Jefferson Lab > CIO > IR
Privacy and Security Notice

Publications

Publication Information

Title Precision measurement of quasi-elastic transverse and longitudinal response functions in the range 0.55 GeV/c lte |q-right arrow| lte 1.0 GeV/c
Authors Hamza Atac
JLAB number JLAB-PHY-17-2651
LANL number (None)
Other number DOE/OR/23177-4430
Document Type(s) (Thesis) 
Supported by U.S. Naval Research: No
Supported by Jefferson Lab LDRD Funding: No
Funding Source: Nuclear Physics (NP)
  Thesis
A PHD thesis
Advisor(s) :
   Zein-Eddine Meziani (Temple University)
Publication Abstract: The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusive electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.
Experiment Numbers: E05-110
Group: Hall A
Document: pdf
DOI:
Accepted Manuscript:
Supporting Documents:
Supporting Datasets: