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Overview of the MEIC

» Jefferson Lab has been pursuing design studies of an electron-
ion collider for future nuclear physics research (2007 Long
Range Plan, DOE/NSF Nuclear Science Advisory Committee)

* Based on CEBAF, the collider would provide collisions between
polarized electrons and polarized light ions or unpolarized
heavy ions at multiple interaction points (IP)

» Staged approach:

* Immediate goal: low-to-medium energy collider (MEIC)
CM energy up to 51 GeV

* Future upgrade option: a high-energy collider
CM energy 100 GeV or higher
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Overview of the MEIC
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METC
Motivation for Beam-Beam Simulations

» Key design MEIC parameters reside in an unexplored region for ion beams

* very small (cm or less) B* to squeeze transverse beam sizes to several um
at collision points

* moderate (50 to 100 mrad) crab crossing angle due to very high (0.5 to
1.5 GHz) bunch repetition (new for proton beams)

* Investigating the beam-beam effect becomes critically important as part of
feasibility study of this conceptual design

* The sheer complexity of the problem requires us to rely on computer
simulations for evaluating this non-linear collective effect

e @Goals of numerical beam-beam simulations:

e Examine incoherent and coherent beam-beam effects under the nominal
design parameters

* Characterize luminosity and operational sensitivity of design parameters
Take into account coupling to single particle nonlinear dynamics in rings
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e Numerical beam-beam simulations can be divided into two
parts:

Simulation Model

1. Tracking of collision particles at IPs
2. Transporting beams through a collider ring

* Modeled differently to address different physics mechanisms
and characteristic timescales

* In this talk, we focus on disruption of colliding beams by non-
linear beam-beam kicks (study 1., and idealize 2.)

e Beam transport idealized by a linear map, synchrotron
radiation damping and quantum fluctuations

e Strong-strong regime: both beams can be perturbed by the
beam-beam kicks
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Simulation Code

* We use BeamBeam3D code (LBNL) (SciDAC collaboration):
 Self-consistent, particle-in-cell

* Solves Poisson equation using shifted Green function
method on a 3D mesh

* Massively parallelized
» Strong-strong or weak-strong mode
* |n our present configuration, results converge for:
* 200,000 particles per bunch
* 64x128 transverse resolution, 20 longitudinal slices

e Simulation runs executed on both NERSC supercomputers and
on JLab’s own cluster
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Scope of Simulations

* Model new medium-energy parameter set for the MEIC
* Approximations/simplifications used:

* Linear map

* Chromatic optics effects not included

* Damping of e-beam through synchrotron radiation

* No damping in ion/p-beam

* Head-on collisions

* 11P
* Strong-strong (self-consistent, but slow) mode:

* Only study short-term dynamics — several damping times
(1 damping time ~ 1500 turns ~ 5 ms)
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Simulation Results

* We address the following issues:
e Search for a (near-)optimal working point
Automated and systematic approach

* Dependence of beam luminosity on electron and ion beam
currents

* Onset of coherent beam-beam instability
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MEZC Searching For Optimal

Working Point Using Evolutionary Algorithm

 Beam-beam effect and collider luminosity are sensitive to synchro-
betatron resonances of the two colliding beams

» Careful selection of a tune working point is essential for stable
operation of a collider as well as for achieving high luminosity

e Optimize a non-linear function using principles of natural selection,
mutation and recombination (evolutionary algorithm)

* Objective function: collider’s luminosity

* Independent variables: betatron tunes for each beam
(synchrotron tunes fixed for now; 4D problem)

* Subject to constraints (e.g., confine tunes to particular regions)

Probably the only non-linear search method that can work in a domain
so violently fraught with resonances (very sharp peaks and valleys)
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Searching For Optimal

Working Point Using Evolutionary Algorlt

* Resonances occur when mv,+ my +my, =n
m,, m, m and n are mtegers (ms 0'for now)

* Green lines: difference resonances (stable)
* Black lines: sum resonances (unstable)
» Restrict search to a group of small regions

>
>

along diagonal devoid of black resonance lines

* Found an excellent working point near
half-integer resonance
(well-known empirically: PEP Il, KEK-B...)
e-beam: v, = 0.53, v, = 0.548456, v, = 0.045
p-beam: v, =0.501184, v, = 0.526639, v, = 0.045
e Luminosity about 33% above design value
in only ~300 simulations

Luminosity (cm-2 s-1)

Main point: have a reliable and streamlined
way to find optimal work point
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Luminosity at the Optimal Work Point

1.1e+34

e For the optimal working point found tosaa |
earlier, compute luminosity for a large
number of turns (20,000 ~ 66 ms)

(a few days on NERSC/JLab cluster)
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e After an initial oscillation, the luminosity
appears to settle (within a fraction of a
damping time) at a value exceeding 56433
design luminosity )
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excess of the design value
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Betatron Tune Footprint

*  For the optimal working point found earlier,
compute tunes for a subset of particles
from each beam and see where they lie in
relation to the resonant lines
(up to 7t order resonances plotted) =

““|‘ i

0 0.1 02 03 04 05 06 0.7 0.8 09 1

* Resonance lines up to 6th order plotted

*  Tune footprint for both beams stays 060
comfortably away from resonance lines

0.58 |-

0.56

e Main point: for stability, the tune footprint of both beams
must be away from low-order resonances
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Dependence of Luminosity on Beam Current
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* Near design beam current (up to ~2 times larger): linear dependence
* Far away from design current for proton beam: non-linear effects dominate
Coherent beam-beam instability is not observed

Main point: as beam current is increased, beam-beam effects do not limit
beam stability
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Future Plans

e Qutstanding issues we will address in future simulations:
* Including non-linear dynamics in the collider rings:
e Non-linear optics
e Effect of synchrotron tune on beam-beam
e Chromatic effects
e I[mperfect magnets
* Crab crossing (high integrated-voltage SRF cavities)
* Other collective phenomena:
e Damping due to electron cooling in ion/proton beams
e Space charge at very low energy (?)
* Long-term dynamics: use weak-strong simulations
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Summary

* Beam-beam effects are critical for the MEIC

* We developed methodology to study beam-beam effects
* Used existing and developed new codes/methods

* Presented first results from numerical simulations

* Main point: beam-beam effects do not limit the capabilities
of the MEIC

* Ultimate goal of beam-beam simulations: verify validity of
MEIC design and optimize its performance
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Backup Slides
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Dependence of Effective Beam-Beam Tuneshift on Beam Current
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Tune Scan

Electron Beam
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Tune Scan

Proton Beam

Vary Proton X Tune

Vary Proton Y Tune
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