Jefferson Lab > CIO > IR
Privacy and Security Notice

Publications

Publication Information

Title $b_1$ resonance in coupled $p¿$, $p¿$ scattering from lattice QCD
Authors Antoni Woss, Christopher Thomas, Jozef Dudek, Robert Edwards, David Wilson
JLAB number JLAB-THY-19-2910
LANL number arXiv:1904.04136
Other number DOE/OR/23177-4664
Document Type(s) (Journal Article) 
Associated with EIC: No
Supported by Jefferson Lab LDRD Funding: No
Funding Source: Nuclear Physics (NP)
Other Funding:U.K. Science and Technology Facilities Council
 

Journal
Compiled for Physical Review D
Volume 100
Page(s) 054506
Refereed
Publication Abstract: We present the first lattice QCD calculation of coupled $\pi\omega$ and $\pi\phi$ scattering, incorporating coupled $S$ and $D$-wave $\pi\omega$ in $J^P=1^+$. Finite-volume spectra in three volumes are determined via a variational analysis of matrices of two-point correlation functions, computed using large bases of operators resembling single-meson, two-meson and three-meson structures, with the light-quark mass corresponding to a pion mass of $m_\pi \approx 391$ MeV. Utilising the relationship between the discrete spectrum of finite-volume energies and infinite-volume scattering amplitudes, we find a narrow axial-vector resonance ($J^{PC}=1^{+-}$), the analogue of the $b_1$ meson, with mass $m_{R}\approx1380$ MeV and width $\Gamma_{R}\approx 91$ MeV. The resonance is found to couple dominantly to $S$-wave $\pi\omega$, with a much-suppressed coupling to $D$-wave $\pi\omega$, and a negligible coupling to $\pi\phi$ consistent with the `OZI rule'. No resonant behavior is observed in $\pi\phi$, indicating the absence of a putative low-mass $Z_s$ analogue of the $Z_c$ claimed in $\pi J/\psi$. In order to minimally present the contents of a unitary three-channel scattering matrix, we introduce an $n$-channel generalization of the traditional two-channel Stapp parameterization.
Experiment Numbers: other
Group: THEORY CENTER
Document: pdf
DOI: https://doi.org/10.1103/PhysRevD.100.054506
Accepted Manuscript: PhysRevD.100.054506.pdf
Supporting Documents:
Supporting Datasets: