Jefferson Lab > CIO > IR
Privacy and Security Notice

Publications

Publication Information

Title Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x
Authors Mark Strikman, Christian Weiss
JLAB number JLAB-THY-17-2488
LANL number arXiv:1706.02244
Other number DOE/OR/23177-4160
Document Type(s) (Journal Article) 
Associated with EIC: No
Supported by Jefferson Lab LDRD Funding: No
Funding Source: Nuclear Physics (NP)
 

Journal
Compiled for Physical Review C
Volume 97
Issue 03
Page(s) 035209
Refereed
Publication Abstract: We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (~< 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ~< 1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.
Experiment Numbers: other
Group: THEORY CENTER
Document: pdf
DOI: https://doi.org/10.1103/PhysRevC.97.035209
Accepted Manuscript: PhysRevC.97.pdf
Supporting Documents:
Supporting Datasets: