 0.7 GeV2. This experiment used the stan-

dard Hall A experimental system with one of the two high resolution spectrometers.

To reduce the inelastic background, the BigBite calorimeter was used to tag the elec-

217



/62
MR2Q

0.0 0.5 1.0

P M
/G

P E
Gµ

0.9

1.0

1.1

/62
MR2Q

0.0 0.5 1.0

P M
/G

P E
Gµ

0.9

1.0

1.1

E08007 - II Projected Uncertainties

E08007 - I 

LEDEX Reanalysis

Crawford et al.

Gayou et al.

Dietrich et al.

Milbrath et al.

)2
E-R2

M
(R

6

2Q 1 + 

ch
>2=<b

M
>2<b

/NDF=13.33/142χ

 0.0039± = 0.0909 
ch

>2 - <b
M

>2<b

E08007 - II Projected Uncertainties

E08007 - I 

LEDEX Reanalysis

Crawford et al.

Gayou et al.

Dietrich et al.

Milbrath et al.

E08007 - II Projected Uncertainties

E08007 - I 

LEDEX Reanalysis

Crawford et al.

Gayou et al.

Dietrich et al.

Milbrath et al.

E08007 - II Projected Uncertainties

E08007 - I 

LEDEX Reanalysis

Crawford et al.

Gayou et al.

Dietrich et al.

Milbrath et al.

Figure 5-17: Projection of E08-007 part II measurements on the new fit by assuming
the same slope as Q2 decreases.

trons and form the coincidence trigger. The central experimental equipment was the

Focal Plane Polarimeter (FPP), which measured the polarization of the recoil proton

in the elastic scattering of polarized electrons from an unpolarized liquid hydrogen

target. The statistical uncertainty in this experiment is determined by the polariza-

tion of the electron beam and the figure of merit of the FPP. The main source of the

systematic uncertainty in this measurement comes from the spin precession of the

proton in the magnetic field of the spectrometer. With an 85% beam polarization

and 21 days of running, we have achieved the best statistics to date. For the most of

the Q2 kinematic points, the systematic error dominates the total uncertainty.

The results of this measurement together with a high precision point at Q2 = 0.8

GeV2 (from experiment E03-104) strongly deviate from unity, and are systematically

below the world polarization data. The preliminary reanalysis of the LEDEX data is

in agreement with the new data, but the discrepancy between the BLAST results and

the new data still needs to be investigated. The new results do not favor any narrow
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structure in this region as suggested by the phenomenological fit [44]. At the Q2 = 0

limit, the ratio is forced to unity by definition, and the current slope of the data in

this region appears to be too smooth to meet this condition, which might indicate a

change in the slope as Q2 approaches 0.

The low Q2 range measured in this experiment does not allow for a pQCD calcu-

lation, which necessitates the development of low energy effective field theories and

the use of fits to the data in order to describe the form factors. None of the current

theories accurately predicts the entire data set, which is mainly due to the “free”

parameters that had been tuned to the older data in those calculations. On the

other hand, fast developments of computational capabilities may allow theories such

as Lattice QCD to offer a complete and model-independent description in the near

future.

In the mean time, the new results from this experiment have been used in global fit

to extract the individual form factors. The preliminary fit suggests a smaller GEp in

this region, while the change inGMp is relatively small. The new data also changed the

results of the proton transverse density as proposed in [61]; the difference between the

transverse RMS magnetic and electric radius is smaller with improved precision. The

improved knowledge of the individual form factors also has a significant impact in the

ultra-high precision test of QED in the hydrogen hyperfine splitting calculations and

in the extraction of the strangeness form factors from parity-violation experiments.

The second part of this experiment, which will access the region of Q2 = 0.015−0.4

GeV2 is tentatively scheduled in 2012. In addition to resolving the potential data

discrepancy, this part will be the first polarization measurement in the extremely low

Q2 region and will offer a great opportunity to vastly improve our knowledge of the

nucleon structure.
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Appendix A

Kinematics in the Breit Frame

The Breit frame, also called the “brickwall frame”, is the frame where the momenta

of the initial and final nucleon are equal and opposite:

~pB = −~p′B = −~qB
2
, (A.1)

so there is no energy transfer in the elastic scattering in this frame:

EpB = E ′
pB (A.2)

ωB = EpB −E ′
pB = 0. (A.3)

The four-momentum transfer in the Breit frame is:

Q2 = −q2B = ~q2B (A.4)

For the electron kinematics, Eq. A.3 imposes

EB = E ′
B (A.5)

~k2B = ~k′2B (A.6)

~kB = ~qB + ~k′B. (A.7)

As illustrated in Fig. A-1, the three-momentum of the electron have:
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Figure A-1: Elastic scattering in the Breit frame.

kB1 = k′B1 =
|~qB|
2

cot(
θB
2
) =

√
Q2

2
cot(

θB
2
) (A.8)

kB2 = k′B2 = 0 (A.9)

kB3 = −k′B3 =
|~qB|
2

=

√
Q2

2
(A.10)

Now we can express the scattering angle θB in the Lab frame. The Breit frame is

moving along the 3-axis, so that the 1 and 2 components of the electron momentum

are left unchanged by the Lorentz transformation:

k1 = k1B = k′1 = k′1B =

√
Q2

2
cot

θB
2

(A.11)

k2 = k2B = k′2 = k′2B = 0. (A.12)

The ~q is along the 3-axis, so we can write

k32 =
(~k · ~q)
~q2

=
~k · ~k − ~k · ~k′

~q2
=

(E2)2 + (EE ′ cos θe)
2 − 2E2EE ′ cos θe

~q2
. (A.13)

By using the relation

Q2 = 4EE ′ sin2 θe
2

(A.14)
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we can get

k21 = ~k2 − k23 =
~k2~q2 − (~k · ~q)2

~q2

=
[(E2)2 + E2E ′2 − 2E2EE ′ cos θe]− [(E2)2 + (EE ′ cos θe)

2 − 2E2EE ′ cos θe]

~q2

=
E2E ′2 sin2 θe

~q2
=
Q4

4~q2
cot2

θe
2
, (A.15)

where the electron mass is neglected. Since

q = p′ − p (A.16)

p2 = p′2 = m2
p, (A.17)

we can write

p′2 = (q + p)2 = q2 + 2p · q + p2 (A.18)

q2 = −2q · p = −2ωmp (A.19)

ω = − q2

2mp
=

Q2

2mp
. (A.20)

Using Q2 = −(ω2 − ~q2), we can express ~q2 as

~q2 = Q2(1 +
Q2

4m2
p

) = Q2(1 + τ). (A.21)

Now Eq. A.15 can be replaced by

k21 =
Q2

4(1 + τ)
cot2

θe
2
, (A.22)

and the angle θB can be expressed as

cot2
θB
2

=
cot2 θe

2

1 + τ
. (A.23)
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Appendix B

Algorithm for Chamber Alignment

The FPP chamber alignment by matrix expansion used in this analysis was devel-

oped in experiment E93-049. Instead of doing the physical alignment for each FPP

chamber, the correction is directly applied to the track reconstructed by the FPP

referring to the VDC track. The alignment algorithm is described as the following.

For the “straight-through” events, the VDCs have the reconstructed track T0

(x0, y0, θ0, φ0), and the FPP chambers have the reconstructed track T1 before the

alignment. The difference between the two tracks is ∆T = T1 − T0. The goal is to

apply the correction terms ∆T for each track of the FPP. Intuitively, this correction

depends on where the track is hitting at, so it’s convenient to expend the correction

in terms of the polynomial of the track position x0, y0 at the focal plane, which are

1, x0, y0, x
2
0, y

2
0, x0 · y0.

The vector V is defined as:

V =




















1

x0

y0

x20

y20

x0 · y0
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and ∆T is:

∆T =













x1 − x0

y1 − y0

x21 − x20

y21 − y20













.

The matrix A is constructed by:

A = V · V′. (B.1)

The matrix B is constructed by:

B = ∆T · V′. (B.2)

The correction matrix M is defined by:

M = A−1 ·B′

= (V ·V′)−1 · (∆T ·V′)′ (B.3)

= (V′)−1 ·∆T. (B.4)

The simple matrix calculation leads to:

T1 = T0+V′ ·M (B.5)

From Eq. B.5, the FPP track is corrected by the matrix M. In the real procedure,

the front chamber track is first aligned with respect to the VDC tracks, and the rear

chamber track is aligned by the same way with respect to the aligned front track.
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Appendix C

Extraction of Polarization

Observables

C.1 Introduction

For experiment E08-007 we measured the recoil proton polarization in the elastic re-

action 1H(~e, e′~p). With the scattering angles reconstructed by the FPP and the spin

rotation matrix generated by COSY, we are able to extract the polarization compo-

nents at the target. Three different methods to extract the polarization observables

are presented in [151]. In this work, the weighted-sum and maximum likelihood

method were discussed. Since we are dealing with the ≤ 1% statistical uncertainty

in this measurement, the validity of the approximations used in the formalism was

carefully examined.

C.2 Azimuthal asymmetry at the focal plane

The detection probability for a proton scattered by the analyzer with polar angle θ

and azimuthal angle φ is given by [16]:

f±(θ, φ) =
1

2π
ǫ(θ, φ)(1± Ay(P

fpp
y sinφ− P fpp

x cos φ)), (C.1)
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where ± refers to the sign of the beam helicity, P fpp
x and P fpp

y are the transverse and

normal polarization components at the analyzer with plus beam helicity, respectively;

P fpp
z is not measured because it does not result in an asymmetry. ǫ(θ, φ) is the nor-

malized efficiency (acceptance) which describes the non-uniformities in the detector

response that results from misalignments and inhomogeneities in detector efficiency.

Ay is the analyzing power. Based on Eq. C.1 the efficiency can be extracted by:

ǫ(θ, φ) =
f+(θ, φ) + f−(θ, φ)

π
. (C.2)

C.3 Weighted-sum

The spin transport matrix is defined by:






P fpp
x

P fpp
y




 =






Sxx Sxy Sxz

Syx Syy Syz















P tg
x

ηhP tg
y

ηhP tg
z










, (C.3)

where P tg
x , P

tg
y , P

tg
z is the polarization component at the target. By writing Eq. C.1

in terms of the polarization components at the target, we now have:

f(φ) =
1

2π
ǫ(1 + λxP

tg
x + λyhP

tg
y + λzhP

tg
z ), (C.4)

where

λx = Ay(Syx sinφ− Sxx cosφ)

λy = ηAy(Syy sinφ− Sxy cosφ)

λz = ηAy(Syz sin φ− Sxz cosφ). (C.5)

η is the sign for the beam helicity, and h is the beam polarization. Note that the

contribution from the induced (normal) polarization P tg
x is independent of the beam

helicity. In the Born approximation, the induced polarization P tg
x = 0. As noted
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in [151], with different beam helicities, we can always construct an effective acceptance

which has a symmetry period of π in φ. The integrals can be expressed as:

∫ 2π

0
f(φ)λydφ = hP tg

y

∫ 2π

0
f(φ)λ2ydφ+

hP tg
z

∫ 2π

0
f(φ)λyλzdφ+

∫ 2π

0
f(φ)λzdφ = hP tg

y

∫ 2π

0
f(φ)λyλzdφ+

hP tg
z

∫ 2π

0
f(φ)λ2zdφ. (C.6)

By replacing the integrals in Eqs. C.6 with corresponding sums over the observed

events, we have






∑

i λy,i
∑

i λz,i




 =






∑

i λy,iλy,i
∑

i λz,iλy,i
∑

i λy,iλz,i
∑

i λz,iλz,i











hP tg
y

hP tg
z




 . (C.7)

So P tg
y and P tg

z can be solved from the equation above. Problems may arise if P tg
x is

non-zero from the 2γ exchange, since an acceptance with symmetry period of π in φ

cannot be constructed.

C.4 Maximum likelihood

The individual polarization components can also be extracted by the maximum-

likelihood (ML) technique. Based on Eq. C.1, we can express the probability for

the experimental angular distribution as the product of all the individual probabili-

ties:

F =
N∏

i=1

1

2π
ǫ[1 + Ay(P

fpp
y sin φi − P fpp

x cosφi)]. (C.8)

The likelihood function is given by:

L(P tg
x , P

tg
y , P

tg
z ) =

N∏

i=1

1

2π
ǫ(1 + λyhP

tg
y + λzhP

tg
z ), (C.9)
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where λy, λz are the same as defined in Eq. C.5. By maximizing the probability

function:

∂lnL

∂P tg
y

= 0

∂lnL

∂P tg
z

= 0, (C.10)

we can extract P tg
y and P tg

z . The normalized efficiency term ǫ is eliminated in the

derivative since it dose not depend on P (∂lnǫ
∂P

= 0). To linearize the equations, an

approximation is applied:

ln(1 + x) ≈ x− x2

2
+ o(x3), (C.11)

where x = λyhP
tg
y + λzhP

tg
z . By omitting the o(x3) term, the equations is simplified

as: 




∑

i λy,i
∑

i λz,i




 =






∑

i λy,iλy,i
∑

i λy,iλz,i
∑

i λz,iλy,i
∑

i λz,iλz,i











hP tg
y

hP tg
z




 , (C.12)

which is the same as Eq. C.7, and the weighted-sum and ML methods converge at

this point. Here we still assume the induced polarization P tg
x = 0 to simplify the

context, since determining the induced polarization P tg
x which is sensitive to the false

asymmetry is not the intent of this experiment.

C.5 Simulation

Although it is clearly derived from the above sections and also in [151] that false

asymmetry can be canceled by flipping the beam helicity, it is straight forward to

confirm the results within a certain precision and test the statistical sensitivity of the

weighted-sum method by simulation.

For simplicity, we use the dipole approximation for the spin transport and assume

that there is no induced polarization. Then, for each trial the simulation generates a
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sample of events by the probability:

f±(φ) = ǫ(φ)(1± Py sinχ cosφ± Pz sin φ) (C.13)

Here Py, Pz represent the transferred polarization components at the target. To be

similar to the real case, we choose the spin rotation angle χ = 90◦ ∼ 100◦. We set

the pseudo efficiency ǫ:

ǫ = 1 + s1 sin φ. (C.14)

False asymmetries with higher order terms (c1, s2, c2) were also tested, and the results

are similar. With the simulated sample events, we extracted the pseudo ratio Py/Pz

by Eq. C.7. We also varied the event sample size N0 used for each trial to test the

statistical sensitivity. The extracted ratio distributions are shown in Fig. C-2 with

5000 trials per plot, and the sample sizes for each trial N0 is from 100 to 50000.

The mean value for the extracted ratio versus the sample size is plotted in Fig. C-3,

and the deviation from the set value ∆R divided by the standard deviation of the

simulated distribution versus the sample size is plotted in Fig. C-4.

Results from the simulation with two different set ratios Py/Pz = 0.5 and Py/Pz =

1 are shown in Fig. C-3 and Fig. C-4. From these results we can see that the weighted-

sum method can extract the ratio without any problem even with a significant size

of the false asymmetry. The comparison shown here is between s1 = 0 and s1 = 0.1.

The real false asymmetry is about a few percent level as shown in Fig. C-1. We also

notice that when the statistics are low, the distribution is not symmetric as shown in

Fig. C-2, and the deviation of the mean value is due to the cutoff of the histogram.

The deviation decreases rapidly as the statistics increases and becomes unnoticeable

when N0 > 50000, and there is no noticeable difference with and without the false

asymmetry.

From the results presented above, the simulation confirmed the results in [151]

and the formalism of weighted-sum works well with our statistics. The only tiny

flaw is that we assumed there is no induced polarization (P tg
x = 0). The problem

with non-zero induced polarization is that we cannot exactly construct an acceptance
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Figure C-1: False asymmetry Fourier series coefficients vs. δp for kinematics K6
δp = 2%.

with symmetry period of π in φ as mentioned earlier, so Eq. C.6 is not exactly

true. However, through simulation, we can give an estimate with a small amount of

induced polarization P tg
x as predicted by [196]. The predicted induced polarization

is shown in Fig. C-5. The electron scattering angle θcm for each kinematic setting is

listed in Table C.1. To simulate the case with non-zero induced polarization, the set

probability at the focal plane Eq. C.13 becomes:

f±(φ) = ǫ(φ)(1± Py sinχ cosφ± Pz sinφ+ P0 cosφ+ P1 sinφ), (C.15)

where P0, P1 represent the polarization components raised from the induced polariza-

tion at the focal plane. To test the extreme case, we set them to be comparable to the

physics asymmetry P0, P1 = 0.2 which is much larger than predicted, and with false

asymmetry s1 = 0.1 which is the same level as the real case. Different combinations

of P0, P1 were tested and corresponding results are listed in Table C.2.

The simulations for set polarization Py = 0.1, Pz = 0.1 are shown in Fig. C-6. The

232



rath
Entries  5000

Mean   0.3453

RMS     1.897

-6 -4 -2 0 2 4 6 80

10

20

30

40

50

60

70

rath
Entries  5000

Mean   0.3453

RMS     1.897
=1000N

rath
Entries  5000

Mean   0.9542

RMS     1.693

-6 -4 -2 0 2 4 6 80

20

40

60

80

100

rath
Entries  5000

Mean   0.9542

RMS     1.693=5000N

rath
Entries  5000
Mean    1.145

RMS     1.248

-6 -4 -2 0 2 4 6 80

20

40

60

80

100

120

rath
Entries  5000
Mean    1.145

RMS     1.248=10000N

rath
Entries  5000

Mean    1.178

RMS     0.889

-6 -4 -2 0 2 4 6 80

20

40

60

80

100

120

140

160

rath
Entries  5000

Mean    1.178

RMS     0.889

=20000N

rath
Entries  5000

Mean    1.071

RMS    0.4292

-6 -4 -2 0 2 4 6 80

20

40

60

80

100

120

140

160

180

200

220

rath
Entries  5000

Mean    1.071

RMS    0.4292

=50000N

rath
Entries  5000

Mean    1.037

RMS    0.3075

-6 -4 -2 0 2 4 6 80

50

100

150

200

250

300
rath

Entries  5000

Mean    1.037

RMS    0.3075
=80000N

rath
Entries  5000

Mean    1.029

RMS    0.2761

-6 -4 -2 0 2 4 6 80

50

100

150

200

250

300

rath
Entries  5000

Mean    1.029

RMS    0.2761

=100000N

rath
Entries  5000

Mean    1.018

RMS    0.1828

-6 -4 -2 0 2 4 6 80

50

100

150

200

250

300

350

400

rath
Entries  5000

Mean    1.018

RMS    0.1828
=200000N

rath
Entries  5000

Mean    1.007

RMS    0.1122

-6 -4 -2 0 2 4 6 80

100

200

300

400

500

600

rath
Entries  5000

Mean    1.007

RMS    0.1122

=500000N

Figure C-2: Histograms of the extracted ratio Py/Pz by weighted-sum method with
no false asymmetry (s1 = s2 = 0) in the simulation. N0 is the sample size of each
trial in the simulation. At large statistics, the extracted ratio is in good agreement
with the set ratio in the simulation.

results show that the deviation is much less within one standard deviation. For the

real case, the induced polarization at the target P tg
x ∼ 10−31. To estimate the effect

close to the real case, we used the similar size of P0, and P1 as predicted, and also

with the “full” false asymmetry:

ǫ = 1 + s1 sinφ+ c1 cosφ+ s2 sin 2φ+ c2 cos 2φ (C.16)

where s1 = 0.08, c1 = 0.05, s2 = 0.05, c2 = 0.01 which is assigned according to the

maximum of their real sizes in this experiment. We assume that P0 = P1 = 0.01

1By considering the spin rotation matrix elements Syx, Sxx ≪ 1, the contribution from P0 at the
focal plane is actually ≪ 10−3
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Figure C-3: Extracted ratio mean value by weighted-sum method vs. different sample
size N0 with false asymmetry s1 = 0 (left) and s1 = 0.1 (right). There is no noticeable
difference between the two. Upper panel with set polarization Py = 0.1, Pz = 0.1,
lower panel with set polarization Py = 0.1, Pz = 0.2, showing that the results of the
tests do not depend on the value of the set ratio Py/Pz.

which is very conservative compared to the real case (10−3) after considering the spin

rotation. The simulation results are shown in Fig. C-7.

From the simulation (Fig. C-7) we can see that the deviation of the ratio ∆R is

∼ 0.002, and since the asymmetries P0, P1 are even smaller and the statistics are

much better in the real case, we do not expect any noticeable effect from the induced

polarization.

C.6 Summary

Through this study, we have confirmed the results in [151]. The approximations and

assumptions used were carefully examined. From the simulation, we have confirmed

that the weighted-sum method is valid and false asymmetry plays a negligible role in

extracting the transferred polarization and thus the form factor ratio.
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Figure C-4: Extracted ratio mean value deviation from the set value divided by the
sample standard deviation (RMS) vs. different sample size N0 with false asymmetry
s1 = 0 (left) and s1 = 0.1 (right). There is no noticeable difference between the
two. Upper panel is with set polarization Py = 0.1, Pz = 0.1, lower panel is with set
polarization Py = 0.1, Pz = 0.2.

Table C.1: Electron scattering angle θcm for each kinematics (δp = 0%).

Kinematics Q2 [(GeV/c)2] θcm [deg]
K1 0.35 55.5
K2 0.30 50.9
K3 0.45 63.9
K4 0.40 60.2
K5 0.55 71.5
K6 0.50 67.7
K7 0.60 75.4
K8 0.70 82.5
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Figure C-5: Proton induced polarization component, as a function of the electron
θcm scattering angle for different beam energies. The dash (solid) line shows the total
(elastic only) 2γ exchange effect. The y-axis Py is actually P tg

x for the convention
used here.

Table C.2: Deviation from the set value ∆R with different combinations of P0 and
P1. The set transferred polarization is Py = Pz = 0.1. Simulation with sample size
N0 = 105 and number of trial Ntrial = 104. The standard deviation for extracted
values is ∼ 0.075.

P0 = 0 P0 = 0.2
P1 = 0 0.0015 0.002
P1 = 0.2 0.012 0.012
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Figure C-6: Extracted ratio mean value and relative deviation vs. different sample
size N0 with false asymmetry s1 = 0.1, and different combinations of set polarization
P0, P1.
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Figure C-7: Extracted ratio mean value and relative offset from the set value vs.
different sample size N0 with difference false asymmetries: s1 = 0.08, c1 = 0.05, s2 =
0.05, c2 = 0.01, and set polarizations: P0 = P1 = 0.01, Py = Pz = 0.1, respectively.
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Appendix D

pC Analyzing Power

Parameterizations

The carbon analyzing power Ay was extracted for this measurement. We applied

two-dimensional binning in the analysis to extract the dependence on θfpp and Tp.

The mean values of the two variables of each bin were used for the fit. The θfpp

binning is the same for all the kinematics settings as listed in Table D.1, and the Tp

binning is summarized in Table D.2. The “low energy” McNaughton, the LEDEX

and the new parameterizations are summarized in Table D.3.
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Table D.1: Binning on θfpp.

Bin θlow [deg] θhigh [deg]
1 4 5
2 5 6
3 6 8
4 8 10
5 10 12
6 12 15
7 15 18
8 18 21
9 21 24
10 24 28
11 28 36

Table D.2: Binning on Tp.

Kinematics carbon thickness [inch] Tlow [MeV] Thigh [MeV] Bin size [MeV]
K1 3 120 150 10
K2 3 90 120 10
K3 3.75 160 220 20
K4 3.75 140 200 20
K5 3.75 220 280 20
K6 3.75 200 260 20
K7 3.75 240 300 20
K8 3.75 300 360 20
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Table D.3: Coefficients of different parameterizations for the pC analyzing power Ay.
The reduced χ2 of the new fit is 0.74 with a χ2 of 272.5 and 368 degrees of freedom.

LEDEX McNaughton (low) New

Energy Range 82 ∼ 127 MeV 95 ∼ 483 MeV 90 ∼ 360 MeV
p0 0.55 0.70 0.55
a0 4.0441 5.3346 5.92823
a1 19.313 -5.561 24.8291
a2 119.27 2.8353 -130.046
a3 439.75 61.915 -111.329
a4 9644.7 -145.54 834.988
b0 6.4212 -12.774 34.8843
b1 111.99 -68.339 28.6809
b2 -5847.9 1333.5 -2207.81
b3 -21750 -3713.5 6089.94
b4 973130 3738.3 -595.011
c0 42.741 1095.3 -776.587
c1 -8639.4 949.50 102.862
c2 87129 -28012.0 125407
c3 8.1359×105 96833.0 -530126
c4 -2.1720×107 -118830.0 595619
d0 5826.0 23845.1
d1 2.4701×105 1.16981×105

d2 3.3768×106 -1.99475×106

d3 -1.1201×107 5.8203×106

d4 -1.9356×107 -4.41281×106
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Appendix E

Neutral Pion Photoproduction

Estimation

E.1 Introduction

For experiment E08007, we measured the recoil proton polarization in the elastic

reaction 1H(~e, e′~p). For the production data taking we required a coincidence between

a proton detected in the left HRS and a signal in a limited set of BigBite shower blocks

which a coincident elastic ep electron would be expected to hit. Since the particle

identification is limited in the BigBite shower counter due to the configuration, it

may allow contamination by background reactions. Therefore, in the data analysis,

an elastic cut was applied to the proton kinematics (angle vs. momentum).

This study is to investigate whether there is a significant contribution from pion

photoproduction γ + p → p + π0 with the current event selection. In this work,

we do not consider possible backgrounds from virtual Compton scattering which are

expected to be much smaller than the backgrounds from pion production. Since the

goal is to give an estimate for the order of magnitude, some approximations were

applied to simplify the simulation. Based on this study we will see if a full simulation

is needed.

For the pion photoproduction estimation, it includes the following inputs:
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φtg ±30 mrad
θtg ±60 mrad
δp ±0.04

Table E.1: HRS acceptance.

• phase space simulation for both e + p→ e + p and γ + p→ p+ π0.

• real photon flux estimation.

• BigBite calorimeter acceptance.

• elastic cross section, pion photoproduction cross section and polarization ob-

servable from the world database and calculations.

We took the lowest momentum kinematics setting K21 as an example. The pro-

cedure described below was applied to every kinematics, and the results are reported

in the end.

E.2 Phase Space Simulation

The proton was detected in the left HRS which has a small acceptance and high

resolution. To simplify the phase space simulation, we first put constraints on pro-

tons only, assuming that all the pions (decayed photons) could be detected in the

BigBite shower counter. By applying the same elastic cut on the simulated proton

spectrum, we can get the π0p to ep phase space ratio. The momentum resolution

was manually adjusted in the simulation to match the resolution of the data. The

resolution comparison was made on δp − δp(φ), which is the difference between the

measured momentum and the one reconstructed from the scattering angle via the

elastic kinematics. The acceptance cuts were applied according to the HRS default

acceptance as reported in Table E.1. The comparison between the real data and the

simulated spectrum are shown in Fig. E-1.

1The spectrometer resolution becomes worse with lower proton momentum, hence, more difficult
to separate the pion background via the elastic cut.
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 / ndf 2χ  70.71 / 32
Constant  33± 1.39e+04 

Mean      2.258e-05± 1.197e-05 
Sigma     0.00003± 0.01036 
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 / ndf 2χ  150.4 / 88

Constant  26± 1.153e+04 

Mean      0.0000190± -0.0009603 
Sigma     0.00001± 0.01041 
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2 = 0.3 GeV2 = -2% QδK2 

Figure E-1: Data and simulated spectrum on δp − δp(φ).

The simulation also generated the phase space for γ + p → p + π0. The range of

the photon energy is from 0 to 1192 MeV (beam energy). However, the proton from

pion production will only be detected in the HRS acceptance when the photon carries

almost all the beam energy. As an example, for kinematics K2, the HRS central angle

is 60◦, for the δp = 0% setting, the central momentum is 565 MeV. As demonstrated

in Fig. E-2, the proton kinematics for π0p at Eγ = 500 MeV is far away from the

HRS setting. To estimate the π0p to ep phase space ratio, a cut was applied to the

simulated spectrum on δp − δp(φ) according to the elastic cut applied to the data as

illustrated in Fig. E-3.
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Figure E-2: Simulated proton kinematics for π0p at Eγ = 500 MeV and elastic. Pp is
the proton momentum and θp is the scattering angle.
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Figure E-3: Proton elastic cut on δp − δp(φ) spectrum for kinematics K2.

Eγ [MeV] Rphase

1150 1.3× 10−4

1160 6× 10−4

1170 2.5× 10−3

1180 9.2× 10−3

1185 1.7× 10−2

1190 2.8× 10−2

Table E.2: Simulated π0p to ep phase space ratio at kinematics K2.

It is not surprising to find that only when Eγ > 1150 MeV π0p phase space

becomes noticeable. The procedure is repeated at several photon energy intervals

from 1150 MeV to 1192 MeV. Table E.2 gives the π0p to ep phase space ratio.

For higher Q2 settings, although the π0p kinematics is getting closer to the ep

kinematics, the proton momentum resolution improves and π0p can be more clearly

separated by the elastic cut. Fig. E-4 shows the phase space simulation for kinematics

K2 (Q2 = 0.3 GeV2) and K8 (Q2 =0.7 GeV2). It is clear to see that at K8, π0p are

mostly cut away. The same procedure was applied to every kinematics with different

photon energies, the π0p to ep phase space ratios for different kinematics for the

simulated π0p are listed in Table. E.3.
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Figure E-4: Simulated ep and π0p spectrum for kinematics K2 and K8. The blue
lines are the corresponding elastic cut applied to the data.

E.3 Photon flux

The real photon flux from bremsstrahlung were calculated using [197], with 3 cm

liquid hydrogen target. The results are listed in Table. E.4

E.4 Cross Sections

In order to compare the rate, the cross sections for ep and π0p are required. The

elastic cross section in the lab can be directly estimated from the rate during the
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Kine. Q2 [GeV]2 Rphase [1180 MeV] Rphase [1185 MeV] Rphase [1190 MeV]
K1 0.35 1.0× 10−2 2.0× 10−2 3.4× 10−2

K2 0.3 9.2× 10−3 1.7× 10−2 2.8× 10−2

K3 0.45 8.6× 10−4 3.0× 10−3 1.1× 10−2

K4 0.40 1.1× 10−3 3.5× 10−3 6.8× 10−3

K5 0.55 8.0× 10−5 5.0× 10−4 2.8× 10−3

K6 0.50 4.4× 10−4 2.0× 10−3 7.2× 10−3

K7 0.6 3.8× 10−5 4.8× 10−4 3.5× 10−3

K8 0.7 0.0 3.6× 10−5 0.7× 10−3

Table E.3: π0p to ep phase space ratio for different kinematics with Eγ = 1180, 1185,
and 1190 MeV.

Eγ range [MeV] Γγ

1150-1160 5× 10−5

1160-1170 5× 10−5

1170-1180 5× 10−5

1180-1190 3× 10−5

1185-1190 1.5× 10−5

1190-1192 0.5× 10−5

Table E.4: Real photon flux at different energies with 1.192 GeV electron beam.

experiment. For K2, with 4µA beam, 6 cm target, the coincidence rate is around 3

kHz. The maximum HRS acceptance (6msr) is used for dΩ. The elastic differential

cross section in the lab frame can be estimated by:

L = 6cm · 0.07g/cm3 · 6.02× 1023/g · 4× 10−6A · 1.6× 1019/C (E.1)

= 16× 1036/cm2 · s (E.2)

dσel
dΩ

=
3× 103/s

(16× 1036/cm2 · s) · 6× 10−3sr
(E.3)

= 3.1× 10−2µb/sr. (E.4)

The π0p differential cross section for Eγ ∼ 1185 MeV at the same setting was

looked up in the world database [198] (see Fig. E-5), which is ∼ 1.2 × µb/sr in
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Figure E-5: World data and calculations for π0p differential cross section at Eγ =
1185 MeV.

the C.M. frame, Jacobian J = 1.6 for K2, so the cross section in the lab frame is

∼ 1.6× 1.2 = 2 µb/sr. The cross section ratio can be obtained:

RXS = σπ0p/σep = 2/3.1× 10−2 ∼ 60. (E.5)

The ep and π0p differential cross sections in the lab frame for different kinematics are

listed in Table E.7.

Kine. dσep

dΩ
(µb/sr)

dσπ0p

dΩ
(µb/sr) RXS

K1 6.7× 10−2 2.2 33
K2 3.3× 10−2 2.0 64
K3 1.8× 10−2 2.4 133
K4 1.9× 10−2 2.4 126
K5 1.1× 10−2 2.7 245
K6 1.3× 10−2 2.6 200
K7 1.0× 10−2 2.6 260
K8 0.6× 10−2 2.6 433

Table E.5: ep and π0p differential cross sections in the lab frame and the ratio RXS

for different kinematics.
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E.5 Pion Electroproduction

The electroproduction reaction e + p → e + p + π0 was checked as well. Although

the virtual photon flux is ∼ 3 times larger than the real photon, the phase space

is much smaller (3-body) than the photoproduction, we expect the effect is even

smaller. Fig. E-6 shows the phase space simulation for elastic, pion photoproduction,

and electroproduction at kinematics K2. With the elastic cuts, the electroproduction

phase space is 50 times smaller compared to the photoproduction.

)φ(pδ - pδ
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.050

2000

4000

6000

8000

10000  = 0%pδK2 

elastic
pion photo

pion electro

Figure E-6: Phase space simulation for ep, π0p and epπ0 with Eγ = 1190 MeV.

E.6 Rate Estimation and Polarization corrections

With all the information above, we can estimate the π0p to ep rate ratio assuming all

the decayed photons were detected by:

r0 = Nπ0p/Nep =
∑

Eγ

Rphase ×RXS × Γ. (E.6)

The results are listed in Table. E.6. So the total π0p to ep ratio at K2 is ∼ 1×10−4 if all

the decayed photons can be detected in the BigBite. Actually, during the experiment,

only part of the BigBite shower counter was turned on, if the BigBite acceptance is
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Eγ range [MeV] r0
1150-1160 0.5× 10−6

1160-1170 0.22× 10−5

1170-1180 0.12× 10−4

1180-1185 0.23× 10−4

1185-1190 0.18× 10−4

1190-1192 0.1× 10−4

r0 ∼ 1× 10−4

Table E.6: Estimated ratio of π0p to ep for kinematics K2.

taking into account, the π0p rate will be further reduced.

E.6.1 BigBite Acceptance

For K2, a section of 3x3 shower blocks were on. The area of each shower block is 8.5

cm ×8.5 cm. The calorimeter was about 3 m away from the target. To estimate the

upper limit, we naively assume that π0 aimed at the center of the 9 shower blocks, so

the in-plane and out-of-plane acceptance is about ±2.4◦. This corresponds to ±35◦

in the C. M. frame where the photons are uniformly distributed. The π0p rate would

be further suppressed by:

fBB = (cos 0◦ − cos 35◦)/ cos 0◦ = 0.18 (E.7)

After multiplying the factor above, the π0p to ep ratio is:

r = r0 × fBB = 3× 10−4 × 0.18 = 0.54× 10−4. (E.8)

For different kinematics, the pion momentum is different as well as the acceptance

of BigBite. fBB for each kinematics is listed in Table E.7. Together with the other

information mentioned earlier, the π0p to ep ratio r for each kinematics are obtained

in Table E.7. This is a very conservative estimation, since the central angle of π0 was

actually 0.5 ∼ 1.0 degree off the center of the electrons, and the electrons actually

were bent upwards by the BigBite magnet while the photons went straight through
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and hit at the lower region. Therefore, the effective acceptance for the photons is

even smaller. The final ratio of the rates is < 1× 10−4 for all the kinematics we have

taken.

Kine. shower blocks acceptance in C.M. [deg] fBB

K1 3x3 ±33 0.16
K2 3x3 ±35 0.18
K3 3x3 ±31 0.14
K4 3x3 ±32 0.15
K5 3x3 ±30 0.13
K6 4x4 ±40 0.23
K7 5x5 ±47 0.32
K8 5x5 ±44 0.28

Table E.7: ep and π0p differential cross sections in the lab frame and the ratio RXS

for different kinematics.

E.6.2 Hall C Inclusive Data

The Hall C Super-Rosenbluth experiment [199] took the singles elastic data at similar

Q2 with a bit lower beam energies. Fig. E-7 shows the full simulation of the proton

singles spectra at 2 different beam energies. One can clearly see that the higher energy

moves the pion production closer to the elastic peak, but the pion contamination is

still much less than 1% if tight elastic cuts are applied. In our experiment, the

coincidence trigger and the limited BigBite acceptance greatly suppressed the inelastic

background. In addition, compared to the HMS, the Hall A HRS has much better

resolution which makes it much easier to cut out protons from the pion production.

In another word, the smallness of the pion contamination in our data is also expected

from the Hall C data and simulation.

E.6.3 Corrected Proton Polarizations

Now we can look at the the possible correction to the proton polarizations with

1 × 10−4 π0p contamination after we applied the elastic cut. For kinematics K2, as

shown in Fig. E-8, the proton polarization for π0p from [198] are listed in Table. E.8.
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Figure E-7: The proton singles spectra and the full background simulation from Hall
C Super-Rosenbluth experiment with beam energy 849 MeV (left panel) and 985 MeV
(right panel). The spectra in red in the proton elastic peak, and the one in magenta
is the simulated pion production.

The corrected Cx and Cz for the elastic events are:

Eγ (MeV) Cx Cz

1180 -0.0095 0.4456
1185 0.0053 0.4470
1190 0.0194 0.4475

elastic (K2) -0.208 0.186

Table E.8: Polarization observable

Cep =
Craw − r · Cπ0p

1− r
(E.9)

where r = 1× 10−4 is the estimated π0p to ep ratio. The corrected form factor ratio

would shift by ∼ 0.0003. The results for the other kinematics are similar or even

smaller.
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Figure E-8: Calculations for the π0p polarization observable at Eγ = 1185 MeV.

E.7 Summary

With the procedure presented above, we conservatively estimated the contribution

from π0p to be < 10−4 level. The resulting correction to the proton polarization is

also at 10−4 level which is negligible.
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Appendix F

Cross Section Data
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Q2 E Ep θe ε σ δσ Ref.
[(GeV/c)2] [GeV] [GeV] [◦] [1] [nb/sr] [nb/sr]

0.2922 0.6240 0.4683 59.997 0.58070 55.56 2.278 [12]
0.2916 0.5280 0.3726 74.996 0.43960 32.16 1.319 [12]
0.2923 0.4680 0.3123 89.995 0.31590 20.55 1.048 [12]
0.2916 0.3990 0.2436 119.993 0.13340 10.50 0.5251 [12]
0.2915 0.3800 0.2247 134.993 0.07340 8.812 0.3525 [12]
0.3498 0.6920 0.5056 59.997 0.57710 36.94 1.884 [12]
0.3500 0.5880 0.4015 74.996 0.43580 22.06 0.8823 [12]
0.3503 0.4270 0.2403 134.993 0.07240 6.458 0.2583 [12]
0.3894 0.9000 0.6925 46.557 0.70860 59.11 2.896 [12]
0.3891 0.7360 0.5287 59.997 0.57460 30.66 1.226 [12]
0.3897 0.6270 0.4193 74.996 0.43330 17.65 0.7235 [12]
0.3894 0.5570 0.3495 89.995 0.31050 11.82 0.5792 [12]
0.3898 0.4790 0.2713 119.993 0.13050 6.218 0.3109 [12]
0.3893 0.4570 0.2495 134.993 0.07170 5.123 0.2049 [12]
0.3894 0.4470 0.2395 144.992 0.04280 4.690 0.2345 [12]
0.3894 1.9035 1.6960 19.999 0.93540 408.9 8.996 [200]
0.3903 1.5370 1.3290 25.249 0.89970 226.5 4.559 [10]
0.3891 1.2490 1.0416 31.738 0.84780 131.6 2.577 [10]
0.3892 1.2310 1.0236 32.268 0.84330 130.0 2.580 [10]
0.3892 1.1420 0.9346 35.148 0.81780 107.4 2.188 [10]
0.3890 0.8480 0.6407 50.057 0.67380 45.62 0.9317 [10]
0.3895 0.6960 0.4884 64.716 0.52860 25.14 0.4075 [10]
0.3894 0.5560 0.3485 90.265 0.30840 11.71 0.2287 [10]
0.4671 0.9500 0.7011 49.507 0.67490 33.12 1.689 [12]
0.4672 0.9000 0.6510 53.037 0.63930 27.62 1.381 [12]
0.4677 0.7000 0.4508 74.996 0.42850 11.67 0.4668 [12]
0.4675 0.5150 0.2659 134.993 0.07040 3.529 0.1765 [12]
0.4674 0.5040 0.2549 144.992 0.04200 3.240 0.1620 [12]
0.5061 0.9500 0.6803 52.517 0.64240 24.26 1.189 [12]
0.5066 0.7350 0.4650 74.996 0.42610 9.320 0.3821 [12]
0.5064 0.5430 0.2732 134.993 0.06980 2.882 0.1441 [12]
0.5072 1.7700 1.4997 25.249 0.89700 127.3 2.574 [10]
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Q2 E Ep θe ε σ δσ Ref.
[(GeV/c)2] [GeV] [GeV] [◦] [1] [nb/sr] [nb/sr]

0.5451 0.9500 0.6595 55.597 0.60900 18.17 0.9084 [12]
0.5452 0.9000 0.6095 59.797 0.56700 14.20 0.7383 [12]
0.5453 0.7690 0.4784 74.996 0.42380 7.793 0.3195 [12]
0.5445 0.5700 0.2798 134.993 0.06920 2.454 0.1227 [12]
0.5456 0.5590 0.2683 144.992 0.04130 2.347 0.1173 [12]
0.5840 0.9500 0.6388 58.747 0.57510 13.27 0.6504 [12]
0.5837 0.8020 0.4910 74.996 0.42150 6.573 0.3352 [12]
0.5833 0.5970 0.2862 134.993 0.06860 2.126 0.1063 [12]
0.5841 2.3617 2.0505 19.999 0.93240 155.0 4.031 [200]
0.5840 1.0720 0.7608 50.057 0.66300 17.69 0.3563 [10]
0.5843 1.0420 0.7306 51.957 0.64360 16.64 0.3373 [10]
0.5844 0.8920 0.5806 64.166 0.52180 9.945 0.1983 [10]
0.5837 0.8860 0.5749 64.716 0.51650 9.656 0.1985 [10]
0.5845 0.7180 0.4065 90.075 0.29950 4.517 0.9927E-01 [10]
0.5844 0.7170 0.4056 90.265 0.29820 4.504 0.8936E-01 [10]
0.5846 0.6470 0.3354 110.294 0.17210 2.926 0.6754E-01 [10]
0.5834 0.6450 0.3341 110.714 0.17000 2.969 0.6057E-01 [10]
0.5847 1.9120 1.6004 25.249 0.89530 89.17 1.781 [10]
0.5842 1.6290 1.3177 30.238 0.85450 60.86 1.190 [10]
0.5844 1.5400 1.2286 32.268 0.83670 51.12 0.9907 [10]
0.5841 1.5220 1.2107 32.698 0.83290 48.94 0.9816 [10]
0.5843 1.4310 1.1196 35.148 0.81040 42.28 0.8441 [10]
0.7009 0.9500 0.5765 68.886 0.46990 5.588 0.2738 [12]
0.7005 0.8990 0.5257 74.996 0.41460 4.392 0.2196 [12]
0.7006 0.8640 0.4907 79.996 0.37200 3.609 0.1732 [12]
0.7012 0.6770 0.3034 134.993 0.06680 1.280 0.6402E-01 [12]
0.7013 0.6640 0.2903 144.992 0.03980 1.177 0.5886E-01 [12]
0.7790 1.7890 1.3739 32.698 0.82630 23.13 0.4753 [10]
0.7784 1.6830 1.2682 35.148 0.80320 19.65 0.5852 [10]
0.7791 1.3920 0.9768 44.478 0.71000 11.25 0.2274 [10]
0.7791 1.0640 0.6488 64.166 0.51020 4.457 0.1089 [10]
0.7792 0.8650 0.4498 90.075 0.28990 2.118 0.4660E-01 [10]
0.7783 0.7840 0.3693 110.124 0.16650 1.384 0.2976E-01 [10]
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